Capital Structure

By Dr. B. Krishna Reddy Professor and Head_SKIM

Capital Structure Coverage –

- Capital Structure concept
- Capital Structure planning
- Concept of Value of a Firm
- Significance of Cost of Capital (WACC)

- Capital Structure theories
 - Net Income
 - Net Operating Income
 - Modigliani-Miller
 - Traditional Approach

Capital Structure

- Capital structure can be defined as the mix of owned capital (equity, reserves & surplus) and borrowed capital (debentures, loans from banks, financial institutions)
- Maximization of shareholders' wealth is prime objective of a financial manager. The same may be achieved if an optimal capital structure is designed for the company.
- Planning a capital structure is a highly psychological, complex and qualitative process.
- It involves balancing the shareholders' expectations (risk & returns) and capital requirements of the firm.

Planning the Capital Structure Important Considerations –

- <u>Return</u>: ability to generate maximum returns to the shareholders,
 i.e. maximize EPS and market price per share.
- <u>Cost:</u> minimizes the cost of capital (WACC). Debt is cheaper than equity due to tax shield on interest & no benefit on dividends.
- **<u>Risk:</u>** insolvency risk associated with high debt component.
- <u>Control</u>: avoid dilution of management control, hence debt preferred to new equity shares.
- <u>Flexible</u>: altering capital structure without much costs & delays, to raise funds whenever required.
- <u>Capacity</u>: ability to generate profits to pay interest and principal.

Value of a Firm – directly co-related with the maximization of shareholders' wealth.

- Value of a firm depends upon earnings of a firm and its cost of capital (i.e. WACC).
- Earnings are a function of investment decisions, operating efficiencies, & WACC is a function of its capital structure.
- Value of firm is derived by capitalizing the earnings by its cost of capital (WACC). Value of Firm = Earnings / WACC
- Thus, value of a firm varies due to changes in the earnings of a company or its cost of capital, or both.
- Capital structure cannot affect the total earnings of a firm (EBIT), but it can affect the residual shareholders' earnings.

An illustration of Income Statement

Particulars	Rs.
Sales (A)	10,000
(-) Cost of goods sold (B)	4,000
Gross Profit ($C = A - B$)	6,000
(-) Operating expenses (D)	2,500
Operating Profit (EBIT) (E = C - D)	3,500
(-) Interest (F)	1,000
EBT (G = E - F)	2,500
(-) Tax @ 30% (H)	750
PAT (I = G - H)	1,750
(-) Preference Dividends (J)	750
Profit for Equity Shareholders (K = I - J)	1,000
No. of Equity Shares (L)	200
Earning per Share (EPS) (K/L)	5

Capital Structure Theories

ASSUMPTIONS -

- Firms use only two sources of funds equity & debt.
- No change in investment decisions of the firm, i.e. no change in total assets.
- 100 % dividend payout ratio, i.e. no retained earnings.
- Business risk of firm is not affected by the financing mix.
- No corporate or personal taxation.
- Investors expect future profitability of the firm.

- Net Income approach proposes that there is a definite relationship between capital structure and value of the firm.
- The capital structure of a firm influences its cost of capital (WACC), and thus directly affects the value of the firm.
- NI approach assumptions
 - NI approach assumes that a continuous increase in debt does not affect the risk perception of investors.
 - Cost of debt (K_d) is less than cost of equity (K_e) [i.e. $K_d < K_e$]
 - o Corporate income taxes do not exist.

- As per NI approach, higher use of debt capital will result in reduction of WACC. As a consequence, value of firm will be increased.
 - Value of firm = <u>Earnings</u> WACC
- Earnings (EBIT) being constant and WACC is reduced, the value of a firm will always increase.
- Thus, as per NI approach, a firm will have maximum value at a point where WACC is minimum, i.e. when the firm is almost debt-financed.

As the proportion of debt (K_d) in capital structure increases, the WACC (K_o) reduces.

Calculate the value of Firm an	ctures		
EBIT of a firm Rs. 200,000.	Ke = 10%	Kd = 6%	
Debt capital Rs. 500,000	Debt = Rs. 700	Debt = $Rs. 200$	0,000
Particulars	case 1	case 2	case 3
EBIT	200,000	200,000	200,000
(-) Interest	30,000	42,000	12,000
EBT	170,000	158,000	188,000
Ke	10%	10%	10%
Value of Equity	1,700,000	1,580,000	1,880,000
(EBT / Ke)			
Value of Debt	500,000	700,000	200,000
Total Value of Firm	2,200,000	2,280,000	2,080,000
WACC	9.09%	8.77%	9.62%
(EBIT / Value) * 100			

- Net Operating Income (NOI) approach is the exact opposite of the Net Income (NI) approach.
- As per NOI approach, value of a firm is not dependent upon its capital structure.
- Assumptions
 - WACC is always constant, and it depends on the business risk.
 - Value of the firm is calculated using the overall cost of capital *i.e. the WACC only.*
 - The cost of debt (K_d) is constant.
 - Corporate income taxes do not exist.

- <u>NOI propositions (i.e. school of thought)</u>
 - 4 The use of higher debt component (borrowing) in the capital structure increases the risk of shareholders.
 - Increase in shareholders' risk causes the equity capitalization
 rate to increase, i.e. higher cost of equity (K_e)
 - A higher cost of equity (K_e) nullifies the advantages gained due to cheaper cost of debt (K_d)
 - In other words, the finance mix is irrelevant and does not affect the value of the firm.

- Cost of capital (K_o) is constant.
- As the proportion of debt increases, (K_e) increases.
- No effect on total cost of capital (wacc)

Calculate the value of firm and cost of equity for the following capital structure -								
EBIT = Rs. 200,000.	WACC (Ko) $= 1$	10% Kd = $6%$						
Debt = Rs. 300,000, Rs. 400,000, Rs. 500,000 (under 3 options)								
Particulars	Option I	Option II	Option III					
EBIT	200,000	200,000	200,000					
WACC (Ko)	10%	10%	10%					
Value of the firm	2,000,000	2,000,000	2,000,000					
Value of Debt @ 6 %	300,000	400,000	500,000					
Value of Equity (bal. fig)	1,700,000	1,600,000	1,500,000					
Interest @ 6 %	18,000	24,000	30,000					
EBT (EBIT - interest)	182,000	176,000	170,000					
Hence Cost of Equity (Ke)	10.71%	11.00%	11.33%					

- MM approach supports the NOI approach, i.e. the capital structure (debt-equity mix) has no effect on value of a firm.
- Further, the MM model adds a behavioural justification in favour of the NOI approach (personal leverage)
- Assumptions
 - Capital markets are perfect and investors are free to buy, sell,
 & switch between securities. Securities are infinitely divisible.
 - o Investors can borrow without restrictions at par with the firms.
 - o Investors are rational & informed of risk-return of all securities
 - No corporate income tax, and no transaction costs.
 - o 100 % dividend payout ratio, i.e. no profits retention

MM Model proposition –

- Value of a firm is independent of the capital structure.
- Value of firm is equal to the capitalized value of operating income (i.e. **EBIT**) by the appropriate rate (i.e. **WACC**).
- Value of Firm = Mkt. Value of Equity + Mkt. Value of Debt

= Expected EBIT

Expected WACC

- MM Model proposition
 - As per MM, identical firms (except capital structure) will have the same level of earnings.
 - As per MM approach, if market values of identical firms are different, '*arbitrage process*' will take place.
 - In this process, investors will switch their securities
 between identical firms (from levered firms to un-levered firms) and receive the same returns from both firms.

Levered Firm

- Value of levered firm = Rs. 110,000
- Equity Rs. 60,000 + Debt Rs. 50,000
- $K_d = 6 \%$, EBIT = Rs. 10,000,
- Investor holds 10 % share capital

Un-Levered Firm

- Value of un-levered firm = Rs. 100,000 (all equity)
- EBIT = Rs. 10,000 and investor holds 10 % share capital

Return from Levered Firm:

 $Investment = 10\% \ 110,000 - 50,000 = 10\% \ 60,000 = 6,000$ $Return = 10\% \ [10,000 - 6\% \times 50,000 \] = 1,000 - 300 = 700$ Alternate Strategy:

- 1. Sell shares in *L*: $10\% \times 60,000 = 6,000$
- 2. Borrow (personal leverage): $10\% \times 50,000 = 5,000$
- 3. Buy shares in $U: 10\% \times 100,000 = 10,000$

Return from Alternate Strategy:

Investment = 10,000

- $Return = 10\% \times 10,000 = 1,000$
- *Less*: Interest on personal borrowing = $6\% \times 5,000 = 300$
- Net return = 1,000 300 = 700
- Cash available = 11,000 10,000 = 1,000

- The NI approach and NOI approach hold extreme views on the relationship between capital structure, cost of capital and the value of a firm.
- Traditional approach (*'intermediate approach'*) is a compromise between these two extreme approaches.
- Traditional approach confirms the existence of an optimal capital structure; where WACC is minimum and value is the firm is maximum.
- As per this approach, a best possible mix of debt and equity will maximize the value of the firm.

The approach works in 3 stages –

- 1) Value of the firm increases with an increase in borrowings (since $K_d < K_e$). As a result, the WACC reduces gradually. This phenomenon is up to a certain point.
- 2) At the end of this phenomenon, reduction in WACC ceases and it tends to stabilize. Further increase in borrowings will not affect WACC and the value of firm will also stagnate.
- Increase in debt beyond this point increases shareholders' risk (*financial risk*) and hence K_e increases. K_d also rises due to higher debt, WACC increases & value of firm decreases.

- Cost of capital (K_o) is reduces initially.
- At a point, it settles
- But after this point, (K_o) increases, due to increase in the cost of equity. (K_e)

EBIT = Rs. 150,000, presently 100% equity finance with Ke = 16%. Introduction of debt to the extent of Rs. 300,000 @ 10% interest rate or Rs. 500,000 @ 12%.

For case I, Ke = 17% and for case II, Ke = 20%. Find the value of firm and the WACC

Particulars	Presently	case I	case II
Debt component	-	300,000	500,000
Rate of interest	0%	10%	12%
EBIT	150,000	150,000	150,000
(-) Interest	-	30,000	60,000
EBT	150,000	120,000	90,000
Cost of equity (Ke)	16%	17%	20%
Value of Equity (EBT / Ke)	937,500	705,882	450,000
Total Value of Firm (Db + Eq)	937,500	1,005,882	950,000
WACC (EBIT / Value) * 100	16.00%	14.91%	15.79%