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What 1s Robot Dynamics?

* Robot dynamics studies the relation between
robot motion and forces and moments acting
on the robot.




Rotation about a Fixed Axis

The velocity v can be determined from
the cross product of @ and r, . Here 1 is
a vector from any point on the axis of
rotation to P.

V= a)xrpza)xr

The direction of v 1s determined by the
right-hand rule.




Rotation about a Fixed Axis
(continued)

The acceleration of P can also be defined by
differentiating the velocity.

a=dv/dt=da/dtx r, + @ x dry/dt

= XIhT®W X(@® XTI
—a XN+ o x (@ X))

Tangent accel _ _
Normal/centripetal acceleration

‘Q It can be shown that this equation reduces to

a=a xr-wir=a+a,

The magnitude of the acceleration vector is a =v/(a,)? + (a, )

<>




Rotation of a Vector

 Consider rotation of a vector about a
axis. .

Point P 1s rotating about axis u.

r 1s the position vector of point P.

0: the speed of rotation
The angular velcotiy : »=uf

The rate of change of position vectorr :
d
—r=@®Xr
dt




Rotation of a Frame

" Frame A
¥YB <
« Consider a frame B rotating B
about an unit vector u.
u
{i 515Kz } . unit directional vectors of the axes - 0
of frame B w.r.t. the reference frame A 5
ii =@xI ij =X ] ik =mxk
dr ° R R 5 dr ° 5
The derivative of the rotation matrix of frame B :
- d .. : :

R=0xR




General Motion

* A general motion can be considered a
combination of a translation with a z,
point and motion about the point.

O-x,y,z,: Afixed reference frame Z M
A—x;y,z; : A frame that translate with A } X,
. . O ;
The velocity relation: / Y0
X

The acceleration relation:

ap=a,+0xXr+ox(®xr)



Introduction to Dynamics



Newton’s Laws of Motion

First Law: A particle originally at rest, or moving in a
straight line at constant velocity, will remain in this state if
the resultant force acting on the particle is zero.

Second Law: If the resultant force K
on the particle is not zero, the @K
particle experiences an acceleration

In the same direction as the resultant F =ma
force. This acceleration has a m : the mass

F : the net force

magnitude proportional to the a- the acceleration

resultant force.

Third Law: Mutual forces of action
and reaction between two particles F . I’
are equal, opposite, and collinear.




Example

Frictionless
surface

Find the accelerations of the ball
and the wedge.

Solution:
(1) Draw the free-body diagram of the particles
(2) Apply Newton’s 2nd Law

For the ball
. . R
m,X, = Nsin @ (1) \
m,y, = Ncos@—-mg (2)
For the wedge /
myg m,g

m,% =—Nsin@ 3) N Y
X



Example (continued)

« Consider acceleration relationship between
the ball and the wedge

a,  :relative velocity of the ball

_ a
a, =a_+a,, / b

w.r.t. the wedge

Note that the relative velocity is along the surface of the wedge Ay
From the diagram, we have

X, =X +a,,, cos0d (4)

Vy =—a,,,sind (5)

From egs. (1)-(5), we can solve the five unknowns, i.e. the acceleration



Linear Momentum

« Linear momentum: product of mass and velocity:
L=mV
— It is a vector, in the same direction as velocity

- SI Unit: Kgem/s V4

mV

From Newton's 2nd Law :
F = ma = miv =L
dt

* Principle of Linear Momentum: The rate of change of the
linear momentum of a particle is equal to the result force
acting on the particle



Angular Momentum

r: the position vector of a particle w.r.t. a
reference point O.

V: the velocity of the particle
m: the mass of the particle

The angular momentum of the particle
about reference O:

H =rxmV

H_ isa vectorperpendicdar toboth V andr.
[ts directionis determinedby theright-handrule

[tsunitis Kgem? /s




Principle of Angular Momentum

Consider a force F acting on the particle

Differentiating the angular momentum

H =ixmV+rxmV =rxF
=H =rxF=M,

Principle of angular momentum: The rate of change of
the angular momentum of particle about a fixed point O
Is equal to the resultant moment of forces acting on the
particle about point O



Dynamics of a System of Particles

Consider a system of n particles.

f.: the external force exerted on particle 1 £y m, f
e;: the internal force exerted on particle 1 \Q m,
by particle j

C m Cij
m,: mass of particle 1.
r;: position vector of particle 1 %
f)
m.
f} J

. d
Linear momentum:L = Z m.V, :Z m, 7 r,
[

Total mass

~
mr, :
"+ The center of mass:r, = Z . > L= Z mr, = MV

2m

The linear momentum of a system of particles 1s
equal to the product of the total mass and the
velocity of the center of mass

.

Velocity of
center of mass




Dynamics of a System of Particles

Differentiating the linear momentum
L= i m?rl—zl:(f +Zel]) \O {
ZZeij:O = L:Zfl. €;

The rate of change the linear momentum of a ]
system of particles 1s equal to the resultant of all f m,
EXTERNAL forces acting on the particles f

a.. acceleration of

center of mass
vL=MV, = Ma =>f
l

| Equation of motion of
Center of mass

The center of mass of the system moves as if all the forces
and masses are concentrated at the center of mass



Angular Momentum of a System

of Particles

Similarly, by differentiating the f, m f
angular momentum \Ol .

1

Ho :Z%{rixmvi}:/MO f/m@ ;%

2
The resultant moment of all f ]

EXTERNAL forces acting
on the system about O

O

The reference point must be a fixed point. However, the center of
mass of the system can be the reference point even when it 1s
moving



Example:

Example: Calculate the angular acceleration
of the massless link

Solution
Consider the two particles and the link as a

system
(1) Analyze the external forces

(2) Consider the angular momentum about O m,g
0 0
: d
HO — Mo — a 0 = O
(mI>+m, 2w ) \—mygl,cos@+mgl cost

~ (ml,—m,l,)cost

mlllz + m2122



Linear and Angular Momentums
for Rigid Body

« Since a rigid body can be considered
as a system with infinite number of
particles, the linear momentum

L=mV_

*The angular momentum about the
center of mass

I : Inertiatensor matrix about C.
o :angular vdocity of the body



Newton’'s Equation and Eule

* A general motion can be considered a ;

combination of a translation with the
center of mass and motion about the
center of mass

O-x,y, z, : A fixed reference frame

C —x,y,z, . A frame that translates with C

The equation of translation:

ma, :F:Zfl.

The equation of motion about C:

r's Equation

Z, I, Y1
X
- /1

/ ; ' |
Yo
X0

T~ Newton’s equation

_ Euler’s equation

diAHC =M_ ="1o+ox('Io) =
[

Zrl.xfl.+2nl.




Newton’s Equation and Euler’'s Equation
(Cont’)

The angular velocity is with respect to the
translating frame.

The inertia tensor matrix is with respect to the
translating frame, so it will change its value with
rotation of the body.

The force is the resultant of the EXTERNAL
force

The moment is the resultant moment of the
EXTERNAL forces and moments.



Example

« Derive the dynamic equation of the 2 DOF
manipulator. Here, the masses of links 1 and 2 are m1
and m2 respectively. Assume that the mass is
uniformly distributed over the link.

Solution:

(1) Analyzing forces acting on the links




Example (continued)

(2) Dynamics of link 1. As . \
link 1 is rotating about O, N, ‘ 2
]
[
I o =M N, 48
/ 0™1 0 '\ M
Moment of

inertia about O Resultant moment about O

U
. ] .
1,0, =1 —mlgzlcos 0, — R, cosO + R [smb (1)



Example

(3) Dynamics of link 2. (%
As link 2 Is in a general plane motion C
TR,
mzacz — F

Acceleration of C2: ¢ =ap +Ac g, TAc)p, Mmyg

— 11(91 Cl 11(91S1
= R T £119131j+(119101

L. . . .
acm =20+ 202 ag, =2 (91+e2)( o

3 . . . . a
— 1L (6s) + ‘91201)_?2(‘91 +0,)s); _52(‘91 +‘92) C12 Br
Adc, = . . o i
_11(‘901_‘9251)"‘—2(91+‘92)012__2(‘91+‘92)2512 a
I 1 2 C/Bt 91 -+ 92
Newton’s mya, . =R, (2)

equation: mya,. R —M,g (3)



Example (continued)

Consider Euler’s equation.
As the mass in uniformly distributed and the link 1s

symmetric, the inertia tensor matrix 1s diagonal.

0 )0

]2xx O 0 0 0 ]ZXX O O
0 I, 000 |+]0 |x| 0 I, 00 |= 0
0 0 Lo \G+6:) (0+6,) (0 0 L. \6+6,) |, +%2 R.s, + %2 R

. ] ]
1),.(6,+0,) =1, + EZRxSU +32Ry012 (4)

From (2) and (3), we can solve R, and R,.

Substituting R, and R 1n egs. (1) and (4) leads
to the dynamic equation of the robot arm.




Formulation of Robot Dynamics



Recursive Newton-Euler Formulation

We consider manipulators with revolute joints only.

N
Joint i-1 ‘ b*
I .. center
b . of mass
.| [ L -
i .

Oi‘-\i\
Relative angular
Angular velocity relation 0=0_+0,; “ ;/Oelfncilty 1If link |
. . . I I-
between link 1-1 and 1: ; \
@, =0 +2,0] (1)

Differentiating

(H)> ® =0, +2,0+0_ %70 (2)



Recursive Newton-Euler Equation (Cont’)

« Consider velocity and acceleration of O,.

V. : velocity of O, _
V., : velocity of O, Vi=Vig+t Vi
V., ; : realtive velocity of O; to O, ,

1

As the relative motion of O, w.r.t. O, ; 1s a motion about O, |,

Vil =01 X8, = Vi = Vi—l T, | XS; (3)
Acceleration a,=a, | +ap+ap,
at O;: =2, @, XS;  + 0 X(®;_XS; ;) 4)
dc =a; Fac o

Acceleration at the ‘
center of mass: — X
=a,+ 0, XI,+ 0, X (0, Xr,) (5)



Forward Equations

0; =0, +2,0, (1)

d)i :(bi—l +Zi‘9i T XZz"gi (2

a, =2, | +0, X8, ; +0;_  x(®,_;x8; ;) (3) i=0
ac =2, +0; XI;_; + 0, (0, Xr;_) (4) l

* Calculate o,,, from (1)

From (1), (2), (4) and (5), we
can recursively calculate !

the angular velocity and Calculate o, from (2)
acceleration of the links, I
and the acceleration at the Calculate a.,, from (3)

center of mass.

The initial conditions:
Wheni = 0, Calculate a;,, from (4)

A 4

— — No
Vo=0, a,=0 i=i+1 -~—Y—E‘°’> END




Dynamic equation of robot link

Derive the dynamics by applying
Newton-Euler equations to link i.

(1) Draw the free-body diagram of link
I. Assume that the links are rigidly
connected. Cut link i from the arm:

f.: the force acting on link 1 by link 1-1

n;: the moment applied on link i by link i- -

1 'fi+1

Applying Newton’s Law '
0 f m;g
—m;g
0 )
—>f =ma_. +f_ ,+|0 (7)

m;g )



Dynamics of robot link (Cont’)

Applying the Euler’'s equation

Lo, +o,xI;0, =n;, —n, ; —r;xt, — (s, —r;)x{,_,
n,=lo +o xLo +n,, +r xf, +(s; —r;,)xf,,, (8)
-n;

Egs. (7) and (8) give the recursive
backward equation for calculating the
interaction force and moment

Relation between n, and joint torque

T
T, =17, 1N,

as actuator produces torque about the joint axis only



Backward Calculation

Initial conditions: When1 =k (for the last link) :f, ., =0,n, ., =0
k : the number of links

1=K

|

; * Calculate f; from (7)

A

Calculate n; from (8)

1=1-1

YES
NO —» END




Lagrange Formulation of Robot Dynamics

» Lagrange formulation is an analytical
method for deriving the robot dynamics. It
IS based on the energy and work principle

* Energy of Mechanical Systems

— Kinetic energy: energy due to motion of a
particle or body

— Potential energy: due to gravitational forces,
deformation of mechanical systems, etc.



Kinetic Energy

* A particle (body) has kinetic energy when it moves.
Kinetic energy is always greater than zero

. 1 v
For a particle: K= Esz @/

, 1
For a system of particles: K = sziViz

®
1 s
For a rigid body : K= EI‘T rdm V.,
N ]
——mVC2 +—0'Io
2 2

I: inertia tensor



Potential Energy

* We here consider the gravitational potential
energy only.

For a particle U =mgz Q
z: the height of the particle w.r.t. a reference level

For a system of particles: U = Zmi gz, z

Forarigidbody: U=mgz,

AN

The height of the center of mass

Potential energy is a value relative to the reference.
It could be positive, zero and negative



Work

When a particle underwent a displacement r
under a constant force f, the work done by the
force on the particle is

T
W=f'r ®\/
f

— Work is a scalar
— It could be positive, zero and negative
— Sl unit: Nm



Work done by time-varying force

Consider the work done by a
time-varying force on a particle v,
that moved from one position
to anzother.

v osition 2
W= j £7 (£)dr
1 f(t)
dv

_[”” ——dr= ijdV Position 1

1
1 mVy — 1 mV,?
- iK 2o Work-energy principle: The work done

by a force acting on particle is equal to
the change of its Kinetic energy



Conservative force and Non-
Conservative force

* The force associated to the potential energy is
called conservative force. A force that is not
associated with the potential energy is called

non-conservative force. ‘
« The work done by conservative force (gravity z2
force) O
W, =-mg(zy,—z)=-AU g
* The work done by non-conservative forces Ymg |z1
W,+W, =AK

=W, =AK+AU =A(K+U)

The work done by non-conservative forces is equal to the change of total energy



Conservation of Energy

* If no non-conservative force acting on a system
(a particle, or a system of particles, or a rigid
body), does not do any work, the total energy of

the system is conserved.

K +U = constant



Lagrange Equation

* Generalized coordinates q: A set of parameters
for representing the configuration (position &
orientation) of a system.

— q must specify the configuration uniquely

— Once the values of g are fixed, the system cannot
move.

— The choice of q is not unique.

* Degree of freedom (DOF): The dimension of the
generalized coordinates vector q is called
degrees of freedom of the system



Examples

- -0 DOF =2
I q=|g
Tl 1

X
) DOF=4
¢ N
(2



Generalized Force

Consider the work done by non-conservative
forces under a differential displacement of the
system

or; : differential displacement at the
action point of f; due to a differential
change oq of the generalized coordinates q

The differential work oW : \ )
T i
oW = Zfl. or,
The generalized force F of the system 1s given by

=——— (W)  q:generalize coordinats vector

5(5(1)



Example

Calculate the generalized force of f
the 2 DOF arm 7,
1
Generalized Coordinate s : q = (gl j ?
2 6,
For differential motion 5q = (56,,66,)" 7yl
The differential work G
W =1,80, + 1,00, +f' 5 X0

ox : the differential motion of the end point

s . W =1,60, + 7,60, +1' J(q)q
TSN =T s anT s

Generalized Force:




Lagrange Equation

g: the generalized coordinates of a system
K: Kinetic energy of the system

U: the potential energy of the system

F: the generalized forces of the system
Define L=K-U: Called Lagrangian

The dynamics of the system is given by

d oL OL
dt oq Oq

=F




Derivation of Robot Dynamics using

Lagrange Equation

Choose the generalized coordinates q (usually
use the kinematics parameters defined by the
D-H method)

|dentify the non-conservative forces that are
exerted at the system and do work

Calculate the kinetic energy K and the
potential energy U, and then L=K-U

Calculate the partial derivatives
Calculate the generalized force F.
Apply the Lagrange equation.



Example 1

Center

. : , of mass
Example: Denote the mass of link i by m,.. The mass is

uniformly distributed over the link. Derive the
dynamics of the 2 DOF arm.

Solution (1) Generalized coordiantes : q = (‘91 ) d

(2) Non - conservative forces that do work : 7, 7, 2'1*

(3) The kinetic energy:

. | R
" link 1 rotates about O, .. K, = 5106?12
: : : 1 1
" link 2 1n general plane motion, .. K, :Eszé +51c2 a)22
- ( [
Position of Xe, =hey+7-¢py T - L
the Center ) 12 =V, =x,, +y., =116 +?(6’1 +0,)" +11,c,6,(6, +0,)
Of mass Ve, =118 +32512




Example 1 (continued)

The total kinetic energy

K=K +K, = %(10 + mzlf)éf +%m211120291 (6'?1 + 92)
1
2
The potential energy (assume y=0 is the reference

[ [

(4) Calculate the partial derivatives

+ (% myl; +—1_)(6, +6,)

06, 2 4 :
oL 1 S .
—=—m,,l,c, 0, +(—m,l5 +1_ )6, +6

00, 2 24162620 (4 oy +1, )6, +6,)

oL / l,

1
—=—mo—C; — M Lc, +—=c¢
86’1 182 1 28(11 7 12)

oL [5 1 - -
——=—m,9=C, ——m,l,l,5,0,(6, +6
20, 2g2 12 5 2h155,6,(6, 5)



Example 1 (continued)

5) The generalized forces:
W =1,60, + 7,60, = F= (Tl j

(%)
d @L_@L B
dt 0q 0Oq

6) Apply the Lagrange equation: F

I, + mzllz + 0.251%2[22 +1 ., +mylil5c, O.25m2122 +1.,+0.5m,ll,c, (91
0.25m,15 +1 ., +0.5m,11,c, 0.25m,l5 +1,, 0,

[—malily55(6; +0.50,)0, +(0.5my +my)l g, +0.5myl,g¢, | _ (rl )
0.5m,1,1,5,60 +0.5m,1,gc;, 0



Example 2

Example 2: The moment of inertia of the first link 1s I,. The mass
of link 2 1s m,. The mass 1s concentrated at the endpoint. An
external force f acts at the endpoint. Derive the dynamics of the
arm.

Solution: (1) Generalized coordinates

Use the D-H method to assign
frames and select the joint angles as
the generalized coordinates

iooy ay d;p 6
1 0 0 0 6
2 900 0 0 6,
3 I, 0 0

%
Generalized coordinates: q-= ( 912



Example 2 (continued)

(2) No-conservative forces that do work:

jointinputs: 7,,7,, and the external force f
(3) Kinetic energy, potential energy and Lagrangian
Kinetic energy: |
. | : . 2
Linkl: K, =511¢912 Link2: K, :Esz
To find the velocity V of the endpoint, we need to solve
the forward kinematics

¢ =5 00 ¢ =5y 00 0) %) ? 8
0 S| ¢, 0 0 Iy 0 0O -1 0 15 = 0 0 1
h=l"0 0 1 0] 7| & 00

0 0 0 1 0 0 0 1 0 0 0

— o OS5~




Example 2 (continued)

Forward kinematics:

0102 _6152 Sl O Clcz
Op _O0plp _| S —815, —¢; 0 O _ 0 20 _ | S1Cp
L=hilh=" e 00 I="1,"13 5
0 0 0 1 0

lyei0, : :
[5s,

-8y 851 e
=818y —¢p Iysiep
Cy 0 s,

0 0 1

The potential energy (Assuming that U=0 when z,=0).

U =—mgh +m,gl,s,

Lagrangian:

1

] . .
L=K-U-= 5(11 +m,l;c)0" +—m, 120, + m,gh —m,gls,

2



Example 2 (continued)

(4) Calculate the partial derivatives

oL N
——=(I, +m,l5¢c5)6
o0, (Z, »15¢5)0,

oL )
T m, 126
5(92 20292

oL

= =0
00,

8_L — _lmzlz2 sin 2(92912 —myglyc,
00,



Example 2 (continued)

(5) Generalized forces:
W =1,00, +7,00, +f'x = F = ( 2)+J (@f
x: the position of the endpoint

1201C2 GX a 126162 _12S102 _1261S2
X=|lsie, | = Jq)=——= lysiey |=| ey —lhsys,
1,5, oq 0q| [,s, 0 l,c,

(6) Applying the Lagrange equation leads to the dynamics:

I +m212 02 0 6’1 N 0. 5m212 sin 26’26’16’2 +(0 j

-(@ j+JT<q)f
%



Structure of Robot Dynamics

* The dynamics of the 2 DOF manipulator:
1, +myl7 +0.25m,1; +1 ., +mylil5c, 0.25m,1; +1,., +0.5m,l/,c, 6?‘1
0.25myl5 + 1, +0.5m,yl,15c, 0.25m,l5 + 1., 6,

. o H(q)
M mylil,s,(6, +0.560,)0, N ((O.Sml +m, )l gc, + O.szlzgcu) _ (Z’l )
0.5m,1,1,5,0] 0.5m,l, 8¢/, &

C@.a) J (a)

H(q): Intertia matrix of the manipulator,

i N e H' (qQ=H <« symmetric matrix
depending on the joint position (@) @) M

C(q, q) : thecentrifugd and Coriolisforces
Centrigualforce : Termsthat dependon thesquareof the joint velccity of a joint.
Coriolis force Terms that depend on the product

of the joint velocities of two joints.

G(q) : The gravity force



Structure of Robot Dynamics

* The centrifugal and Coriolis term can be re-written as

—mylylys5, (60, + O.'56"2 )0,
0.5m,1,1,5,0;

C(q,9) = (

_J1 —mzlllzszé}2 —0.5171211125*2«92 N 0 _ .
2\ =0.5m,l,l5s,0, 0 0.5m,ll,5,(6, +0.56,)

J A

—0.5m,1,1,5,(6, +0.560,)

0

1.
EH(Q)

S(q, q)1s a skew - symmetric matrix, i.e.

T .
S (q,9) = —TS(q,q)
Foranyx, x S(q,q)x =0

S(q.9)

}




Structure of Robot Dynamics

* In general, the dynamics of a robot manipulator has the
following form:

H(q)i - %H(q) +S(q,0)d 4 G(q) =T

/
Inertial force Centrifuga] g'm\d ™ \

Gravity  Joint inputs

Coriolis forces

H(q): Symmetric and positive - definite inertial matrix.
1. .. L.
5 "H(q)q is the kinetic energy > (

S(q,q): askew -symmetric matrix
= x'S(q,q)x=0, VxeR"



Linear Parameterization of Robot Dynamics

The dynamics of the 2 DOF arm:

1, +m2112 +O.25m2122 +1 ., +m,lil5c, O.25m2122 +1 ., +0.5m,ll5c, (91
0.25m,15 + 1,5 +0.5m,1,1,c, 0.25m,l5 +1,, 0,

N (— msl 158, (91 + 0..59.2 )92 N ((O.Sm1 +m, )l gc, + O.szlzgclz) _ (Z’l )

0.5m,1,1,5,67 0.5m,l, 8¢/, 0
By =1, +myli +0.25m,l5 +1 , The parameters depend
Define 5> =0.25m,l5 +1,, on mass, length, moment
Pz =0.5myl1, of inertia. They are the
Bs =0.5m,1, physical parameters
B
:> 0, 0, c;(20,+0,)-2s, (91;0°592)92 g¢ 8¢ §§ _ (71 )
\ O Hl +62 C2(91 +S191 O g6‘12 / 164 2-2
Y(q.9.4.4) Ps
The result can be generalized to n DOF robot manipulator p . Parameter

vector



