CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT

School of Engineering and Technology

Paralakhemundi

Assignment -1

Subject Name-Laplace & Fourier Transform (CUTM1002)

1	$L^{-1}\left[\frac{1}{s-a^2}\right]$ is:
	sin at
	sinhat
	a
	e^{a^2t}
	None of the above
2	L[4t ²]
	$\frac{4}{2}$
	<u>5</u> ³ 8
	$\overline{s^3}$
	16
	<i>t</i> ²
	None of the above
3	Whose Laplace Transform is $\frac{1}{s^2-4}$
	Sin 2t
	2sin h2t
	$-\cos h2t$
	$\frac{1}{2}$ sin h 2t
4	Which of the following is correct?
	$f(s) = \iint_0^\infty e^{-st} f(t) dt$
	$F(s) = \int_0^\infty e^{-st} f(t) dt$
	$F(s) = \int_0^\infty e^{st} f(t) \mathrm{d}t$
	None of these
5	Which of the following is not true?
	$L^{-1}\left(\frac{e^{-as}}{a}\right) = \mathbf{u}(\mathbf{t} - \mathbf{a})$
	$L^{-1}[e^{-as}F(s)] = f(t-a)u(t-a)$
	$L^{-1}\left[\frac{1}{s}F(s)\right] = \int_0^\infty e^{-st} f(t) dt$

	None of these
6	Which of the following is true?
	$L^{-1}\left(\frac{e^{-3s}}{s}\right) = u(t-3)$
	$L^{-1}(\frac{1}{s^2-5}) = \frac{1}{5}\sin h5t$
	$L(te^{2t}) = \frac{1}{(s-2)^2}$
	None of these
7	Which of the following is false?
	$\frac{1}{1} \left(\frac{2021\cos 0}{1000} \right) = 0$
	$L(2021\sin 0) = 0$
	$L^{-1}\left(\frac{1}{(s-3)^2}\right) = \mathrm{t}e^{3t}$
	None of these
8	$L^{-1}\left(\frac{2s}{(s^2+1)^2}\right)$ is:
	t sint
	t cost
	$\frac{1}{t}$ sint
	$\frac{1}{t}cost$
9	г (0) is
	0
	-1
	1
	undefined
10	$L^{-1}\left[\frac{1}{s^2+4s+24}\right] \text{is}$
	e^{-2t} sin20t
	$\frac{e^{-2t}}{20}$ sin20t
	$\frac{e^{-2t}}{2}$ sin $2\sqrt{5t}$
	20 None of these
11	$L^{-1}\left(\frac{2as}{(s^2-a^2)^2}\right)$ is:
	t cosh at
	t sinht
	t sinh a t
	None of these

12	Which of the following is true?
	I^{-1} $\begin{pmatrix} s \end{pmatrix} - t \sin ht$
	$\left(\frac{1}{(s^2-2^2)^2}\right) = t \sin nt$
	$I^{-1}\left(\begin{array}{c} S \\ \end{array}\right) = \frac{1}{2} t \sin 2t$
	$((s^2+2^2)^2) = \frac{1}{4} (s^2+2^2)^2$
	(s^2+2) 1 (
	$\left[L^{-1}\left(\frac{3+2}{(s^2-2^2)^2}\right) = \frac{1}{4}t\sin h\sqrt{2t}$
	None of these
13	$1 - 1 \left(e^{-2s} \right)$:
15	$L = \left(\frac{1}{s^2+1}\right)$ 18:
	$\sin(t-2)u(t-2)$
	$\frac{\cos(t-1)u(t-2)}{\sin(t-1)u(t-2)}$
	$\frac{\sin(t-1)u(t-2)}{\sin(t-2)}$
	None of these
1.4	
14	Solution 'y' for $y+2y = 0$ by Laplace transform when $y(0) = 1.5$ is
	$1.5 e^{-2t}$
	$1.5 e^{2t}$
	1.5 e st
15	None of the above $L(y(t-1))$ is:
15	$L\{u(t-1)\}$ is:
	e^{4s}
	None of the above
16	$I^{-1}\left(se^{-\pi s}\right)$ is:
10	$\frac{L}{s^2-4} \int \frac{1}{15} dx$
	$\frac{\cos h(t-\pi)u(t+\pi)}{\sin h(t-\pi)u(t-\pi)}$
	$\sin h(t-\pi)u(t-\pi)$
	$\sin(t-\pi)u(t-\pi)$
17	L [t u(t-3)] is:
-	$e^{-2s}\left(\frac{1}{1}+\frac{1}{1}\right)$
	$\frac{\left(s^{2}+s\right)}{\left(1-1\right)}$
	$e^{-ss}\left(\frac{1}{s}-\frac{1}{s^2}\right)$
	$e^{3s}\left(\frac{1}{s}-\frac{3}{s^2}\right)$
	None of these
18	L^{-1} [t u(t- π)] is:
10	$\rho \pi s \left(\frac{1}{2} + \frac{\pi}{2}\right)$
	$\frac{c}{\sqrt{s+s^2}}$
	$\left(\frac{c}{s} - \frac{c}{s^2}\right)$
	$e^{-\pi s}\left(\frac{1}{s^2}+\frac{\pi}{s}\right)$
	None of these.
19	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is
	$L \left[\frac{1}{s^2+2} \right]^{15}$
	$1_{ain 2t}$
	$\frac{1}{2}$ SIII 2 <i>l</i>
	$\frac{1}{\sqrt{2}}\cos\sqrt{2t}$

	$\frac{1}{\sqrt{2}}\sin\sqrt{2}t$
	None of the above
20	The fundamental period of $\cos 2\pi x$ is
20	0
	1
	2
	None of these
21	If $m \neq n$ then the value of $\int_{-\pi}^{\pi} sinmx cosnx dx$ is
	1
	0
	x
	None of these
22	Given function $f(x) = sinx $
	An even function
	An odd function
	Neither even nor odd function
	None of these
23	Which of the following represents Fourier coefficients?
	The terms that are present in a Fourier series
	The terms which consist of the Fourier series along with their sine or
	cosine value
	The terms that are obtained through Fourier series
	None of these
24	A "periodic function" is given by a function which
	Has a period $T = 2\pi$
	satisfies $f(t+T) = -f(t)$
	satisfies $f(t+T) = f(t)$
	has a period $T = \pi$
25	Half range cosine Fourier series, we assume the function to be

	Odd function
	Can't be determined
	Even function
	None of these
26	Find the Fourier transform of $f(x) = \begin{cases} 1, -a < x < a \\ 0, otherwise \end{cases}$
	coswa
	$\frac{1}{\sqrt{2\pi}} \left(\frac{2sinwa}{w} \right)$
	$\frac{1}{\sqrt{2\pi}} \left(\frac{\cos wa}{w} \right)$
	None of these
27	Inverse Fourier sine transformation of f(x) is
	$\frac{2}{\pi}\int_0^\infty \hat{f}_s(w) \cos wx dw$
	$\frac{2}{\pi}\int_0^\infty \hat{f}_c(w) \sin wx dw$
	$\sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_s(w) \cos wx dw$
	$\sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_s(w) \sin wx dw$
28	The Fourier complex integral form can be written in the form of Fourier transform is
	$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iwt} \hat{f}(w) dw$
	$\frac{1}{\pi}\int_{-\infty}^{\infty}e^{-iwt}\hat{f}(w)dw$
	$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{iwt}\hat{f}(w)dw$
	$\frac{1}{\pi}\int_{-\infty}^{\infty}e^{iwt}f(w)dw$
29	Find the sine transform of $f(x) = \begin{cases} sinx , 0 \le x \le a \\ 0 , otherwise \end{cases}$

	1 $\left[\cos(1-w)a \cos(1+w)a\right]$
	$\frac{1}{\sqrt{2\pi}}\left[\frac{1-w}{1+w}\right]$
	$1 \left[\sin(1-w) a \sin(1+w) a \right]$
	$\overline{\sqrt{2\pi}}$ $\begin{bmatrix} 1-w \\ 1+w \end{bmatrix}$
	$1 \left[\sin(1-w) a \cos(1+w) a \right]$
	$\overline{2\pi}$ $\begin{bmatrix} 1-w \\ 1+w \end{bmatrix}$
	$1 \left[\cos(1-w) a \right] \sin(1+w) a$
	$\overline{2\pi}$ $\begin{bmatrix} 1-w \\ 1+w \end{bmatrix}$
30	Linearity Property formula of the Fourier transform is:
	$\mathcal{F}(ag + bf) = a \mathcal{F}(g) + b \mathcal{F}(f)$
	$\mathcal{F}(af + bg) = a \mathcal{F}(f) - b \mathcal{F}(g)$
	$\mathcal{F}(af - bg) = a \mathcal{F}(f) + b \mathcal{F}(g)$
	None of these.