Fourier Transform

- Fourier transform is a mathematical tool that transforms a mathematical function defined in a special domain to another mathematical function in a frequency domain.
- The Fourier transform and its inverse transform are described in both continuous and discrete domains. These transforms are widely used to solve numerous problems in science and technology.

STANDARD RESULTS:

•
$$\int e^{ax} \sinh x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sinh x - b \cosh x)$$

$$\bullet \quad \int_0^\infty e^{-ax} \sinh x \, dx = \frac{b}{a^2 + b^2}$$

•
$$\int_0^\infty e^{-ax} \sinh x \, dx = \frac{b}{a^2 + b^2}$$
•
$$\int_0^\infty e^{-ax} \cosh x \, dx = \frac{a}{a^2 + b^2}$$
 Where
$$\int e^{ax} \cosh x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cosh x + b \sinh x)$$

$$\bullet \quad \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$\int_{0}^{\infty} \frac{e^{ax} - e^{-ax}}{e^{\pi x} - e^{-\pi x}} dx = \frac{1}{2} \tan(\frac{a}{2})$$

$$\int_{0}^{\infty} \frac{e^{ax} + e^{-ax}}{e^{\pi x} - e^{-\pi x}} dx = \frac{1}{2} \sec(\frac{a}{2})$$

•
$$\int_0^\infty \frac{e^{-ax}}{x} \sinh x \ dx = \tan^{-1}(\frac{b}{a}) \ , a > 0, b > 0$$

•
$$\int_0^\infty \frac{\sin ax}{x} dx = \frac{\pi}{2} \quad \text{if } a > 0$$

Fourier Complex Integral:

The Fourier complex integral form is

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iwx} dw \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$$

Fourier Transform:

The Fourier complex integral form can be written in the form of Fourier transform

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iwt} f(w) dw$$

Where
$$f(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$$
 or $\int_{-\infty}^{\infty} f(x)e^{-iwx} dx$, if $x = t$

F(w) is called Fourier transform of f(x) and f(x) is called inverse Fourier transform of f(w).

- Fourier transforms are of two types
 - 1. Fourier sine transform
 - 2. Fourier cosine transform