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What is Robot Dynamics?

• Robot dynamics studies the relation between 
robot  motion and forces and moments acting 
on the robot.
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The velocity v can be determined from 
the cross product of  and rp . Here rp is 
a vector from any point on the axis of 
rotation to P.  

v =   x rp =  x r

The direction of v is determined by the 
right-hand rule.

Rotation about a Fixed Axis



The acceleration of P can also be defined by 
differentiating the velocity.

a = dv/dt = d/dt x rP +  x drP/dt
=  x rP +  x ( x rP)

It can be shown that this equation reduces to

a = a x r – w2r = at + an

Rotation about a Fixed Axis
(continued)

The magnitude of the acceleration vector is a =   (at)2 + (an)2

Normal/centripetal acceleration
Tangent accel



Rotation of a Vector
• Consider rotation of a vector about a 

axis.

Point P is rotating about axis u.
r is the position vector of point P.


u

P
r

rotation of speed     the:

uω             :lcotiyangular ve The

rωr
r 


dt
d                                  

:ectorposition v of change of rate The



Rotation of a Frame

• Consider a frame B rotating 
about an unit vector u.
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General Motion
• A general motion can be considered a 

combination of a translation with a 
point and motion about the point.

A with slate that tranframeA   :
frame reference fixedA   :
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The velocity relation:

The acceleration relation:



Introduction to Dynamics



Newton’s Laws of Motion
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First Law: A particle originally at rest, or moving in a 
straight line at constant velocity, will remain in this state if 
the resultant force acting on the particle is zero.

Second Law: If the resultant force 
on the particle is not zero, the 
particle experiences an acceleration 
in the same direction as the resultant 
force.  This acceleration has a 
magnitude proportional to the 
resultant force.

Third Law: Mutual forces of action 
and reaction between two particles 
are equal, opposite, and collinear.



Example
Find the accelerations of the ball 

and the wedge.
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Solution:
(1) Draw the free-body diagram of the particles
(2) Apply Newton’s 2nd Law
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For the wedge

(3)              sin2 Nxm w 



Example (continued)
• Consider acceleration relationship between 

the ball and the wedge
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Note that the relative velocity is along the surface of the wedge
From the diagram, we have
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From eqs. (1)-(5), we can solve the five unknowns, i.e. the acceleration



Linear Momentum
• Linear momentum: product of mass and velocity:

– It is a vector, in the same direction as velocity

• Principle of Linear Momentum: The rate of change of the 
linear momentum of a particle is equal to the result force 
acting on the particle
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Angular Momentum
• r: the position vector of a particle w.r.t. a 

reference point O.
• V: the velocity of the particle
• m: the mass of the particle
• The angular momentum of the particle 

about reference O:
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Principle of Angular Momentum
Consider a force F acting on the particle V
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Principle of angular momentum: The rate of change of 
the angular momentum of particle about a fixed point O 
is equal to the resultant moment of forces acting on the 
particle about point O 

Differentiating the angular momentum



Dynamics of a System of Particles
Consider a system of n particles.

eij
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f1 fi

fj

m1
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mi

mj

eji

fi: the external force exerted on particle i
eij: the internal force exerted on particle i 

by particle j
mi: mass of particle i.
ri: position vector of particle i

  iiii dt
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Total mass

Velocity of 
center of massThe linear momentum of a system of particles is 

equal to the product of the total mass and the 
velocity of the center of mass



Dynamics of a System of Particles
Differentiating the linear momentum
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ac: acceleration of 
center of mass

The rate of change the linear momentum of a 
system of particles is equal to the resultant of all 
EXTERNAL forces acting on the particles
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The center of mass of the system moves as if all the forces 
and masses are concentrated at the center of mass

Equation of motion of
Center of mass



Angular Momentum of a System 
of Particles

Similarly, by differentiating the 
angular momentum
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d MVrH

The resultant moment of all 
EXTERNAL forces acting 
on the system about O

The reference point must be a fixed point. However, the center of 
mass of the system can be the reference point even when it is 
moving



Example:
Example: Calculate the angular acceleration 
of the massless link
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(2) Consider the angular momentum about O m1g
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Solution
Consider the two particles and the link as a 
system
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(1) Analyze the external forces 



Linear and Angular Momentums 
for Rigid Body

• Since a rigid body can be considered 
as a system with infinite number of 
particles, the linear momentum

CmVL 
Center of mass
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body  theoflocity angular ve :
C.about matrix  tensor Inertia  :
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•The angular momentum about the 
center of mass ω



Newton’s Equation and Euler’s Equation

• A general motion can be considered a 
combination of a translation with the 
center of mass and motion about the 
center of mass

C with slates that tranframeA   :
frame reference fixedA   :
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The equation of translation:

The equation of motion about C:
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• The angular velocity is with respect to the 
translating frame.

• The inertia tensor matrix is with respect to the 
translating frame, so it will change its value with 
rotation of the body.

• The force is the resultant of the EXTERNAL 
force

• The moment is the resultant moment of the 
EXTERNAL forces and moments.

Newton’s Equation and Euler’s Equation 
(Cont’)



Example
• Derive the dynamic equation of the 2 DOF 

manipulator. Here, the masses of links 1 and 2 are m1 
and m2 respectively. Assume that the mass is 
uniformly distributed over the link. 

2

Solution:

(1) Analyzing forces acting on the links
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Example (continued)
(2) Dynamics of link 1. As 

link 1 is rotating about O,
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Example
(3) Dynamics of link 2. 
As link 2 is in a general plane motion
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Example (continued)
Consider Euler’s equation. 
As the mass in uniformly distributed and the link is 

symmetric, the inertia tensor matrix is diagonal.
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From (2) and (3), we can solve Rx and Ry. 
Substituting Rx and Ry in eqs. (1) and (4) leads 
to the dynamic equation of the robot arm.



Formulation of Robot Dynamics



Recursive Newton-Euler Formulation
We consider manipulators with revolute joints only.

i

Joint i

Joint i-1

Link i-1 zizi-1

ai-1

1i xi-1

yi-1

Oi-1

xi

yi

si-1
Ci: center
of mass

Oi

ri

Angular velocity relation 
between link i-1 and i:
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(1)                                  1 iiii zωω  

Differentiating 
(1) (2)                       11 iiiiiii   zωzωω  

Relative angular 
velocity if link I 
to link i-1



Recursive Newton-Euler Equation (Cont’)

• Consider velocity and acceleration of Oi.

1-ii1/
1-i1

i

O  toO of velocity realtive  :
O of   velocity:

O of   velocity:



ii

i
i

V
V
V

1/1   iiii VVV

As the relative motion of Oi w.r.t. Oi-1 is a motion about Oi-1,
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Forward Equations

From (1), (2), (4) and (5), we 
can recursively calculate 
the angular velocity and 
acceleration of the links, 
and the acceleration at the 
center of mass. 

The initial conditions:
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Calculate i+1 from  (1)

Calculate i+1 from  (2)
.

Calculate ai+1 from (3)

Calculate aci+1 from (4)

i=n-1 ENDi=i+1
No YES
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Dynamic equation of robot link

Derive the dynamics by applying 
Newton-Euler equations to link i.

(1) Draw the free-body diagram of link 
i. Assume that the links are rigidly 
connected. Cut link i from the arm:
















 

gm
m

i
iici i

0
0

1ffa

ni -fi+1

-ni+1

fi

si

ri

mig

Oi

Ci

Oi+1

fi: the force acting on link i  by link i-1
ni: the moment applied on link i by link i-1

Applying Newton’s Law

(7)                  0
0

1 












 

gm
m

i
icii i

faf



Dynamics of robot link (Cont’)
Applying the Euler’s equation
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Eqs. (7) and (8) give the recursive 
backward equation for calculating the 
interaction force and moment
Relation between ni and joint torque

i
T
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as actuator produces torque about the joint axis only



Backward Calculation
Initial conditions:

links ofnumber    the:
0 ,0 :link)last  (for thek iWhen 1k1

k
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Calculate fi from (7)

Calculate ni from (8)

i=i-1

i=0 END
YESNO



Lagrange Formulation of Robot Dynamics

• Lagrange formulation is an analytical 
method for deriving the robot dynamics. It 
is based on the energy and work principle

• Energy of Mechanical Systems
– Kinetic energy: energy due to motion of a 

particle or body
– Potential energy: due to gravitational forces, 

deformation of mechanical systems, etc.



Kinetic Energy
• A particle (body) has kinetic energy when it moves. 

Kinetic energy is always greater than  zero
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Potential Energy
• We here consider the gravitational potential 

energy only.

cmgz         U:body rigid aFor 

z

mgz U          :particle aFor 

 igzim   U:particles of system aFor 

z: the height of the particle w.r.t. a reference level

The height of the center of mass

Potential energy is a value relative to the reference. 
It could be positive, zero and negative



Work
When a particle underwent a displacement r

under a constant force f, the work done by the 
force on the particle is 

– Work is a scalar
– It could be positive, zero and negative
– SI unit:  Nm

r

f
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Work done by time-varying force
Consider the work done by a 

time-varying force on a particle 
that moved from one position 
to another.
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Work-energy principle: The work done 
by a force acting on particle  is equal to 
the change of its kinetic energy



Conservative force and Non-
Conservative force

• The force associated to the potential energy is 
called conservative force. A force that is not 
associated with the potential energy is called 
non-conservative force.

• The work done by conservative force (gravity 
force) 

• The work done by non-conservative forces

UzzmgWg  )( 12
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The work done by non-conservative forces is equal to the change of total energy



Conservation of Energy
• If no non-conservative force acting on a system 

(a particle, or a system of particles, or a rigid 
body), does not do any work, the total energy of 
the system is conserved.

constantUK



Lagrange Equation
• Generalized coordinates q: A set of parameters 

for representing the configuration (position & 
orientation) of a system.
– q must specify the configuration uniquely
– Once the values of q are fixed, the system cannot 

move.
– The choice of q is not unique.

• Degree of freedom (DOF): The dimension of the 
generalized coordinates vector q is called 
degrees of freedom of the system



Examples
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Generalized Force
Consider the work done by non-conservative 

forces under a differential displacement of the 
system
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Example
Calculate the generalized force of 

the 2 DOF arm
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当前无法显示此图像。

Generalized Force:



Lagrange Equation
q:  the generalized coordinates of a system
K:  Kinetic energy of the system
U:  the potential energy of the system
F:  the generalized forces of the system
Define L=K-U:  Called Lagrangian
The dynamics of the system is given by

F
qq







 LL

dt
d





Derivation of Robot Dynamics using 
Lagrange Equation

1) Choose the generalized coordinates q (usually 
use the kinematics parameters defined by the 
D-H method)

2) Identify the non-conservative forces that are 
exerted at the system and do work

3) Calculate the kinetic energy K and the 
potential energy U, and then L=K-U

4) Calculate the partial derivatives
5) Calculate the generalized force F.
6) Apply the Lagrange equation.



Example 1
Example: Denote the mass of link i by mi. The mass is 

uniformly distributed over the link. Derive the 
dynamics of the 2 DOF arm.
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Example 1 (continued)
The total kinetic energy
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The potential energy (assume y=0 is the reference
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(4) Calculate the partial derivatives
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Example 1 (continued)
5) The generalized forces: 
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6) Apply the Lagrange equation: F
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Example 2
Example 2: The moment of inertia of the first link is I1. The mass 

of link 2 is m2. The mass is concentrated at the endpoint. An 
external force f acts at the endpoint. Derive the dynamics of the 
arm. 
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Solution: (1) Generalized coordinates

Use the D-H method to assign 
frames and select the joint angles as 
the generalized coordinates
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Example 2 (continued)
(2) No-conservative forces that do work:

(3) Kinetic energy, potential energy and Lagrangian
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To find the velocity V of the endpoint, we need to solve 
the forward kinematics
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Kinetic energy:



Example 2 (continued)

Forward kinematics:
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The potential energy (Assuming that U=0 when z0=0).
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Lagrangian:



Example 2 (continued)
(4) Calculate the partial derivatives
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Example 2 (continued)
(5) Generalized forces:

fqJFxf )(        
2
1

2211
TTW 





 


x: the position of the endpoint
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(6) Applying the Lagrange equation leads to the dynamics:
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Structure of Robot Dynamics
• The dynamics of the 2 DOF manipulator:
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Structure of Robot Dynamics

• The centrifugal and Coriolis term can be re-written as 
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Structure of Robot Dynamics

• In general, the  dynamics of a robot manipulator has the 
following form:
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Linear Parameterization of Robot Dynamics

The dynamics of the 2 DOF arm:
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Define
The parameters depend 
on mass, length, moment 
of  inertia. They are the 
physical parameters
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The result can be generalized to n DOF robot manipulator


