Lec-5

TRANSFORMS OF DERIVATIVES:

Suppose that y(t) is continuous for all $t \ge 0$ satisfies the condition $|y(t)| \le Me^{-kt}$ for some k and M, and has a derivative y'(t) that is piecewise continuous on every finite interval in the range $t \ge 0$. then the Laplace transform of the derivative y'(t) exists when s > k and $L(y') = sL\{y(t)\} - y(0)$.

Similarly
$$L(y'') = sL\{y'(t)\} - y(0) = s[sL\{y'(t)\} - y(0)] - y'(0)$$

= $s^2L(y) - sy(0) - y'(0)$.

Therefore Derivative of nth order is given by

$$L(y^{(n)}) = s^n L\{y(t)\} - s^{n-1}y(0) - s^{n-2}y(0) - \dots - y^{(n-1)}(0)$$

APPLICATION OF TRANSFORM OF DERIVATIVES:

- 1. It is applicable for solving linear differential equation with constant coefficients.
- 2. it is applicable for solving first/higher order initial value problems as well as solution of boundary value problems.

SOLUTION OF DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEMS:

Step1: Take the Laplace transform of both sides of the given differential equation and put the formula of L(y'), L(y''),..... $L(y^{(n)})$ and the given initial conditions.

Step2: Transpose the terms with minus signs to the right. Divide by the coefficient of $L\{y(t)\}$, getting $L\{f(t)\}$ as a known function of s.

Step3: Resolve this function of s in partial fractions and take the inverse transform of both sides. This gives y as a function of t which is the desired solution satisfying the given conditions.

WORKED OUT EXAMPLES:

Example3: Solve the following differential equation by the method of transforms.

$$y'' + y' - 6y = 1$$
, $y(0) = 1, y'(0) = 1$
 $y'' + y = 3\cos 2t$, $y(0) = 2, y'(0) = 0$

$$y'' + 2y' - 3y = \sin t$$
, $y(0) = 0$, $y'(0) = 0$
 $y'' + 6y' + 8y = e^{-3t} - e^{-5t}$, $y(0) = 0$, $y'(0) = 0$

Solution: (a) Given that y'' + y' - 6y = 1(1), y(0) = 1, y'(0) = 1 Taking Laplace transform both sides of equation (1) and apply the formula for the derivatives, we get L(y'' + y' - 6y) = L(1)

$$L(y'') + L(y') - 6L(y) = L(1)$$

$$\Rightarrow s^{2}L\{y(t)\} - sy(0) - y'(0) + sL\{y(t)\} - y(0) - 6L\{y(t)\} = \frac{1}{s}$$

$$\Rightarrow (s^{2} + s - 6)L\{y(t)\} = \frac{1}{s} + s + 2 = \frac{s^{2} + 2s + 1}{s}$$

$$\Rightarrow L\{y(t)\} = \frac{s^{2} + 2s + 1}{s(s - 2)(s + 3)} \Rightarrow y(t) = L^{-1}\left(\frac{s^{2} + 2s + 1}{s(s - 2)(s + 3)}\right)$$

Using partial fraction, we get

$$\frac{s^2 + 2s + 1}{s(s-2)(s+3)} = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s+3}$$

$$s^2 + 2s + 1 = A(s-2)(s+3) + Bs(s+3) + cs(s-2)$$
2)....(2)

 $Puts = 0, s = 2, s = -3 \ inequation$ (2)Respectively we get the value of A,B,C.

$$i.eA = \frac{-1}{6}, B = \frac{4}{15}, C = \frac{9}{10}$$

Therefore A,B,C of a corresponding y(t) is given by

$$y(t) = L^{-1} \left(\frac{s^2 + 2s + 1}{s(s - 2)(s + 3)} \right) = L^{-1} \left(\frac{\frac{-1}{6}}{s} + \frac{\frac{4}{15}}{s - 2} + \frac{\frac{9}{10}}{s + 3} \right)$$
$$y(t) = \frac{-1}{6} + \frac{4}{15}e^{2t} + \frac{9}{10}e^{-3t}$$

(b)) Given that
$$y'' + y = 3\cos 2t$$
(1), $y(0) = 2$, $y'(0) = 0$

Taking Laplace transform both sides of equation (1) and apply the formula for the derivatives ,we get L(y'' + y) = L(3cos2t)

$$\Rightarrow L(y'') + L(y) = L(3\cos 2t)$$

$$\Rightarrow s^{2}L\{y(t)\} - sy(0) - y'(0) + L\{y(t)\} = \frac{3s}{s^{2} + 4}$$

$$\Rightarrow (s^{2} + 1)L\{y(t)\} = \frac{3s}{s^{2} + 4} + 2s \Rightarrow L\{y(t)\} = \frac{3s}{(s^{2} + 4)(s^{2} + 1)} + \frac{2s}{s^{2} + 1}$$

$$L\{y(t)\} = \frac{s}{s^{2} + 1} - \frac{s}{s^{2} + 4} + \frac{2s}{s^{2} + 1} \Rightarrow y(t) = L^{-1}\left(\frac{3s}{s^{2} + 1} - \frac{s}{s^{2} + 4}\right)$$

$$y(t) = 3cost - cos2t.$$

(c) Given that
$$y'' + 2y' - 3y = sint$$
(1), $y(0) = 0$, $y'(0) = 0$

Taking Laplace transform both sides of equation (1) and apply the formula for the derivatives ,we get L(y'' + 2y' - 3y) = L(sint)

$$\Rightarrow L(y'') + 2L(y') - 3L(y) = L(sint)$$

$$\Rightarrow s^{2}L\{y(t)\} - sy(0) - y'(0) + 2[sL\{y(t)\} - y(0)] - 3L\{y(t)\} = \frac{1}{s^{2} + 1}$$

$$\Rightarrow (s^{2} + 2s - 3)L\{y(t)\} = \frac{1}{s^{2} + 1} \Rightarrow L\{y(t)\} = \frac{1}{(s^{2} + 1)(s^{2} + 2s - 3)}$$

$$y(t) = L^{-1}\left(\frac{1}{(s^{2} + 1)(s^{2} + 2s - 3)}\right)$$

Using partial fraction, we get

$$\frac{1}{(s^2+1)(s^2+2s-3)} = \frac{As+B}{s^2+1} + \frac{Cs+D}{s^2+2s-3}$$

i.e
$$1 = (As + B)(s^2 + 2s - 3) + (Cs + D)(s^2 + 1)$$

$$1 = (A + C)s^3 + (2A + B + D)s^2 + (2B + C)s + (D - 3B)$$

Equating the coefficients of s^3 , s^2 , sandconstantterms both sides, we get

$$A = \frac{1}{4}$$
 , $B = \frac{1}{8}$, $C = \frac{-1}{4}$, $D = \frac{-5}{8}$

Therefore
$$y(t) = L^{-1} \left(\frac{1}{(s^2+1)(s^2+2s-3)} \right) = L^{-1} \left(\frac{\frac{1}{4}s + \frac{1}{8}}{s^2+1} \right) - L^{-1} \left(\frac{\frac{1}{4}s + \frac{5}{8}}{s^2+2s-3} \right)$$

$$y(t) = \frac{1}{4}cost + \frac{1}{8}sint - \frac{1}{16}e^{-t}(4cosh2t - 3sinh2t).$$

(d) Given that
$$y'' + 6y' + 8y = e^{-3t} - e^{-5t}$$
.....(1), $y(0) = 0$, $y'(0) = 0$

Taking Laplace transform both sides of equation (1) and apply the formula for the derivatives ,we get $L(y''+6y'+8y)=L(e^{-3t}-e^{-5t})$

$$\Rightarrow s^{2}L\{y(t)\} - sy(0) - y'(0) + 6[sL\{y(t)\} - y(0)] + 8L\{y(t)\}$$

$$= \frac{1}{s+3} - \frac{1}{s+5}$$

$$\Rightarrow (s^{2} + 6s + 8)L\{y(t)\} = \frac{1}{(s+5)(s+3)}$$

$$\Rightarrow L\{y(t)\} = \frac{1}{(s+5)(s+3)(s+2)(s+4)}$$

$$\{y(t)\} = L^{-1}\left(\frac{1}{(s+5)(s+3)(s+2)(s+4)}\right)$$

Using partial fraction, we get

$$\frac{1}{(s+2)(s+3)(s+4)(s+5)} = \frac{A}{s+2} + \frac{B}{s+3} + \frac{C}{s+4} + \frac{D}{s+5}$$

$$1 = A(s+3)(s+4)(s+5) + B(s+2)(s+4)(s+5) + C(s+2)(s+3)(s+5) + D(s+3)(s+4)(s+2)$$
.....(2)

Puts = -2, s = -3, s = -4 and s = -5 inequation(2)respectively we get the value of A,B,C & D.

$$A = \frac{1}{6} , \quad B = \frac{-1}{2} , C = \frac{1}{2} , D = \frac{-1}{6}$$
Therefore $y(t) = L^{-1} \left(\frac{1}{(s+2)(s+3)(s+4)(s+5)} \right) =$

$$\frac{1}{6} L^{-1} \left(\frac{1}{s+2} \right) - \frac{1}{2} L^{-1} \left(\frac{1}{s+3} \right) + \frac{1}{2} L^{-1} \left(\frac{1}{s+4} \right) - \frac{1}{6} L^{-1} \left(\frac{1}{s+5} \right)$$

$$y(t) = \frac{1}{6} e^{-2t} - \frac{1}{2} e^{-3t} + \frac{1}{2} e^{-4t} - \frac{1}{6} e^{-5t}$$