

Forensic Investigations of Petroleum Hydrocarbon Environmental Impacts: Overview & Case Studies

Heather Lord, PhD

"How much PHC is there?"

Usually asked during compliance testing or for monitoring remediation progress – and answered with a TPH analysis

When the answer is unexpected you may want to learn why!

Are there plumes co-mingling?

How old is the NAPL?

When did the contamination begin?

Is my client responsible?

Is the spill from the most recent tank nest?

Is the contamination OLDER than 1992?

Who's leaking gasoline into the street?

Is this a fresh spill?

Who can I invite to the cleanup party?

1. Understand the site and the question to be answered

- Site History ask lots of questions
- Define the goal
- 2. Employ a tiered approach to lab analysis
 - Start with a total PHC screening test
 - CCME Hydrocarbons
 - Based on those results select the desired analytical approach
- 3. Develop multiple lines of evidence to support the conclusion

Background Information: "Detective Work"

History

- Background Information
- Past use of the property or location
- Compounds of concern

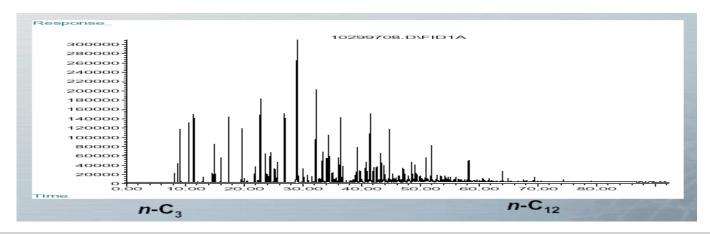
Geology/Geochemistry

• What is the nature of the soil environment? Aggressive or passive? Hydrogeology

• Groundwater flow

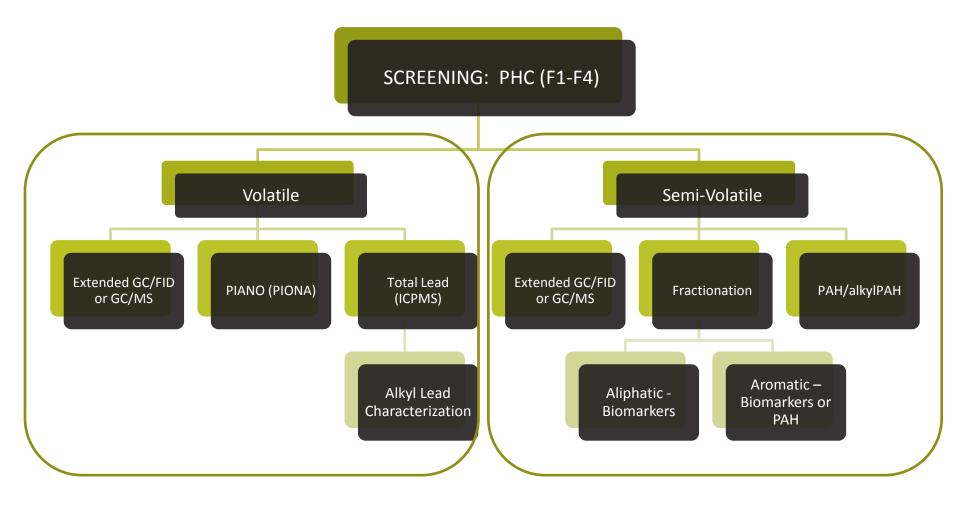
Where were the samples collected?

- Relative to surface
- Relative to water table
- Relative to potential sources of impact
- Would additional samples allow for more solid conclusions?
 - The samples in hand may have been collected for a different purpose
 - compliance monitoring
 - Are they appropriate for the required investigation??

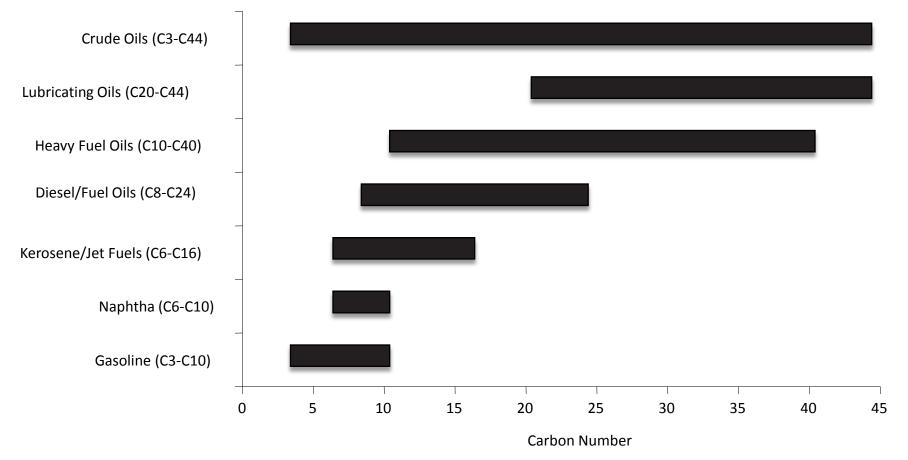

Gas Chromatography for Identification of Petroleum Products

GC remains the most widely used technique to identify petroleum products in the environment.

• Most fuels and lubricants are too complex to allow full speciation of every component.


Identification/quantification of target components

Visual inspection and target analytes are used as identification tools


Tiered Approach to Forensic Investigations

Petroleum Products

Carbon Number Distribution

Some products may span both the Volatiles and the Semi-Volatiles

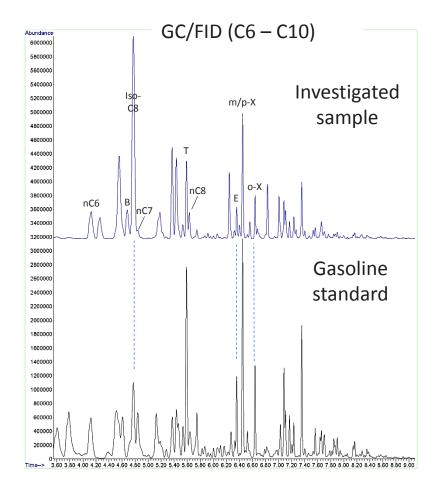
Gasoline Forensics

Determination of gasoline grade

History:

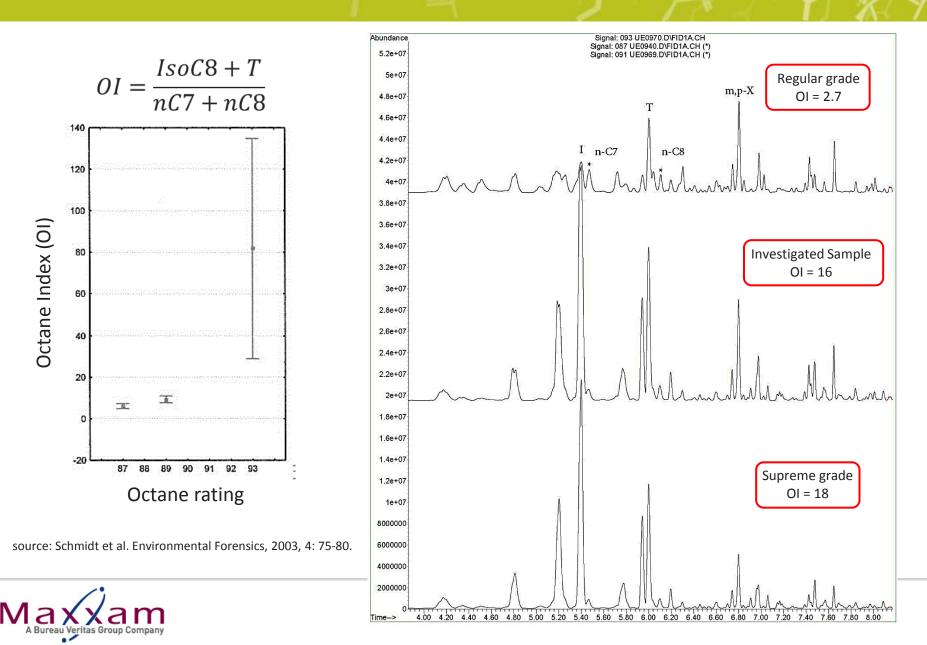
LNAPL collected from sump at a refinery

 evaporation & water washing expected

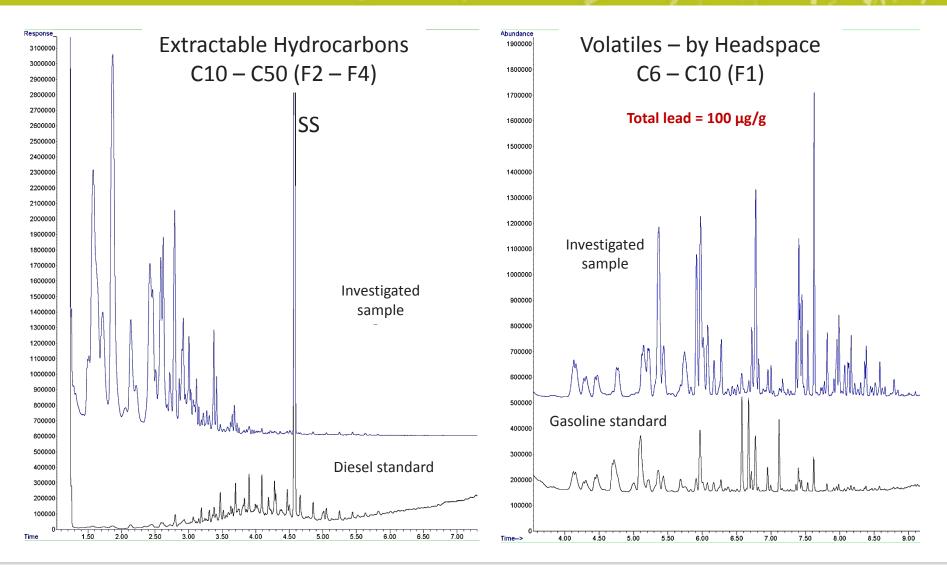

TPH screening identified gasoline

Two potential sources were identified:

• premium vs. regular gasoline


Goal:

Identify the source from limited LNAPL volume, avoid extensive excavation



Supreme grade gas confirmed

Unknown product: gasoline range confirmed

Unknown product: PIONA & Lead Results

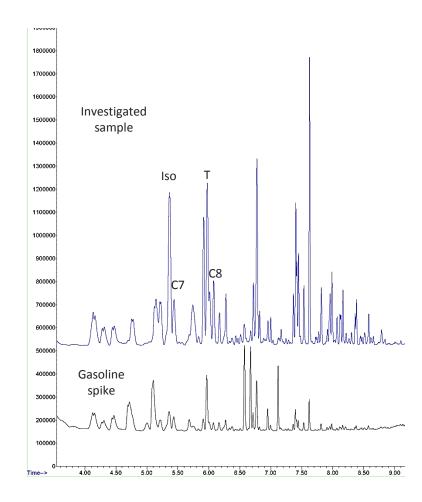
Parameter	mass %
iso-Paraffins	43.98
Naphthenes	7.40
Paraffins	8.84
Methylcyclohexane	0.46
n-Heptane	1.75
3-Methylhexane	2.39
Benzene	0.10
Toluene	4.24
Ethylbenzene	1.39
m-Xylene	3.25
p-Xylene	1.87
o-Xylene	0.54
Cyclohexane	0.11
n-Pentane	1.10
2-Methylpentane	2.44
2-Methylheptane	1.29
2,2,4-Trimethylpentane	7.44

Parameter	mass %
n-Octane	1.32
2,2,3-Trimethylpentane	0.00
2,3,4-Trimethylpentane	4.06
2,3,3-Trimethylpentane	0.00
n-Butane	0.15
iso-Butane	0.02
n-Pentane	1.10
iso-Pentane	1.78
Naphthalene	0.02
n-Dodecane	0.05
2-Methylhexane	3.54
2,3-Dimethylpentane	0.00
3-Methylhexane	2.39
2,4-Dimethylpentane	1.03
C5 and C6 Olefins	Absent
Total Aromatics (%)	29.72
Oxygenates	None

Total Lead Analysis (ICPMS): 103 μ g/g

Lead Speciation Analysis:

Tetraethyl lead:	150 µg/g
Triethyl lead:	0.46 µg/g
Tetramethyl lead:	<1 µg/g


Unknown product: PIONA ratio analysis

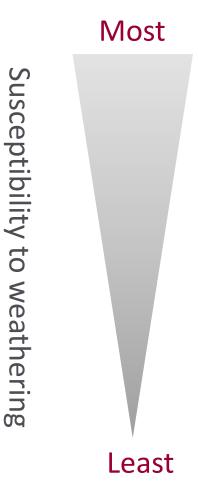
Weathering:						
(isoParaffins+Naphthenes)/Paraffins	5.81	2.0 - 8.0	Biodegradation: Ratio increases with increased biodegradation			
Methylcyclohexane/n-Heptane	0.26	0.5 - 0.8	Biodegradation: Ratio increases with increased biodegradation			
3-Methylhexane/n-Heptane	1.37	0.5 - 2.0	Biodegradation: Ratio increases with increased biodegradation			
(Benzene+Toluene)/(Ethylbenzene+Xylenes)	0.62	0.8 - 1.1	"Waterwashing": Ratio decreases with increased dissolution			
Benzene/Cyclohexane	0.91	0.5 - 2.0	"Waterwashing": Ratio decreases with increased dissolution			
Toluene/Methylcyclohexane	9.22	2 - 10	"Waterwashing". Ratio decreases with increased dissolution			
n-Pentane/n-Heptane	0.63	0.5 - 2.0	Evaporation: Ratio decreases with increased evaporation			
2-methylpentane/2-methylheptane	1.89	3 - 8	Evaporation: Ratio decreases with increased evaporation			
Refining Method:						
2,2,4-Trimethylpentane/Methylcyclohexane	16.17	2 - 3	Values >5 typically represent premium grade gasoline			
			Values increase with octane rating in unweathered samples			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 These in	dicato	ors ar	Values increase with octane rating in unweathered samples e suspect in kylation; 0.39-0.45 typically represent			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe	dicato	ors ar	e suspect in olines!! kylation; 0.39-0.45 typically represent			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+ <i>is</i>	dicato	ors ar	e suspect in kylation; 0.39-0.45 typically represent			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+ <i>is</i> <i>iso</i> Pentane/(<i>iso</i> Pentane+n-Pentane)	dicato there	ors ar	e suspect in olines!! butane in modern gasolines			
	dicato there	ors ar d gas	e suspect in olines!! Isomerate blending usually results in a ratio >0.7			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+is isoPentane/(isoPentane+n-Pentane) Naphthalene/Dodecane	dicato there	ors ar d gas	e suspect in olines!! Isomerate blending usually results in a ratio >0.7			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+ <i>is</i> <i>iso</i> Pentane/(<i>iso</i> Pentane+n-Pentane) Naphthalene/Dodecane (2-MH+23DMP)/(3-MH+24DMP)	dicato there 0.62 0.40 1.04	ors ar d gas	e suspect in olines!! Isomerate blending usually results in a ratio >0.7 Higher values may be indicative of gasoline reforming			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+ <i>is</i> <i>iso</i> Pentane/(<i>iso</i> Pentane+n-Pentane) Naphthalene/Dodecane (2-MH+23DMP)/(3-MH+24DMP) C5 & C6 olefins	dicato there 0.62 0.40 1.04	ors ar d gas	e suspect in olines!! Isomerate blending usually results in a ratio >0.7 Higher values may be indicative of gasoline reforming			
(n-Heptane+n-Octane) 224TMP/(224TMP+223 Ethylbenzene/(Ethylbe n-Butane/(n-Butane+is isoPentane/(isoPentane+n-Pentane) Naphthalene/Dodecane (2-MH+23DMP)/(3-MH+24DMP) C5 & C6 olefins Reformulated vs. Conventional:	dicato there 0.62 0.40 1.04 Absent	ors ar d gas	e suspect in olines!! kylation; 0.39-0.45 typically represent hylbenzene in <u>unweathered</u> samples butane in modern gasolines isomerate blending usually results in a ratio >0.7 Higher values may be indicative of gasoline reforming Produced through Fluidic Catalytic Cracking (FCC) Benzene content cannot exceed 1% in typical gasolines. Under aerobic			

Maxam A Bureau Veritas Group Company

minimal biodegradation, minimal dissolution, evaporation indicated

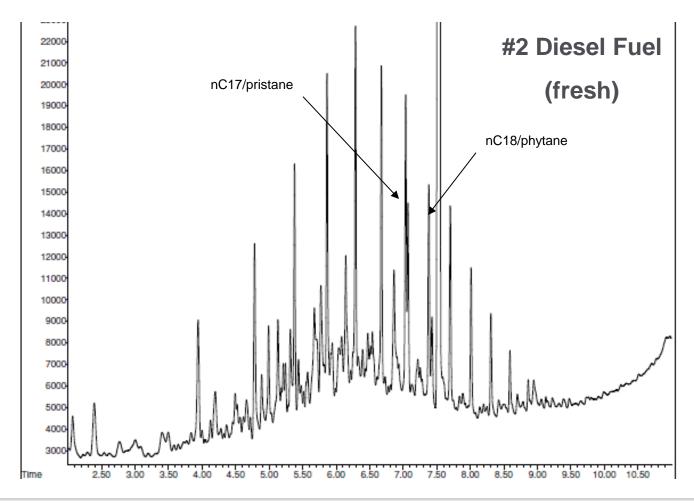
Unknown product: gasoline grade?

- PIONA suggested premium grade gasoline
 - Unreliable due to evaporation
- Chromatographic evaluation of grade suggested regular grade
 - OI = 2.8


Conclusion: old (pre 1992) evaporated leaded regular grade gasoline

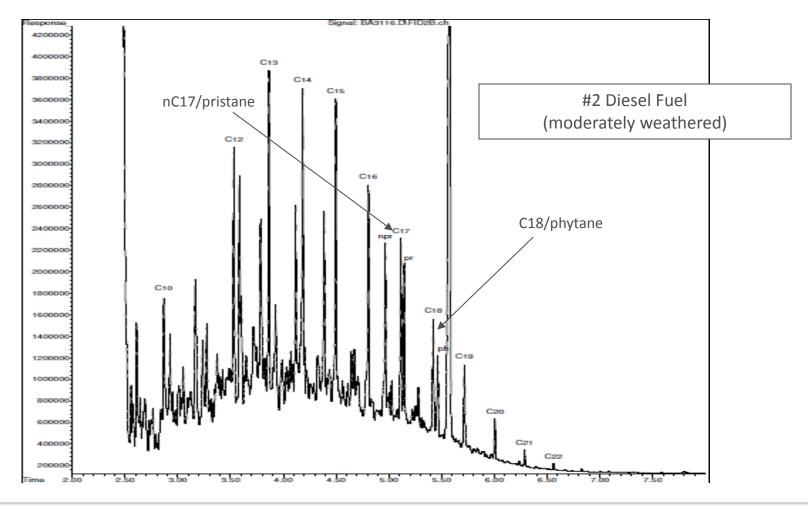
Middle Distillate Forensics (Diesel Range)

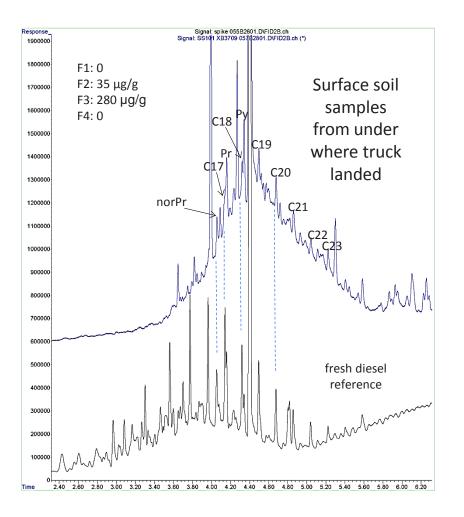
Impact of Weathering

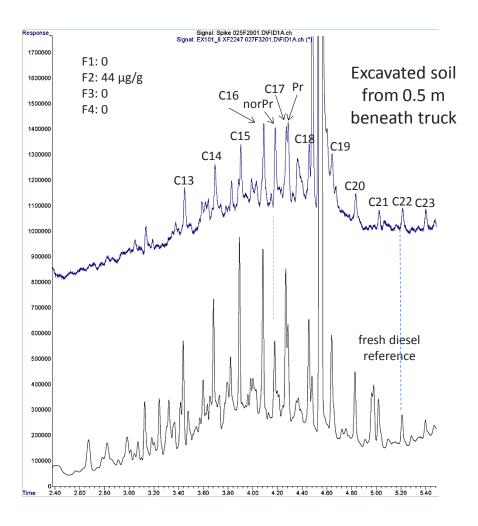

- Light hydrocarbons
- Olefins
- N-Alkanes
- Monoaromatics
- Isoalkanes
- Parent PAH > 2-ring
- C1 alkyl PAH \rightarrow C4 alkyl PAH
- Triterpanes
- Diasteranes \rightarrow Aromatic Steranes
- Porphyrins

Introduction to Environmental Forensics, Murphy and Morrison

Isoprenoid Biomarkers


C17/Pristane & C18/Phytane

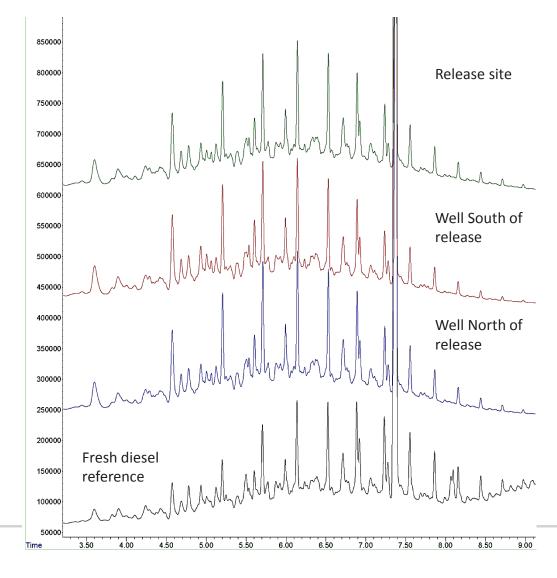

Isoprenoid Biomarkers


C17/Pristane & C18/Phytane

Highly Weathered: Site of Recent Truck Crash

Conclusion: these F2 and F3 impacts are not due to the truck crash

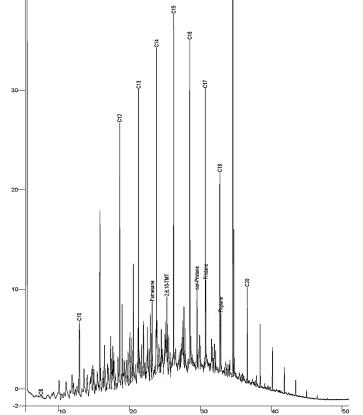
Using Weathering to Estimate Impact Age


- Using weathering as an indicator of age may be subject to considerable scrutiny/uncertainty
- Be careful with statements like "this groundwater sample contained diesel, but many of the low boiling point hydrocarbons are absent, so this is an older release"
- What impacts weathering? ("context")
 - Soil Environment
 - Volume of contaminant released
 - Time of release (one event / leak over time)
 - Depth of spill (or depth of where the sample was collected)
 - Subsurface conditions (oxygen content, microbiological populations)

Known Catastrophic Heating Oil Release in 1990

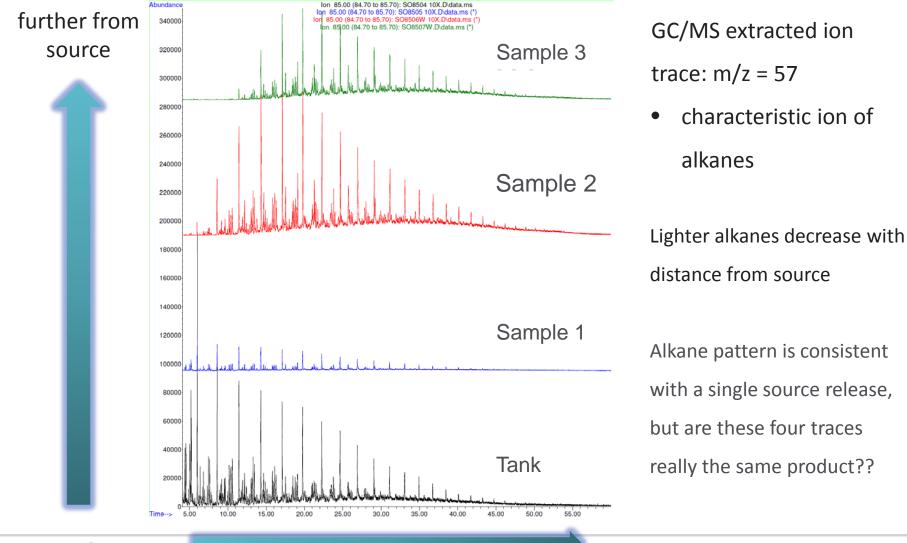
- Water wells, 60 m deep in fractured bedrock
- LNAPL layer 20 60 cm thick still present on top of water

From CCME F2 – F4 data all signatures look very similar and relatively <u>unweathered</u>



Known Catastrophic Heating Oil Release in 1990

Extended GC/FID confirms high similarity and minimal evidence of weathering


- The ratios expected to decrease with weathering trend slightly lower further from the release site
- Ratios expected to remain constant are generally consistent, confirming the same source

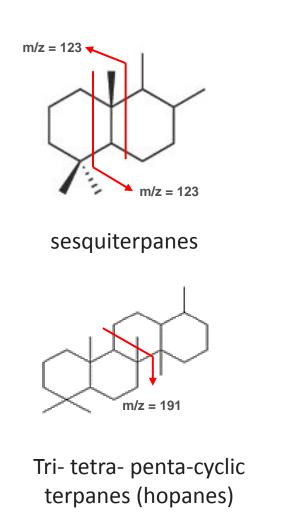
	Fresh Diesel	Release Site		N of release	S of release
C17/Farnesane	5.29	3.60	3.41	3.18	2.75
C17/2,6,10-tmt	4.91	4.26	4.12	3.55	3.19
C17/nor-Pr	3.37	3.60	3.49	3.32	3.29
C17/Pristane	2.18	3.38	3.21	2.90	2.65
C18/nor-Pr	2.95	2.58	2.74	2.51	2.39
C18/Phytane	3.27	3.46	3.60	3.21	3.22
Pristane/nor-Pr	1.55	1.07	1.09	1.14	1.24
Pr/Ph	1.72	1.43	1.43	1.46	1.67
Pr/2,6,10-tmt	2.26	1.26	1.28	1.22	1.21
nor-Pr/Phytane	1.11	1.34	1.31	1.28	1.35
nor-Pr/2,6,10-tmt	1.46	1.18	1.18	1.07	0.97
Pristane/Farnesane	2.43	1.07	1.06	1.09	1.04
nor-Pr/Farnesane	1.57	1.00	0.98	0.96	0.84
C10/C20	0.41	0.75	0.72	0.63	1.08

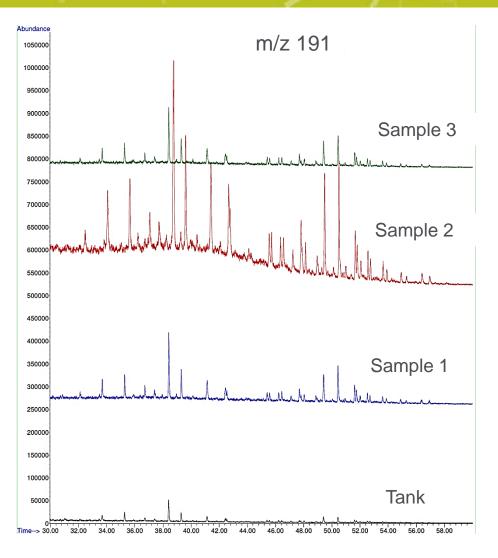
Diesel release in surface water

Heavier alkanes

Biomarkers are chemical "fossils"

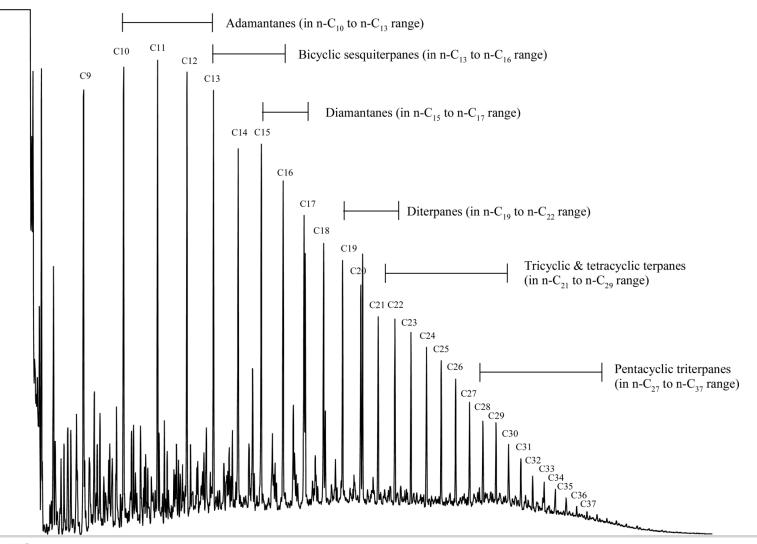
- unique tracers for petroleum contaminants
- structurally very similar to natural products; chlorophyll
- one of the last group of compounds to degrade


Isoprenoids (e.g. pristane and phytane) are considered "biomarkers"

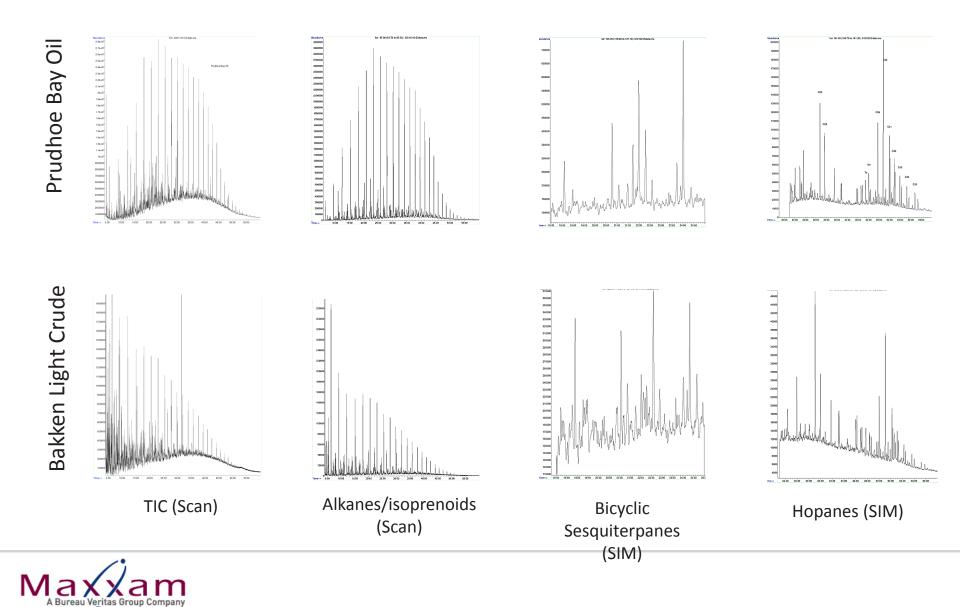

GC/MS biomarker peak patterns can be used to:

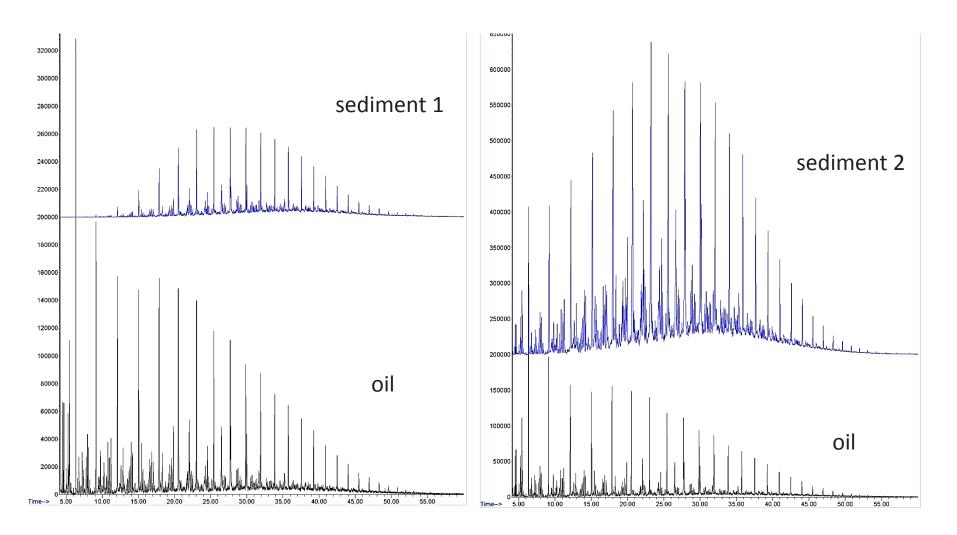
- Evaluate degree of weathering under specific soil conditions
- Differentiate petrogenic and biogenic impacts
- Identify crude oil sources

Diesel release in surface water (cont.)


Hopanes Profiles Confirm Single Source

Crude Oil Characterization

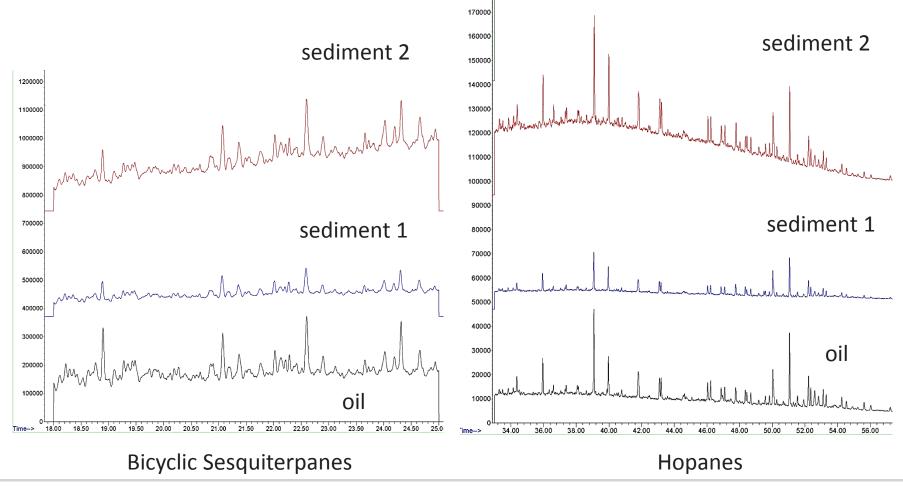

Known Biomarkers by Elution Range



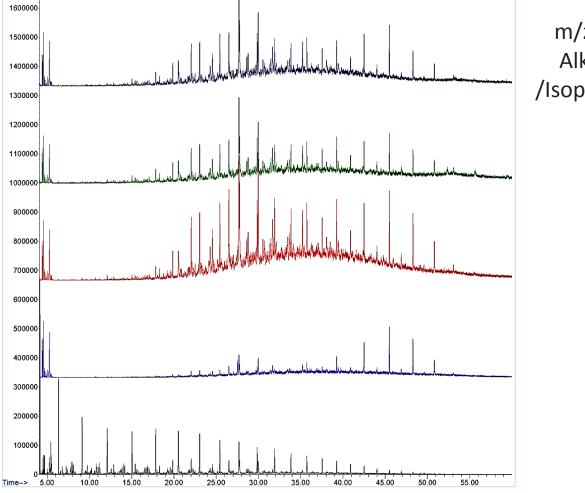
Source: Wang et al. Environmental Forensics 2006, 7(2) 105-146

Biomarker Signatures in Crude Oils

Light Crude Sediment Impacts



Alkanes / Isoprenoids - Good Correlations

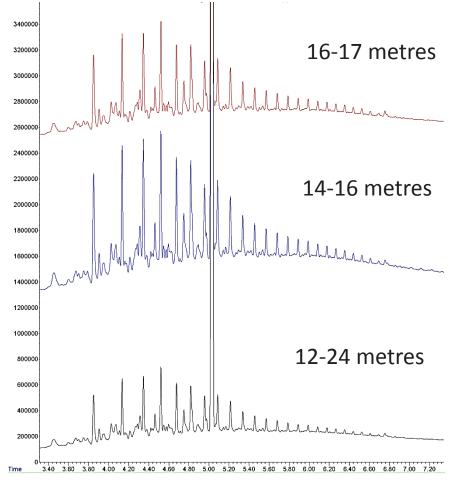

Light Crude Sediment Impacts – cont.

Correlations Confirmed

Additional High F2-F3 Impacted Sediments

m/z = 85 Alkanes /Isoprenoids

Biogenic Hydrocarbon Signature


Unexpected hydrocarbons found at depth

Unexpected PHC hits found at depth

- 12-17 m below grade
- Soil at higher levels clean

Long industrial history at site but minimal PHC usage

 One long-term diesel/heating oil AST tank location

Crude Oil Signature!!

Natural Shale Oil Source!

- Literature search indicated naturally occurring crude oil deposits in the area at unusually shallow depths
- Excavated material still had to be treated as 'hazardous', but property owner not liable for site remediation.

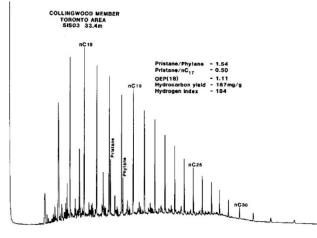


Figure 4: Saturate Fraction Gas Chromatogram – Ontario Oil Shale Formation (Collingwood Member)⁶

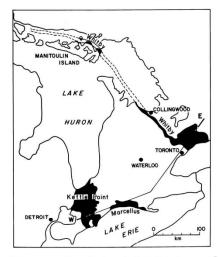


Figure 5: Locations of Paleozoic Black Shale in Ontario⁷

⁶ Snowden, L.R.: Bulletin of Canadian Petroleum Geology. 32(3), 1984. pp. 327-334
⁷ Barker, J.F. et.al.in "Geochemistry and Chemistry of Oil Shales", American Chemical Society, Washington, DC, 1983. pp 119-138

Summary

- Forensic investigations are often spurred from unexpected results during compliance monitoring (e.g. CCME hydrocarbons)
- CCME hydrocarbon test results are useful as a screening tool:
 - Reviewed in greater depth to answer some basic forensic questions
 - Point to the next appropriate forensic sampling/testing option
- In any forensic investigation, additional background information not normally collected during compliance monitoring is key to getting the best testing and data review
- Multiple lines of evidence are preferred to build a solid case in support of the investigative conclusions

Thank You!

Contact Info:

Heather Lord Manager, Environmental R&D Maxxam Analytics

hlord@maxxam.ca science@maxxam.ca

