CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT

Centurion
UNIVERSITY
Shaping Lives
School of Engineering and Technology
Paralakhemundi
Assignment -2
Subject Name-Laplace \& Fourier Transform (CUTM1002)

SHORT QUESTIONS:

1. Find the value of $\Gamma(5)$.
2. What is the crucial property of the Laplace transform that makes it suitable for solving differential equation?
3. Evaluate the integral $\int_{0}^{\infty} e^{-x} x^{\frac{3}{2}} d x$ [CUTM- 2020]
4. Define unit step function. What is the Laplace transform of the unit step
function? [CUTM- 2019]
5. What is the Laplace transform of $f(t)=t \sin 2 t$? (CUTM -2022).
6. What is the Laplace transform of the function

$$
\begin{aligned}
f(t) & =t^{2} \text { if } 0<t<1 \\
& =0 \text { otherwise. }
\end{aligned}
$$

7. Find the Laplace transform of $L(\cos (w t))$ using the result $L\left(e^{i w t}\right)=\frac{1}{s-i w}$.
8. Show that $L\left(f^{\prime \prime}(t)\right)=s^{2} L[f(t)]-s f(0)-f^{\prime}(0)$.
9. Find the inverse Laplace transform of $\frac{1}{s^{2}(s-1)}$.
10. Find the Laplace transform of $5 e^{2 t} \sinh 2 t$.
11. Find the inverse Laplace transform of $\frac{1}{s^{2}+4 s}$ by integration.
12. Find the Laplace transform of π^{t}.
13. Find the inverse Laplace transformation of $F(s)=\frac{4}{s^{2}+2 s+5}$.
14. What is the subsidiary equation? How is it used?
15. What is Dirac's delta function? How did we use it?

LONG QUESTIONS:

1. Find the Laplace transform of the following function:

$$
f(t)=\left\{\begin{array}{lll}
2 & \text { if } & 0<t<\pi \\
0 & \text { if } & \pi<t<2 \pi \\
\sin t & \text { if } & t>2 \pi
\end{array}\right.
$$

2. Find the Laplace transform of the periodic function $f(t)=t, 0<t<2$ (with period 2).
3. Find the inverse Laplace transformation of $\frac{1-7 s}{(s-3)(s-1)(s+2)}$.
4. Solve the initial value problem using Laplace transforms $y^{\prime \prime}-2 y^{\prime}+y=e^{t}$
5. Find the inverse Laplace transform of $F(s)=\frac{s}{\left(s^{2}+\pi^{2}\right)^{2}}$ using the convolution theorem.
6. Find the function $f(t)$ whose Laplace transform is $\frac{6}{s^{2}\left(s^{2}-9\right)}$.
7. If $f^{*} g=\int_{0}^{t} f(t-\gamma) g(\gamma) d \gamma$, then show that $f^{*} g=g * f$
8. Solve the differential equation by using Laplace transformation:

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+8 y=e^{-3 t}-e^{-5 t}, \text { where } y(0)=0 \text { and } y^{\prime}(0)=0
$$

9. Using convolution theorem, find the inverse Laplace transform of the following function:

$$
F(s)=\frac{1}{s\left(s^{2}+4\right)}
$$

10. Using Laplace transform solve the following integral equation:

$$
y(t)=\sin t-\int_{0}^{t} \sin (t-\tau) y(\tau) d \tau
$$

SHORT QUESTIONS:

1. Find the smallest positive period of $\sin x \& \tan x$. (CUTM- 2012).
2. Find the smallest positive period of $\cos \frac{2 \pi x}{k} \& \sin \frac{2 \pi n x}{k}$.
3. If $f(x)$ is a periodic function of period 2π then find the period of $f(2 x) \& f(x / 3)$.
4. Write the formula for Fourier Transform of a function $f(x)$. (CUTM -2012).
5. What are half-range expansions? What are they good for?
6. Do you think any function can have a Fourier expansion? Give reason for your answer.
7. Explain how Fourier transform is used to solve initial value problems.
8. Expand $\sin ^{2} 3 x+3 \cos 3 x \sin 4 x$ in Fourier series over 2π period.
9. Check which function is even or odd
i) $f(x)=\sinh x$ ii) $f(x)=x(1-\cos x)$
10. What are even and odd periodic extension of a function?
11. Find the smallest positive period of the function $\sin 2 \pi x$ and $\cos 2 \pi x$.
12. Identify which of the functions are even in the specified period:

$$
f(x)=\left\{\begin{array}{l}
x-2,1 \leq x \leq 2 \\
2-x, 2 \leq x \leq 3
\end{array}\right.
$$

13. Identify which of the functions are even in the specified period:

$$
f(x)=\left\{\begin{array}{l}
2-x, 1 \leq x \leq 2 \\
2-x, 2 \leq x \leq 3
\end{array}\right.
$$

14. Check whether the following functions are odd or even or neither:
i) e^{x}
ii) $x|x|$
iii) $x \cos x$
iv) $|x|^{3}$
15. Find the Fourier coefficients of the periodic function

$$
f(x)=\sin \frac{x}{2}, \cos \frac{x}{2},-\pi \leq x \leq \pi
$$

LONG QUESTIONS:

1. Show that the function $f(x)=$ const is a periodic function of period p for every positive p.
2. Find the Fourier series of the function $f(x)=x^{2},-\pi\langle x\langle\pi$
3. Find the Fourier series expansion of the following function:

$$
f(x)=\left\{\begin{array}{l}
k \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
0 \text { if } \frac{\pi}{2}<x<\frac{3 \pi}{2}
\end{array}\right.
$$

And hence show that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \cdots=\frac{\pi}{4}$
4. Expand the following periodic function in Fourier series $f(x)=1+x, x \in(0,2 \pi)$.
5. Find the cosine series of the following function:

$$
f(x)=x^{2}, 0<x<\pi \quad \text { (CUTM -2012). }
$$

6. Find the Fourier series expansion of the following function which is assumed to be periodic with period 2

$$
f(x)= \begin{cases}x & \text { if } 0<x<1 \\ 1-x & \text { if } 1<x<2\end{cases}
$$

7. Show that $\frac{\pi}{4}=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}$ by finding the Fourier series of the periodic function:

$$
f(x)=\left\{\begin{array}{l}
\sin x, 0 \leq x \leq \pi \\
0, \pi \leq x \leq 2 \pi
\end{array}\right.
$$

8. Find the Fourier series of the periodic function

$$
f(x)=\left\{\begin{array}{l}
x, 0 \leq x \leq \pi \\
2 \pi-x, \pi \leq x \leq 2 \pi
\end{array}\right.
$$

9. Find the half- range expansion for the even extension of the function:

$$
f(x)=\left\{\begin{array}{l}
x, 0<x<\frac{\pi}{2} \\
\pi-x, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

10. Find the Fourier series of the following periodic function:

$$
f(x)=\left\{\begin{array}{l}
-x,-\pi \leq x \leq 0 \\
x, 0 \leq x \leq \pi
\end{array}\right.
$$

