

VECTORS: TYPES AND CHARACTERISTICS

E.g. PLASMIDS, PHAGES, HYBRID VECTORS, ARTIFICIAL CHROMOSOMES

VECTORS

- Small DNA molecule capable of self replication.
- Cloning vehicle or Cloning DNA.
- Carrier of DNA fragment.
- E.g. Plasmid, Phage, Hybrid vector, Artificial Chromosomes.

CHARACTERISTICS

- Self replication, multiple copies.
- Replication origin site.
- Cloning site.
- Selectable marker gene.
- Small size.
- Low molecular weight.
- Easily isolated & purified.
- Easily isolated into host cell.
- Control elements promoter, operator, ribosome binding site.

TYPES

Two types :-

1) <u>Cloning Vectors</u>

Propagation or cloning of DNA insert inside a suitable host cells.

Examples: Plasmids, Phage or Virus

Obtaining millions of copies.

Uses :-

Genomic library.

Preparing probes.

Genetic Engineering Experiments.

Selection of cloning vector depends on :-

- (a) Objective of cloning experiment
- (b) Ease of working.
- (c) Knowledge existing about the vector.
- (d) Suitability.
- (e) Reliability.

2) Expression Vectors

- Express the DNA insert producing specific protein.
- They have prokaryotic promoter.
- Ribosome binding site.
- Origin of replication.
- Antibiotic resistance gene.
- Expression vectors with strong promoters.
- Inducible Expression Vectors.
- Eukaryotic expression vectors.

VECTOR

TARGET HOST CELL

- Plasmid
- Bacteriophages
- Cosmid
- Yeast Cloning Vectors
- Ti & Ri Plasmids

Bacteria, Streptomyces Bacteria Bacteria Bacteria Yeasts Transformation of cloned gene in higher plants.

AGENTS USED AS VECTORS

PLASMIDS
 BACTERIOPHAGES
 COSMID
 ARTIFICIAL CHROMOSOME VECTORS

In 1973, Cohen described first successful construction of recombinant vector. Plasmid PSC101 - Ecoli

PLASMID

- Extra chromosomal DNA molecules.
- Self replicating.
- Double stranded.
- Short sequence of DNA.
- Circular DNA molecules.
- ✓ Found in prokaryotes.
- CHARACTERISTICS
 - a. Minimum amount of DNA.
 - b. Two suitable markers for identification .
 - c. Single restriction site.
 - d. More restriction enzyme.
 - e. Size range 1kg 200kg.
 - f. Relaxed replication control.
 - g. Restriction endonuclease enzyme.

THREE TYPES OF PLASMID

- 1. Fertility plasmids:- can perform conjugation.
- 2. Resistance plasmids:- contain genes that build a resistance against antibiotics or poisons.
- 3. Col plasmids:- contain genes that code for proteins that can kill bacteria.

EXAMPLES OF PLASMID VECTORS

pBR322 **pBR**327 **pBR**325 **pBR**328 ➢ pUC8 ➢ pUC9 pUC12 **pUC**13 ➢ pGEM₃Z

PBR322

- Cloning Vector.
- 15 copies.
- Reconstructed plasmid.
- Derived from Ecoli plasmid- ColE1.
 - PBR322 4362 base pairs
 - P denotes Plasmid
 - **B** Scientific Boliver
 - **R** Rodriguez
 - **322** number given to distinguish.
- Ampilicin resistance gene derived from RSF2124.
- Tetracycline resistance gene from PSC101.
- Origin of replication from PMB1.
- Two selectable markers

amp^r tet^r

PBR327

- Derived from PBR322.
- ✤ 30 40 copies.
- Expression plasmid.
- Ampilicin resistance gene.
- Tetracycline resistance gene.
- Deletion of nucleotide between 1427 & 2516.

pUC

- ✓ Popular Ecoli cloning vector.
- ✓ Derivative of pBR322.
- ✓ Two parts derived:-
 - Ampicillin resistance gene.
- ColEI origin of replication.
- ✓ 2700 base pairs.
- ✓ lac Z gene derived from Ecoli.

lies in lac region.

PHAGE

- Cloning large DNA fragmance.
- Linear Phage molecule.
- Efficient than plasmid.
- Used in storage of recombinant DNA.
- Commonly used Ecoli phages :-

<u>λ phage</u> M13 Phage

BACTERIOPHAGE VECTORS

Cloning Vectors.

It infects bacteria.

Commonly used Ecoli phages :-

λ phage M13 Phage

Lambda phage vector

Genome size is 48,502 bp.

- High transformation efficiency.
- 1000 times more efficient than the plasmid vector.
- Origin of replication.
- Genome linear in head.
- Single- stranded protruding cohesive ends of 12 bases.
- Cos site site of cleavage of phage DNA.

Phage M₁₃ Vectors

Filamentous bacteriophage of Ecoli. Used for obtaining single stranded copies. DNA sequencing. Single stranded. Inside host cell become double stranded.

HYBRID VECTOR

- Component from both plasmid & phage chromosomes.
- Helper phage provided.
- Developed in 1978 by Barbara Hohn & John Collins.
- ✓ 30 40 Kb
- Origin of replication, cloning site, marker gene, DNA cos site.
- Smaller than plasmid.
- Use construction of genomic libraries of eukaryotes.
- e.g. Cosmid

COSMIDS

- Combine parts of the lambda chromosome with parts of plasmids.
- Contain the cos sites of λ and plasmid origin of replication.
- Behave both as plasmids and as phages.
- Cosmids can carry up to 50 kb of inserted DNA.

Structure of Cosmid

- Origin of replication (ori).
- Restriction sites for cleavage and insertion of foreign DNA.
- Selectable marker from plasmid.
- A cos site a sequence yield cohesive end (12 bases).
- Ampicillin resistance gene (amp).

Basic Features of a Cosmid

<u>KEY</u>

OriV - origin of replication. Cos sites - provide blunt ends. R - recombinant site EcoRI - Restriction endonuclease Smal - Restriction sequence.

ARTIFICIAL CHROMOSOME

- Linear or Circular.
- 1 0r 2 copies per cell.
- Different types –

Bacterial Artificial Chromosome (BAC)
Yeast Artificial Chromosome (YAC)
P1 derived artificial chromosome (PAC)
Mammalian Artificial Chromosome (MAC)
Human Artificial Chromosome. (HAC)

- YAC Cloning in yeast
- BAC & PAC Bacteria
- MAC & HAC Mammalian & Human cells.

BACTERIAL ARTIFICIAL CHROMOSOME

- 1st BAC Vector PBAC108L.
- Cloning of large regions of eukaryotic genome.
- Origin of replication from bacterium Ecoli F -factor.
- **BAC vectors are pBACe3.6, pBeloBAC11.**
- Used in analysis of genomes.
- Host for BAC is mutant strain.

YEAST ARTIFICIAL CHROMOSOME

- Linear Plasmid Vector.
- Clone large DNA segment (100 1400kb).
- Occurring two forms:-

Circular – grows in bacteria.

Linear – multiplies in yeast cells.

pYAC3 - first YAC developed.

It contains :-

ARS sequence – replication

CEN4 sequence – centromeric function

TRP1 & URA3 – 2 selectable markers

Use – mapping complex eukaryotic chromosome .

Gene Cloning with Different Vectors

