Robot Dynamics

Hesheng Wang
Dept. of Automation
Shanghai Jiao Tong University

What is Robot Dynamics?

- Robot dynamics studies the relation between robot motion and forces and moments acting on the robot.

Rotation about a Fixed Axis

The velocity v can be determined from the cross product of $\boldsymbol{\omega}$ and $\boldsymbol{r}_{\mathrm{p}}$. Here $\boldsymbol{r}_{\mathrm{p}}$ is a vector from any point on the axis of rotation to P .

$$
\boldsymbol{v}=\omega \times \boldsymbol{r}_{\mathrm{p}}=\omega \times \boldsymbol{r}
$$

The direction of \boldsymbol{v} is determined by the right-hand rule.

Rotation about a Fixed Axis

(continued)
The acceleration of P can also be defined by differentiating the velocity.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\boldsymbol{a}=\mathrm{d} \boldsymbol{v} / \mathrm{dt}=\mathrm{d} \boldsymbol{\omega} / \mathrm{dt} \times \boldsymbol{r}_{\mathrm{P}}+\boldsymbol{\omega} \times \mathrm{d} \boldsymbol{r}_{\mathrm{P}} / \mathrm{dt} \\
=\underset{\sim}{\boldsymbol{\alpha}} \times \boldsymbol{r}_{\mathrm{P}}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\mathrm{P}}\right)
\end{array} \\
& \text { Tangent accel } \\
& \text { Normal/centripetal acceleration }
\end{aligned}
$$

It can be shown that this equation reduces to

$$
\boldsymbol{a}=\boldsymbol{a} \times \boldsymbol{r}-\mathrm{w}^{2} \boldsymbol{r}=\boldsymbol{a}_{\mathrm{t}}+\boldsymbol{a}_{\mathrm{n}}
$$

The magnitude of the acceleration vector is $a=\sqrt{\left(a_{t}\right)^{2}+\left(a_{n}\right)^{2}}$

Rotation of a Vector

- Consider rotation of a vector about a axis.

Point P is rotating about axis \mathbf{u}. \mathbf{r} is the position vector of point P.
$\dot{\theta}$: the speed of rotation

The angular velcotiy :

$$
\omega=\mathbf{u} \dot{\theta}
$$

The rate of change of position vector \mathbf{r} :

$$
\frac{d}{d t} \mathbf{r}=\boldsymbol{\omega} \times \mathbf{r}
$$

Rotation of a Frame

- Consider a frame B rotating about an unit vector \mathbf{u}.
$\left\{\mathbf{i}_{B}, \mathbf{j}_{B}, \mathbf{k}_{B}\right\}$: unit directional vectors of the axes of frame B w.r.t. the reference frame A

$$
\frac{d}{d t} \mathbf{i}_{B}=\boldsymbol{\omega} \times \mathbf{i}_{B}, \quad \frac{d}{d t} \mathbf{j}_{B}=\boldsymbol{\omega} \times \mathbf{j}_{B}, \quad \frac{d}{d t} \mathbf{k}_{B}=\boldsymbol{\omega} \times \mathbf{k}_{B}
$$

The derivative of the rotation matrix of frame B :

$$
\begin{aligned}
& \dot{\mathbf{R}}=\frac{d}{d t}\left(\begin{array}{llll}
\mathbf{i}_{B} & \mathbf{j}_{B} & \left.\mathbf{k}_{B}\right)=\left(\begin{array}{lll}
\boldsymbol{\omega} \times \mathbf{i}_{B} & \boldsymbol{\omega} \times \mathbf{j}_{B} & \boldsymbol{\omega} \times \mathbf{k}_{B}
\end{array}\right) \\
\therefore & \dot{\mathbf{R}}=\boldsymbol{\omega} \times \mathbf{R}
\end{array}\right.
\end{aligned}
$$

General Motion

- A general motion can be considered a combination of a translation with a point and motion about the point.
$O-x_{o} y_{o} z_{o}$: A fixed reference frame
$A-x_{1} y_{1} z_{1}$: A frame that translate with A
The velocity relation:

$$
\mathbf{V}_{B}=\mathbf{V}_{A}+\boldsymbol{\omega} \times \mathbf{r}
$$

The acceleration relation:

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\boldsymbol{\alpha} \times \mathbf{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})
$$

Introduction to Dynamics

Newton's Laws of Motion

First Law: A particle originally at rest, or moving in a straight line at constant velocity, will remain in this state if the resultant force acting on the particle is zero.

Second Law: If the resultant force on the particle is not zero, the particle experiences an acceleration in the same direction as the resultant force. This acceleration has a magnitude proportional to the resultant force.

$\mathbf{F}=m \mathbf{a}$
m : the mass
F: the net force
a: the acceleration

Third Law: Mutual forces of action and reaction between two particles are equal, opposite, and collinear.

Example

Find the accelerations of the ball and the wedge.

Solution:

(1) Draw the free-body diagram of the particles
(2) Apply Newton's $2^{\text {nd }}$ Law

For the ball

$$
\begin{align*}
& m_{1} \ddot{x}_{b}=N \sin \theta \tag{1}\\
& m_{1} \ddot{y}_{b}=N \cos \theta-m_{1} g \tag{2}
\end{align*}
$$

For the wedge

$$
\begin{equation*}
m_{2} \ddot{x}_{w}=-N \sin \theta \tag{3}
\end{equation*}
$$

Example (continued)

- Consider acceleration relationship between the ball and the wedge

$$
\mathbf{a}_{b}=\mathbf{a}_{w}+\mathbf{a}_{b / w}
$$

$\mathbf{a}_{b / w}$: relative velocity of the ball w.r.t. the wedge

Note that the relative velocity is along the surface of the wedge From the diagram, we have

$$
\begin{align*}
& \ddot{x}_{b}=\ddot{x}_{w}+a_{b / W} \cos \theta \tag{4}\\
& \ddot{y}_{b}=-a_{b / w} \sin \theta \tag{5}
\end{align*}
$$

From eqs. (1)-(5), we can solve the five unknowns, i.e. the acceleration

Linear Momentum

- Linear momentum: product of mass and velocity:

$$
\mathbf{L}=m \mathbf{V}
$$

- It is a vector, in the same direction as velocity
- SI Unit: Kg•m/s

From Newton's 2nd Law :
$\mathbf{F}=m \mathbf{a}=m \frac{\mathrm{~d}}{\mathrm{dt}} \mathbf{V}=\dot{\mathbf{L}}$

- Principle of Linear Momentum: The rate of change of the linear momentum of a particle is equal to the result force acting on the particle

Angular Momentum

- r: the position vector of a particle w.r.t. a reference point O.
- \mathbf{V} : the velocity of the particle
- m: the mass of the particle
- The angular momentum of the particle about reference O :

$$
\mathbf{H}_{o}=\mathbf{r} \times m \mathbf{V}
$$

\mathbf{H}_{o} is a vectorperpendicular to both \mathbf{V} and \mathbf{r}.
Its directionis determinedby theright - hand rule
Its unit is $\mathrm{Kg} \bullet \mathrm{m}^{2} / s$

Principle of Angular Momentum

Consider a force F acting on the particle

Differentiating the angular momentum

$$
\begin{aligned}
& \dot{\mathbf{H}}_{o}=\dot{\mathbf{r}} \times m \mathbf{V}+\mathbf{r} \times m \dot{\mathbf{V}}=\mathbf{r} \times \mathbf{F} \\
& \Rightarrow \dot{\mathbf{H}}_{o}=\mathbf{r} \times \mathbf{F}=\mathbf{M}_{o}
\end{aligned}
$$

Principle of angular momentum: The rate of change of the angular momentum of particle about a fixed point O is equal to the resultant moment of forces acting on the particle about point O

Dynamics of a System of Particles

Consider a system of n particles.
f_{i} : the external force exerted on particle i e_{ij} : the internal force exerted on particle i by particle j
m_{i} : mass of particle i.
r_{i} : position vector of particle i
Linear momentum: $\mathbf{L}=\sum m_{i} \mathbf{V}_{i}=\sum m_{i} \frac{d}{d t} \mathbf{r}_{i}$

\because The center of mass: $\boldsymbol{r}_{\mathrm{c}}=\frac{\sum m \mathbf{r}_{i}}{\sum m_{i}} \Rightarrow \mathbf{L}=\sum m_{i} \dot{\mathbf{r}}_{c}=M \mathbf{V}_{G}$
The linear momentum of a system of particles is

Velocity of center of mass equal to the product of the total mass and the velocity of the center of mass

Dynamics of a System of Particles

Differentiating the linear momentum

$$
\begin{aligned}
& \quad \dot{\mathbf{L}}=\sum_{i} m_{i} \frac{d^{2}}{d t^{2}} \mathbf{r}_{i}=\sum_{i}\left(\mathbf{f}_{i}+\sum_{j} \mathbf{e}_{i j}\right) \\
& \because \quad \sum_{i} \sum_{j} \mathbf{e}_{i j}=0 \Rightarrow \dot{\mathbf{L}}=\sum_{i} \mathbf{f}_{i}
\end{aligned}
$$

The rate of change the linear momentum of a system of particles is equal to the resultant of all f_{2}
EXTERNAL forces acting on the particles

$$
\because \mathbf{L}=M \mathbf{V}_{C} \Rightarrow M \mathbf{a}_{c}=\sum_{i} \mathbf{f}_{i} \quad \begin{aligned}
& \begin{array}{l}
a_{\mathrm{c}}: \text { acceleration of } \\
\text { center of mass }
\end{array} \\
& \begin{array}{l}
\text { Equation of motion of } \\
\text { Center of mass }
\end{array} \\
& \hline
\end{aligned}
$$

The center of mass of the system moves as if all the forces and masses are concentrated at the center of mass

Angular Momentum of a System of Particles

Similarly, by differentiating the angular momentum

$$
\dot{\mathbf{H}}_{o}=\sum_{i} \frac{d}{d t}\left\{\mathbf{r}_{i} \times m \mathbf{V}_{i}\right\}=\mathbf{M}_{o}
$$

The resultant moment of all EXTERNAL forces acting on the system about O

The reference point must be a fixed point. However, the center of mass of the system can be the reference point even when it is moving

Example:

Example: Calculate the angular acceleration of the massless link

Solution

Consider the two particles and the link as a system
(1) Analyze the external forces
(2) Consider the angular momentum about O

$\mathrm{m}_{1} \mathrm{~g}$

$$
\begin{gathered}
\dot{\mathbf{H}}_{o}=\mathbf{M}_{o} \Rightarrow \frac{d}{\mathrm{dt}}\left(\begin{array}{l}
0 \\
0 \\
\left(m_{1} l_{1}^{2}+m_{2} l_{2}^{2}\right) \omega
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
-m_{2} g l_{2} \cos \theta+m_{1} g l_{1} \cos \theta
\end{array}\right) \\
\dot{\omega}=\frac{\left(m_{1} l_{1}-m_{2} l_{2}\right) \cos \theta}{m_{1} l_{1}^{2}+m_{2} l_{2}^{2}}
\end{gathered}
$$

Linear and Angular Momentums for Rigid Body

- Since a rigid body can be considered as a system with infinite number of particles, the linear momentum

$$
\mathbf{L}=m \mathbf{V}_{C}
$$

-The angular momentum about the center of mass

$$
\begin{aligned}
& \mathbf{H}_{C}=\mathbf{I} \boldsymbol{\omega} \\
& \text { I: Inertia tensor matrix about } \mathrm{C} \text {. } \\
& \boldsymbol{\omega} \text { : angular vdocity of the body }
\end{aligned}
$$

Newton's Equation and Euler's Equation

- A general motion can be considered a combination of a translation with the center of mass and motion about the center of mass
$O-x_{o} y_{o} z_{o}$: A fixed reference frame
$C-x_{1} y_{1} z_{1}:$ A frame that translates with C
The equation of translation:

$$
m \mathbf{a}_{c}=\mathbf{F}=\sum \mathbf{f}_{i}
$$

Newton's equation
The equation of motion about C :

$$
\frac{d^{A}}{d t} \mathbf{H}_{C}=\mathbf{M}_{C} \Rightarrow{ }^{A} \mathbf{I} \dot{\boldsymbol{\omega}}+\boldsymbol{\omega} \times\left({ }^{A} \mathbf{I} \boldsymbol{\omega}\right)=\sum \mathbf{r}_{i} \times \mathbf{f}_{i}+\sum n_{i}
$$

Newton's Equation and Euler's Equation

 (Cont')- The angular velocity is with respect to the translating frame.
- The inertia tensor matrix is with respect to the translating frame, so it will change its value with rotation of the body.
- The force is the resultant of the EXTERNAL force
- The moment is the resultant moment of the EXTERNAL forces and moments.

Example

- Derive the dynamic equation of the 2 DOF manipulator. Here, the masses of links 1 and 2 are m1 and m 2 respectively. Assume that the mass is uniformly distributed over the link.

Solution:

(1) Analyzing forces acting on the links

Example (continued)

(2) Dynamics of link 1. As link 1 is rotating about O ,

Moment of inertia about O

Resultant moment about O

$$
I_{O} \ddot{\theta}_{1}=\tau_{1}-m_{1} g \frac{l_{1}}{2} \cos \theta_{1}-R_{y} l_{1} \cos \theta_{1}+R_{x} l_{1} \sin \theta_{1}
$$

Example

(3) Dynamics of link 2.

As link 2 is in a general plane motion

$$
m_{2} \mathbf{a}_{C_{2}}=\mathbf{F}
$$

$$
{ }^{C} \mathbf{I}_{2} \dot{\boldsymbol{\omega}}_{2}+\boldsymbol{\omega}_{2} \times{ }^{C} \mathbf{I}_{2} \boldsymbol{\omega}_{2}=\mathbf{M}_{C_{2}}
$$

Acceleration of C2: $\quad \mathbf{a}_{C_{2}}=\mathbf{a}_{B}+\mathbf{a}_{C / B t}+\mathbf{a}_{C / B n} \quad \mathrm{~m}_{2} \mathrm{~g}$

$$
\begin{align*}
& \mathbf{a}_{B}=\mathbf{a}_{B n}+\mathbf{a}_{B t}=\binom{-l_{1} \dot{\theta}_{1}^{2} c_{1}}{-l_{1} \dot{\theta}_{1}^{2} s_{1}}+\binom{-l_{1} \ddot{\theta}_{1} s_{1}}{l_{1} \ddot{\theta}_{1} c_{1}}=\ldots \\
& \mathbf{a}_{C / B n}=\frac{l_{2}}{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}\binom{-c_{12}}{-s_{12}} \\
& \mathbf{a}_{C / B t}=\frac{l_{2}}{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)\binom{-s_{12}}{c_{12}} \\
& \mathbf{a}_{C_{2}}=\binom{-l_{1}\left(\ddot{\theta}_{1} s_{1}+\dot{\theta}_{1}^{2} c_{1}\right)-\frac{l_{2}}{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right) s_{12}-\frac{l_{2}}{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} c_{12}}{-l_{1}\left(\ddot{\theta}_{1} c_{1}-\dot{\theta}_{1}^{2} s_{1}\right)+\frac{l_{2}}{2}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right) c_{12}-\frac{l_{2}}{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} s_{12}} \\
& \text { Newton's } \\
& m_{2} a_{c_{2} x}=R_{x} \tag{2}\\
& m_{2} a_{c_{2} y}=R_{y}-m_{2} g \tag{3}\\
& \text { equation: }
\end{align*}
$$

Example (continued)

Consider Euler's equation.
As the mass in uniformly distributed and the link is symmetric, the inertia tensor matrix is diagonal.

$$
\begin{gather*}
\left(\begin{array}{ccc}
I_{2 x x} & 0 & 0 \\
0 & I_{2 z y} & 0 \\
0 & 0 & I_{2 z z}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
\ddot{\theta}_{1}+\ddot{\theta}_{2}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
\dot{\theta}_{1}+\dot{\theta}_{2}
\end{array}\right) \times\left(\begin{array}{ccc}
I_{2 x x} & 0 & 0 \\
0 & I_{2 z y} & 0 \\
0 & 0 & I_{2 z z}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
\dot{\theta}_{1}+\dot{\theta}_{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\tau_{2}+\frac{l_{2}}{2} R_{x} s_{12}+\frac{l_{2}}{2} R_{y} c_{12}
\end{array}\right) \\
\Downarrow \\
I_{2 z z}\left(\ddot{\theta}_{1}+\ddot{\theta}_{2}\right)=\tau_{2}+\frac{l_{2}}{2} R_{x} s_{12}+\frac{l_{2}}{2} R_{y} c_{12} \tag{4}
\end{gather*}
$$

From (2) and (3), we can solve R_{x} and R_{y}.
Substituting R_{x} and R_{y} in eqs. (1) and (4) leads
to the dynamic equation of the robot arm.

Formulation of Robot Dynamics

Recursive Newton-Euler Formulation

We consider manipulators with revolute joints only.

Relative angular
Angular velocity relation between link i-1 and i:

$$
\begin{align*}
& \boldsymbol{\omega}_{i}=\boldsymbol{\omega}_{i-1}+\boldsymbol{\omega}_{i / i-1} \longleftarrow \begin{array}{l}
\text { velocity if link I } \\
\text { to link i-1 }
\end{array} \\
& \boldsymbol{\omega}_{i}=\boldsymbol{\omega}_{i-1}+\mathbf{z}_{i} \dot{\theta}_{i}
\end{align*}
$$

Differentiating (1) \rightarrow

$$
\begin{equation*}
\dot{\boldsymbol{\omega}}_{i}=\dot{\boldsymbol{\omega}}_{i-1}+\mathbf{Z}_{i} \ddot{\theta}_{i}+\boldsymbol{\omega}_{i-1} \times \mathbf{z}_{i} \dot{\theta}_{i} \tag{2}
\end{equation*}
$$

Recursive Newton-Euler Equation (Cont')

- Consider velocity and acceleration of O_{i}.
\mathbf{V}_{i} : velocity of O_{i}
\mathbf{V}_{i-1} : velocity of $\mathrm{O}_{\mathrm{i}-1}$

$$
\mathbf{V}_{i}=\mathbf{V}_{i-1}+\mathbf{V}_{i / i-1}
$$

$\mathbf{V}_{i / i-1}$: realtive velocity of O_{i} to $\mathrm{O}_{\mathrm{i}-1}$
As the relative motion of O_{i} w.r.t. $\mathrm{O}_{\mathrm{i}-1}$ is a motion about $\mathrm{O}_{\mathrm{i}-1}$,

$$
\begin{equation*}
\mathbf{V}_{i / i-1}=\boldsymbol{\omega}_{i-1} \times \mathbf{s}_{i-1} \quad \Rightarrow \quad \mathbf{V}_{i}=\mathbf{V}_{i-1}+\boldsymbol{\omega}_{i-1} \times \mathbf{s}_{i-1} \tag{3}
\end{equation*}
$$

Acceleration at O_{i} :

$$
\begin{align*}
\mathbf{a}_{i} & =\mathbf{a}_{i-1}+\mathbf{a}_{R t}+\mathbf{a}_{R n} \\
& =\mathbf{a}_{i-1}+\dot{\boldsymbol{\omega}}_{i-1} \times \mathbf{s}_{i-1}+\boldsymbol{\omega}_{i-1} \times\left(\boldsymbol{\omega}_{i-1} \times \mathbf{s}_{i-1}\right) \tag{4}
\end{align*}
$$

Acceleration at the center of mass:

$$
\begin{align*}
& \mathbf{a}_{C_{i}}=\mathbf{a}_{i}+\mathbf{a}_{C_{i} / O_{i}} \\
& \quad=\mathbf{a}_{i}+\dot{\boldsymbol{\omega}}_{i} \times \mathbf{r}_{i}+\boldsymbol{\omega}_{i} \times\left(\boldsymbol{\omega}_{i} \times \mathbf{r}_{i}\right) \tag{5}
\end{align*}
$$

Forward Equations

$$
\begin{align*}
& \boldsymbol{\omega}_{i}=\boldsymbol{\omega}_{i-1}+\mathbf{z}_{i} \dot{\theta}_{i} \tag{1}\\
& \dot{\boldsymbol{\omega}}_{i}=\dot{\boldsymbol{\omega}}_{i-1}+\mathbf{z}_{i} \ddot{\theta}_{i}+\boldsymbol{\omega}_{i-1} \times \mathbf{z}_{i} \dot{\theta}_{i} \tag{2}\\
& \mathbf{a}_{i}=\mathbf{a}_{i-1}+\dot{\boldsymbol{\omega}}_{i-1} \times \mathbf{s}_{i-1}+\boldsymbol{\omega}_{i-1} \times\left(\boldsymbol{\omega}_{i-1} \times \mathbf{s}_{i-1}\right) \tag{3}\\
& \mathbf{a}_{C_{i}}=\mathbf{a}_{i}+\dot{\boldsymbol{\omega}}_{i} \times \mathbf{r}_{i-1}+\boldsymbol{\omega}_{i} \times\left(\boldsymbol{\omega}_{i} \times \mathbf{r}_{i-1}\right) \tag{4}
\end{align*}
$$

From (1), (2), (4) and (5), we can recursively calculate the angular velocity and acceleration of the links, and the acceleration at the center of mass.
The initial conditions:
When $\mathrm{i}=0$,

$$
\begin{aligned}
& \boldsymbol{\omega}_{0}=0, \quad \dot{\boldsymbol{\omega}}_{0}=0 \\
& \mathbf{V}_{0}=0, \quad \mathbf{a}_{0}=0
\end{aligned}
$$

Dynamic equation of robot link

Derive the dynamics by applying Newton-Euler equations to link i.
(1) Draw the free-body diagram of link i. Assume that the links are rigidly connected. Cut link i from the arm:
f_{i} : the force acting on link i by link i-1
n_{i} : the moment applied on link i by link i-1 \mathbf{n}_{1}
Applying Newton's Law

$$
\begin{align*}
& m_{i} \mathbf{a}_{c_{i}}=\mathbf{f}_{i}-\mathbf{f}_{i+1}+\left(\begin{array}{l}
0 \\
0 \\
-m_{i} g
\end{array}\right) \\
& \Rightarrow \mathbf{f}_{i}=m_{i} \mathbf{a}_{c_{i}}+\mathbf{f}_{i+1}+\left(\begin{array}{l}
0 \\
0 \\
m_{i} g
\end{array}\right) \tag{7}
\end{align*}
$$

Dynamics of robot link (Cont')

Applying the Euler's equation

$$
\begin{gather*}
\mathbf{I}_{i} \dot{\mathbf{\omega}}_{i}+\boldsymbol{\omega}_{i} \times \mathbf{I}_{i} \boldsymbol{\omega}_{i}=\mathbf{n}_{i}-\mathbf{n}_{i+1}-\mathbf{r}_{i} \times \mathbf{f}_{i}-\left(\mathbf{s}_{i}-\mathbf{r}_{i}\right) \times \mathbf{f}_{i+1} \\
\Downarrow \\
\mathbf{n}_{i}=\mathbf{I}_{i} \dot{\boldsymbol{\omega}}_{i}+\boldsymbol{\omega}_{i} \times \mathbf{I}_{i} \boldsymbol{\omega}_{i}+\mathbf{n}_{i+1}+\mathbf{r}_{i} \times \mathbf{f}_{i}+\left(\mathbf{s}_{i}-\mathbf{r}_{i}\right) \times \mathbf{f}_{i+1} \tag{8}
\end{gather*}
$$

Eqs. (7) and (8) give the recursive backward equation for calculating the interaction force and moment

Relation between n_{i} and joint torque

$$
\tau_{i}=\mathbf{z}_{i}^{T} \mathbf{n}_{i}
$$

as actuator produces torque about the joint axis only

Backward Calculation

Initial conditions: When $\mathrm{i}=\mathrm{k}$ (for the last link) $: \mathbf{f}_{k+1}=0, \mathbf{n}_{\mathrm{k}+1}=0$ k : the number of links

Lagrange Formulation of Robot Dynamics

- Lagrange formulation is an analytical method for deriving the robot dynamics. It is based on the energy and work principle
- Energy of Mechanical Systems
- Kinetic energy: energy due to motion of a particle or body
- Potential energy: due to gravitational forces, deformation of mechanical systems, etc.

Kinetic Energy

- A particle (body) has kinetic energy when it moves. Kinetic energy is always greater than zero
For a particle: $\quad \mathrm{K}=\frac{1}{2} m V^{2}$
For a system of particles: $\mathrm{K}=\sum \frac{1}{2} m_{i} V_{i}^{2}$
For a rigid body: $\quad \begin{aligned} \mathrm{K} & =\int_{\mathrm{V}} \frac{1}{2} \dot{\mathbf{r}}^{T} \dot{\mathbf{r}} d m \\ & =\frac{1}{2} m V_{c}^{2}+\frac{1}{2} \boldsymbol{\omega}^{T} \mathbf{I} \boldsymbol{\omega}\end{aligned}$

I: inertia tensor

Potential Energy

- We here consider the gravitational potential energy only.

For a particle: $\quad U=m g z$
z: the height of the particle w.r.t. a reference level
For a system of particles: $\mathrm{U}=\sum \mathrm{m}_{\mathrm{i}} g z_{i}$
For a rigid body: $\quad U=\mathrm{mgz}_{\mathrm{c}}$
The height of the center of mass
Potential energy is a value relative to the reference.
It could be positive, zero and negative

Work

When a particle underwent a displacement r under a constant force f, the work done by the force on the particle is

$$
W=\mathbf{f}^{T} \mathbf{r}
$$

- Work is a scalar

- It could be positive, zero and negative
- SI unit: Nm

Work done by time-varying force

Consider the work done by a time-varying force on a particle that moved from one position to another.

$$
\begin{aligned}
W & =\int_{1}^{2} \mathbf{f}^{T}(t) d \mathbf{r} \\
& =\int_{1}^{2} m \frac{d \mathbf{V}}{d t} d \mathbf{r}=\int_{1}^{2} m \mathbf{V} d \mathbf{V} \\
& =\frac{1}{2} m V_{2}^{2}-\frac{1}{2} m V_{1}^{2}
\end{aligned}
$$

Work-energy principle: The work done by a force acting on particle is equal to the change of its kinetic energy

Conservative force and NonConservative force

- The force associated to the potential energy is called conservative force. A force that is not associated with the potential energy is called non-conservative force.
- The work done by conservative force (gravity force)

$$
W_{g}=-m g\left(z_{2}-z_{1}\right)=-\Delta U
$$

- The work done by non-conservative forces

The work done by non-conservative forces is equal to the change of total energy

Conservation of Energy

- If no non-conservative force acting on a system (a particle, or a system of particles, or a rigid body), does not do any work, the total energy of the system is conserved.

$$
K+U=\mathrm{constant}
$$

Lagrange Equation

- Generalized coordinates q: A set of parameters for representing the configuration (position \& orientation) of a system.
- q must specify the configuration uniquely
- Once the values of \mathbf{q} are fixed, the system cannot move.
- The choice of \mathbf{q} is not unique.
- Degree of freedom (DOF): The dimension of the generalized coordinates vector q is called degrees of freedom of the system

Examples

Generalized Force

Consider the work done by non-conservative forces under a differential displacement of the system
$\delta \mathbf{r}_{i}$: differential displacement at the action point of \mathbf{f}_{i} due to a differential change $\delta \mathbf{q}$ of the generalized coordinates \mathbf{q}

The differential work $\delta \mathrm{W}$:

$$
\delta W=\sum \mathbf{f}_{i}^{T} \delta \mathbf{r}_{i}
$$

The generalized force F of the system is given by

$$
\mathbf{F}=\frac{\partial}{\partial(\delta \mathbf{q})}(\delta W) \quad \mathbf{q}: \text { generalizel coordinate vector }
$$

Example

Calculate the generalized force of the 2 DOF arm
Generalize d Coordinates: $\mathbf{q}=\binom{\theta_{1}}{\theta_{2}}$
For differential motion $\delta \mathbf{q}=\left(\delta \theta_{1}, \delta \theta_{2}\right)^{T}$
The differential work

$$
\delta W=\tau_{1} \delta \theta_{1}+\tau_{2} \delta \theta_{2}+\mathbf{f}^{T} \delta \mathbf{x}
$$

$\delta \mathbf{x}$: the differential motion of the end point

$\begin{aligned} \because \delta x=J(\mathbf{q}) \delta \mathbf{q} \quad \therefore \delta W & =\tau_{1} \delta \theta_{1}+\tau_{2} \delta \theta_{2}+\mathbf{f}^{T} J(\mathbf{q}) \delta \mathbf{q} \\ & =\left(\tau_{1} \quad \tau_{2}\right) \delta \mathbf{q}+(J(\mathbf{q}) \mathbf{f})^{T} \delta \mathbf{q}\end{aligned}$
Generalized Force:

Lagrange Equation

\mathbf{q} : the generalized coordinates of a system
K : Kinetic energy of the system
U: the potential energy of the system
F: the generalized forces of the system
Define L=K-U: Called Lagrangian
The dynamics of the system is given by

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{\mathbf{q}}}-\frac{\partial L}{\partial \mathbf{q}}=\mathbf{F}
$$

Derivation of Robot Dynamics using Lagrange Equation

1) Choose the generalized coordinates q (usually use the kinematics parameters defined by the D-H method)
2) Identify the non-conservative forces that are exerted at the system and do work
3) Calculate the kinetic energy K and the potential energy U , and then $\mathrm{L}=\mathrm{K}-\mathrm{U}$
4) Calculate the partial derivatives
5) Calculate the generalized force F.
6) Apply the Lagrange equation.

Example 1

Center of mass
Example: Denote the mass of link i by m_{i}. The mass is uniformly distributed over the link. Derive the dynamics of the 2 DOF arm.

Solution

$$
\text { (1) Generalized coordiantes : } \mathbf{q}=\binom{\theta_{1}}{\theta_{2}}
$$

(2) Non - conservative forces that do work : τ_{1}, τ_{2}
(3) The kinetic energy:
\because link 1 rotates about $\mathrm{O}, \therefore \mathrm{K}_{1}=\frac{1}{2} I_{o} \dot{\theta}_{1}^{2}$
\because link 2 in general plane motion, $\therefore \mathrm{K}_{2}=\frac{1}{2} m_{2} V_{c_{2}}^{2}+\frac{1}{2} I_{c_{2}} \omega_{2}^{2}$
Position of
the Center
Of mass $\quad\left\{\begin{array}{l}x_{c_{2}}=l_{1} c_{1}+\frac{l_{2}}{2} c_{12} \\ y_{c_{2}}=l_{1} s_{1}+\frac{l_{2}}{2} s_{12}\end{array} \Rightarrow V_{c_{2}}^{2}=\dot{c}_{c_{2}}^{2}+\dot{y}_{c_{2}}^{2}=l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{l_{2}^{2}}{4}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+l_{1} l_{2} c_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)\right.$

Example 1 (continued)

The total kinetic energy

$$
\begin{aligned}
K=K_{1}+K_{2}= & \frac{1}{2}\left(I_{o}+m_{2} l_{1}^{2}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} c_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& +\left(\frac{1}{8} m_{2} l_{2}^{2}+\frac{1}{2} I_{c_{2}}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}
\end{aligned}
$$

The potential energy (assume $\mathrm{y}=0$ is the reference

$$
U=m_{1} g y_{c 1}+m_{2} g y_{c 2}=m_{1} g \frac{l_{1}}{2} s_{1}+m_{2} g\left(l_{1} s_{1}+\frac{l_{2}}{2} s_{12}\right)
$$

(4) Calculate the partial derivatives

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\theta}_{1}}=\left(I_{0}+m_{2} l_{1}^{2}\right) \dot{\theta}_{1}+m_{2} l_{1} l_{2} c_{2}\left(\dot{\theta}_{1}+\frac{1}{2} \dot{\theta}_{2}\right)+\left(\frac{1}{4} m_{2} l_{2}^{2}+I_{c_{2}}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \frac{\partial L}{\partial \dot{\theta}_{2}}=\frac{1}{2} m_{2} l_{1} l_{2} c_{2} \dot{\theta}_{1}+\left(\frac{1}{4} m_{2} l_{2}^{2}+I_{c_{2}}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
& \frac{\partial L}{\partial \theta_{1}}=-m_{1} g \frac{l_{1}}{2} c_{1}-m_{2} g\left(l_{1} c_{1}+\frac{l_{2}}{2} c_{12}\right) \\
& \frac{\partial L}{\partial \theta_{2}}=-m_{2} g \frac{l_{2}}{2} c_{12}-\frac{1}{2} m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{aligned}
$$

Example 1 (continued)

5) The generalized forces:

$$
\delta W=\tau_{1} \delta \theta_{1}+\tau_{2} \delta \theta_{2} \quad \Rightarrow \quad \mathbf{F}=\binom{\tau_{1}}{\tau_{2}}
$$

6) Apply the Lagrange equation: $\frac{d}{d t} \frac{\partial L}{\partial \dot{\mathbf{q}}}-\frac{\partial L}{\partial \mathbf{q}}=\mathbf{F}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{o 1}+m_{2} l_{1}^{2}+0.25 m_{2} l_{2}^{2}+I_{c 2}+m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c 2}+0.5 m_{2} l_{1} l_{2} c_{2} \\
0.25 m_{2} l_{2}^{2}+I_{c 2}+0.5 m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c c 2}
\end{array}\right)\binom{\ddot{\theta}_{1}}{\ddot{\theta}_{2}} \\
& +\binom{-m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{1}+0.5 \dot{\theta}_{2}\right) \dot{\theta}_{2}+\left(0.5 m_{1}+m_{2}\right) l_{1} g c_{1}+0.5 m_{2} l_{2} g c_{12}}{0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{1}^{2}+0.5 m_{2} l_{2} g c_{12}}=\binom{\tau_{1}}{\tau_{2}}
\end{aligned}
$$

Example 2

Example 2: The moment of inertia of the first link is I_{1}. The mass of link 2 is m_{2}. The mass is concentrated at the endpoint. An external force facts at the endpoint. Derive the dynamics of the arm.

Solution: (1) Generalized coordinates
Use the D-H method to assign frames and select the joint angles as the generalized coordinates

i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	90°	0	0	θ_{2}
3	0	l_{2}	0	0

Generalized coordinates:

$$
\mathbf{q}=\binom{\theta_{1}}{\theta_{2}}
$$

Example 2 (continued)

(2) No-conservative forces that do work: joint inputs : τ_{1}, τ_{2}, and the external force \mathbf{f}
(3) Kinetic energy, potential energy and Lagrangian

Kinetic energy:

$$
\text { Link 1: } K_{1}=\frac{1}{2} I_{1} \dot{\theta}_{1}^{2} \quad \text { Link 2: } K_{2}=\frac{1}{2} m_{2} V^{2}
$$

To find the velocity V of the endpoint, we need to solve the forward kinematics

$$
{ }^{0} T_{1}=\left(\begin{array}{rrrr}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad{ }^{1} T_{2}=\left(\begin{array}{cccc}
c_{2} & -s_{2} & 0 & 0 \\
0 & 0 & -1 & 0 \\
s_{2} & c_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad{ }^{2} T_{3}=\left(\begin{array}{llll}
1 & 0 & 0 & l_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example 2 (continued)

Forward kinematics:

$$
\begin{aligned}
&{ }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2}=\left(\begin{array}{cccc}
c_{1} c_{2} & -c_{1} s_{2} & s_{1} & 0 \\
s_{1} c_{2} & -s_{1} s_{2} & -c_{1} & 0 \\
s_{2} & c_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad{ }^{0} T_{3}={ }^{0} T_{2}{ }^{2} T_{3}=\left(\begin{array}{cccc}
c_{1} c_{2} & -c_{1} s_{2} & s_{1} & l_{2} c_{1} c_{2} \\
s_{1} c_{2} & -s_{1} s_{2} & -c_{1} & l_{2} s_{1} c_{2} \\
s_{2} & c_{2} & 0 & l_{2} s_{2} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \mathbf{V}=\frac{d}{d t}\left(\begin{array}{l}
l_{2} c_{1} c_{2} \\
l_{2} s_{1} c_{2} \\
l_{2} s_{2}
\end{array}\right) \Rightarrow V^{2}=l_{2}^{2} c_{2}^{2} \dot{\theta}_{1}^{2}+l_{2}^{2} \dot{\theta}_{2}^{2}
\end{aligned}
$$

The potential energy (Assuming that $\mathrm{U}=0$ when $\mathrm{z}_{0}=0$).

$$
U=-m_{1} g h_{1}+m_{2} g l_{2} s_{2}
$$

Lagrangian:

$$
L=K-U=\frac{1}{2}\left(I_{1}+m_{2} l_{2}^{2} c_{2}^{2}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{1} g h_{1}-m_{2} g l_{2} s_{2}
$$

Example 2 (continued)

(4) Calculate the partial derivatives

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\theta}_{1}}=\left(I_{1}+m_{2} l_{2}^{2} c_{2}^{2}\right) \dot{\theta}_{1} \\
& \frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} l_{2}^{2} \dot{\theta}_{2} \\
& \frac{\partial L}{\partial \theta_{1}}=0 \\
& \frac{\partial L}{\partial \theta_{2}}=-\frac{1}{2} m_{2} l_{2}^{2} \sin 2 \theta_{2} \dot{\theta}_{1}^{2}-m_{2} g l_{2} c_{2}
\end{aligned}
$$

Example 2 (continued)

(5) Generalized forces:

$$
\delta W=\tau_{1} \delta \theta_{1}+\tau_{2} \delta \theta_{2}+\mathbf{f}^{T} \delta \mathbf{x} \Rightarrow \mathbf{F}=\binom{\tau_{1}}{\tau_{2}}+\mathbf{J}^{T}(\mathbf{q}) \mathbf{f}
$$

\mathbf{x} : the position of the endpoint

$$
\mathbf{x}=\left(\begin{array}{l}
l_{2} c_{1} c_{2} \\
l_{2} s_{1} c_{2} \\
l_{2} s_{2}
\end{array}\right) \Longrightarrow \mathbf{J}(\mathbf{q})=\frac{\partial \mathbf{x}}{\partial \mathbf{q}}=\frac{\partial}{\partial \mathbf{q}}\left(\begin{array}{l}
l_{2} c_{1} c_{2} \\
l_{2} s_{1} c_{2} \\
l_{2} s_{2}
\end{array}\right)=\left(\begin{array}{cc}
-l_{2} s_{1} c_{2} & -l_{2} c_{1} s_{2} \\
l_{2} c_{1} c_{2} & -l_{2} s_{1} s_{2} \\
0 & l_{2} c_{2}
\end{array}\right)
$$

(6) Applying the Lagrange equation leads to the dynamics:

$$
\begin{gathered}
\left(\begin{array}{cc}
I_{1}+m_{2} l_{2}^{2} c_{2}^{2} & 0 \\
0 & m_{2} l_{2}
\end{array}\right)\binom{\ddot{\theta}_{1}}{\ddot{\theta}_{2}}+\binom{0.5 m_{2} l_{2}^{2} \sin 2 \theta_{2} \dot{\theta}_{1} \dot{\theta}_{2}}{0.5 m_{2} l_{2}^{2} \sin 2 \theta_{2} \dot{\theta}_{1}^{2}}+\binom{0}{m_{2} g l_{2} c_{2}} \\
\\
=\binom{\tau_{1}}{\tau_{2}}+\mathbf{J}^{T}(\mathbf{q}) \mathbf{f}
\end{gathered}
$$

Structure of Robot Dynamics

- The dynamics of the 2 DOF manipulator:

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{cc}
I_{o 1}+m_{2} l_{1}^{2}+0.25 m_{2} l_{2}^{2}+I_{c 2}+m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c 2}+0.5 m_{2} l_{1} l_{2} c_{2} \\
0.25 m_{2} l_{2}^{2}+I_{c 2}+0.5 m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c 2}
\end{array}\right)}_{H(\mathbf{q})}\binom{\ddot{\theta}_{1}}{\ddot{\theta}_{2}} \\
& +\underbrace{\binom{-m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{1}+0.5 \dot{\theta}_{2}\right) \dot{\theta}_{2}}{0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{1}^{2}}}_{C(\mathbf{q}, \dot{\mathbf{q}})}+\underbrace{\binom{\left(0.5 m_{1}+m_{2}\right) l_{1} g c_{1}+0.5 m_{2} l_{2} g c_{12}}{0.5 m_{2} l_{2} g c_{12}}}_{G(\mathbf{q})}=\binom{\tau_{1}}{\tau_{2}}
\end{aligned}
$$

$H(\mathbf{q})$: Intertia matrix of the manipulator, $\quad H^{T}(\mathbf{q})=H(\mathbf{q}) \leftarrow$ symmetric matrix depending on the joint position

$C(\mathbf{q}, \dot{\mathbf{q}})$: the centrifugd andCoriolisforces

Centrigualforce :Terms that dependon thesquareof the joint velæity of a joint.
Coriolis force :Terms that depend on the product
of the joint velocities of two joints.
$G(\mathbf{q})$: The gravity force

Structure of Robot Dynamics

- The centrifugal and Coriolis term can be re-written as

$$
\begin{aligned}
& \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})=\binom{-m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{1}+0.5 \dot{\theta}_{2}\right) \dot{\theta}_{2}}{0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{1}^{2}} \\
& =\{\underbrace{\frac{1}{2}\left(\begin{array}{cc}
-m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{2} & -0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{2} \\
-0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{2} & 0
\end{array}\right)}_{\frac{1}{2} \dot{\mathbf{H}}(\mathbf{q})}+\underbrace{\left(\begin{array}{ll}
0 & -0.5 m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{1}+0.5 \dot{\theta}_{2}\right) \\
0.5 m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{1}+0.5 \dot{\theta}_{2}\right) & 0
\end{array}\right)}_{\mathbf{S}(\mathbf{q}, \dot{\mathbf{q}})})\binom{\dot{\theta}_{1}}{\dot{\theta}_{2}}
\end{aligned}
$$

$\mathbf{S}(\mathbf{q}, \dot{\mathbf{q}})$ is a skew - symmetric matrix, i.e.

$$
\mathbf{S}^{T}(\mathbf{q}, \dot{\mathbf{q}})=-\mathbf{S}(\mathbf{q}, \dot{\mathbf{q}})
$$

For any $\mathbf{x}, \mathbf{x}^{\mathrm{T}} \mathbf{S}(\mathbf{q}, \dot{\mathbf{q}}) \mathbf{x}=0$

Structure of Robot Dynamics

- In general, the dynamics of a robot manipulator has the following form:

$\mathbf{H}(\mathbf{q})$: Symmetric and positive - definite inertial matrix.

$$
\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{H}(\mathbf{q}) \dot{\mathbf{q}} \text { is the kinetic energy } \geq 0
$$

$\mathbf{S}(\mathbf{q}, \dot{\mathbf{q}})$: a skew -symmetric matrix

$$
\Rightarrow \quad \mathbf{x}^{\mathrm{T}} \mathbf{S}(\mathbf{q}, \dot{\mathbf{q}}) \mathbf{x}=0, \quad \forall \mathbf{x} \in \mathrm{R}^{\mathrm{n}}
$$

Linear Parameterization of Robot Dynamics

The dynamics of the 2 DOF arm:

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{o 1}+m_{2} l_{1}^{2}+0.25 m_{2} l_{2}^{2}+I_{c 2}+m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c 2}+0.5 m_{2} l_{1} l_{2} c_{2} \\
0.25 m_{2} l_{2}^{2}+I_{c c}+0.5 m_{2} l_{1} l_{2} c_{2} & 0.25 m_{2} l_{2}^{2}+I_{c 2}
\end{array}\right)\binom{\ddot{\theta}_{1}}{\ddot{\theta}_{2}} \\
& +\binom{-m_{2} l_{1} l_{2} s_{2}\left(\dot{\theta}_{c 2}+0.5 \dot{\theta}_{2}\right) \dot{\theta}_{2}}{0.5 m_{2} l_{1} l_{2} s_{2} \dot{\theta}_{1}^{2}}+\binom{\left(0.5 m_{1}+m_{2}\right) l_{1} g c_{1}+0.5 m_{2} l_{2} g c_{12}}{0.5 m_{2} l_{2} g c_{12}}=\binom{\tau_{1}}{\tau_{2}}
\end{aligned}
$$

$$
\beta_{1}=I_{o 1}+m_{2} l_{1}^{2}+0.25 m_{2} l_{2}^{2}+I_{c 2} \quad \text { The parameters depend }
$$

Define $\quad \beta_{2}=0.25 m_{2} l_{2}^{2}+I_{c 2}$

$$
\beta_{3}^{2}=0.5 m_{2} L_{1} l_{2}^{2}
$$ on mass, length, moment

$$
\beta_{4}=\left(0.5 m_{1}+m_{2}\right) l
$$ of inertia. They are the

$$
\beta_{5}=0.5 m_{2} l_{2}
$$ physical parameters

