CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT

School of Engineering and Technology Paralakhemundi
 Assignment -1

UNIVERSITY
haping Liver...
Subject Name-Laplace \& Fourier Transform (CUTM1002)

1	$L^{-1}\left[\frac{1}{s-a^{2}}\right]$ is:
	\sin at
	$\frac{\sin h a t}{a}$
	$e^{a^{2} t}$
	None of the above
2	L[4t ${ }^{\text {² }}$]
	$\stackrel{8}{8}$
	$\frac{s^{3}}{}$
	$\frac{16}{t^{2}}$
	None of the above
3	Whose Laplace Transform is $\frac{1}{\mathrm{~s}^{2}-4}$
	Sin 2 t
	$2 \sin \mathrm{~h} 2 \mathrm{t}$
	$\frac{1}{s} \cosh 2 \mathrm{t}$
	$\frac{1}{2} \sinh 2 \mathrm{t}$
4	Which of the following is correct?
	$\mathrm{f}(\mathrm{s})=\iint_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t$
	$F(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t$
	$F(s)=\int_{0}^{\infty} \mathrm{e}^{s t} f(t) \mathrm{d} t$
	None of these
5	Which of the following is not true?
	$L^{-1}\left(\frac{e^{-a s}}{s}\right)=\mathrm{u}(\mathrm{t}-\mathrm{a})$
	$L^{-1}\left[e^{-a s} F(s)\right]=f(t-a) u(t-a)$
	$L^{-1}\left[\frac{1}{s} F(s)\right]=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t$

	None of these
6	Which of the following is true?
	$L^{-1}\left(\frac{e^{-3 s}}{s}\right)=u(t-3)$
	$L^{-1}\left(\frac{1}{s^{2}-5}\right)=\frac{1}{5} \sin h 5 t$
	$\mathrm{L}\left(\mathrm{t} e^{2 t}\right)=\frac{1}{(s-2)^{2}}$
	None of these
7	Which of the following is false?
	$\mathrm{L}(2021 \cos 0)=0$
	$\mathrm{L}(2021 \sin 0)=0$
	$L^{-1}\left(\frac{1}{(s-3)^{2}}\right)=t e^{3 t}$
	None of these
8	$L^{-1}\left(\frac{2 s}{\left(s^{2}+1\right)^{2}}\right)$ is:
	$t \sin t$
	t cost
	$\frac{1}{t} \sin t$
	$\frac{1}{t}$ cost
9	$\Gamma(0)$ is
	0
	-1
	1
	undefined
10	$L^{-1}\left[\frac{1}{s^{2}+4 s+24}\right]$ is
	$e^{-2 t} \sin 20 \mathrm{t}$
	$\frac{e^{-2 t}}{20} \quad \sin 20 \mathrm{t}$
	$\frac{e^{-2 t}}{20} \sin 2 \sqrt{5 t}$
	None of these
11	$L^{-1}\left(\frac{2 a s}{\left(s^{2}-a^{2}\right)^{2}}\right)$ is:
	t cosh at
	t sinht
	$t \sinh a t$
	None of these

12	Which of the following is true?
	$L^{-1}\left(\frac{s}{\left(s^{2}-2^{2}\right)^{2}}\right)=t \sin h t$
	$L^{-1}\left(\frac{s}{\left(s^{2}+2^{2}\right)^{2}}\right)=\frac{1}{4} t \sin 2 t$
	$L^{-1}\left(\frac{s^{2}+2}{\left(s^{2}-2^{2}\right)^{2}}\right)=\frac{1}{4} t \sin h \sqrt{2} t$
	None of these
13	$L^{-1}\left(\frac{e^{-2 s}}{s^{2}+1}\right) \text { is: }$
	$\sin (t-2) u(t-2)$
	$\cos (t-1) u(t-2)$
	$\sin (t-1) u(t-2)$
	None of these
14	Solution ' y ' for y ' $+2 \mathrm{y}=0$ by Laplace transform when $\mathrm{y}(0)=1.5$ is
	$1.5 e^{-2 t}$
	$1.5 e^{2 t}$
	$1.5 e^{-3 t}$
	None of the above
15	$\mathrm{L}\{\mathrm{u}(\mathrm{t}-1)\}$ is:
	e^{-s}
	e^{s}
	$e^{4 s}$
	None of the above
16	$L^{-1}\left(\frac{s s^{-\pi s}}{s^{2}-4}\right) \text { is: }$
	$\cosh \mathrm{h}(-\pi) \mathrm{u}(\mathrm{t}+\pi)$
	$\sin \mathrm{h}(\mathrm{t}-\pi) \mathrm{u}(\mathrm{t}-\pi)$
	$\sin (t-\pi) u(t-\pi)$
	$\cosh \mathrm{h}(2 \mathrm{t}-2 \pi) \mathrm{u}(\mathrm{t}-\pi)$
17	$\mathrm{L}[\mathrm{t}(\mathrm{t}-3)]$ is:
	$e^{-2 s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)$
	$e^{-3 s}\left(\frac{1}{s}-\frac{1}{s^{2}}\right)$
	$e^{3 s}\left(\frac{1}{s}-\frac{3}{s^{2}}\right)$
	None of these
18	$L^{-1}[t \mathrm{u}(\mathrm{t}-\pi)]$ is:
	$e^{\pi s}\left(\frac{1}{s}+\frac{\pi}{s^{2}}\right)$
	$e^{\pi s}\left(\frac{1}{s}-\frac{\pi}{s^{2}}\right)$
	$e^{-\pi s}\left(\frac{1}{s^{2}}+\frac{\pi}{s}\right)$
	None of these.
19	$L^{-1}\left[\frac{1}{s^{2}+2}\right]$ is:
	$\begin{aligned} & \frac{1}{2} \sin 2 t \\ & \frac{1}{\sqrt{2}} \cos \sqrt{2} t \end{aligned}$

	$\frac{1}{\sqrt{2}} \sin \sqrt{2} t$
	None of the above
20	The fundamental period of $\cos 2 \pi x$ is
	0
	1
	2
	None of these
21	If $m \neq n$ then the value of $\int_{-\pi}^{\pi} \operatorname{sinm} x \cos n x d x$ is
	1
	0
	X
	None of these
22	Given function $f(x)=\|\sin x\|$
	An even function
	An odd function
	Neither even nor odd function
	None of these
23	Which of the following represents Fourier coefficients?
	The terms that are present in a Fourier series
	The terms which consist of the Fourier series along with their sine or cosine value
	The terms that are obtained through Fourier series
	None of these
24	A "periodic function" is given by a function which
	Has a period $T=2 \pi$
	satisfies $f(t+T)=-f(t)$
	satisfies $f(t+T)=f(t)$
	has a period $T=\pi$
25	Half range cosine Fourier series, we assume the function to be

	Odd function
	Can't be determined
	Even function
	None of these
26	Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{r}1,-a<x<a \\ 0, \text { otherwise }\end{array}\right\}$
	coswa
	$\frac{1}{\sqrt{2 \pi}}\left(\frac{2 \sin w a}{w}\right)$
	$\frac{1}{\sqrt{2 \pi}}\left(\frac{\cos w a}{w}\right)$
	None of these
27	Inverse Fourier sine transformation of $\mathrm{f}(\mathrm{x})$ is
	$\frac{2}{\pi} \int_{0}^{\infty} \hat{f}_{s}(w) \cos w x d w$
	$\frac{2}{\pi} \int_{0}^{\infty} \hat{f}_{c}(w) \sin w x d w$
	$\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(w) \cos w x d w$
	$\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(w) \sin w x d w$
28	The Fourier complex integral form can be written in the form of Fourier transform is
	$\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i w t} \hat{f}(w) d w$
	$\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-i w t} \hat{f}(w) d w$
	$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i w t} \hat{f}(w) d w$
	$\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i w t} f(w) d w$
29	Find the sine transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\sin x, 0 \leq x \leq a \\ 0, \text { otherwise }\end{array}\right\}$

	$\frac{1}{\sqrt{2 \pi}}$	$\left[\frac{\cos (1-w) a}{1-w}-\frac{\cos (1+w) a}{1+w}\right]$	
	$\frac{1}{\sqrt{2 \pi}}$	$\left[\frac{\sin (1-w) a}{1-w}-\frac{\sin (1+w) a}{1+w}\right]$	
	$\frac{1}{2 \pi}[$	$\left.\frac{\sin (1-w) a}{1-w}-\frac{\cos (1+w) a}{1+w}\right]$	
	$\frac{1}{2 \pi}$	$\left.\frac{\cos (1-w) a}{1-w}-\frac{\sin (1+w) a}{1+w}\right]$	
30	Linearity Property	formula of the Fourier transform	m is:
		(ag+bf) $=a \mathcal{F}(g)+b \mathcal{F}(f)$	
		(af +bg) $=a \mathcal{F}(f)-b \mathcal{F}(g)$	
	$\mathcal{F}($	(af -bg) $=a \mathcal{F}(f)+b \mathcal{F}(g)$	
	None of these.		

