

VIRTUAL SCREENING IN DRUG DISCOVERY

Centurion UNIVERSITY

Chinmaya Chidananda Behera

Asst. Professor (Pharmaceutical Chemistry) School of Pharmacy and Life Sciences Centurion University, Bhubaneswar

Challenge in Drug Discovery

Choosing the right molecule

- Goal: to find a lead compound that can be optimized to give a drug candidate
 - Optimization: using chemical synthesis to modify the lead molecule in order to improve its chances of being a successful drug.
- The challenge: chemical space is vast
 - Estimates vary
 - Reymond et al. suggest there are ~1 billion compounds with up to 13 heavy atoms
 - There are ~65 million known compounds (example UniChem, PubChem)
 - A typical pharmaceutical compound collection contains ~1-5 million compounds
- High throughput screening allows large (up to 1 million) numbers of compounds to be tested
 - But very small proportion of "available" compounds
 - Large scale screening is expensive
 - Not all targets are suitable for HTS
 - Blum, L.C. & Reymond, J.-Iouis . J. Am. Chem. Soc. 131, 8732-8733(2009).

Virtual Screening

Depending upon structural and Bioactvity data available :

- One or more actives molecule known perform similarity searching.
- Several active known try to identify a common 3D pharmacophore and then do 3D database search.
- Reasonable number of active and inactive known train a machine learning model.
- 3D structure of protein known use protein ligand docking.

Hybrid Virtual Screening

Centurion UNIVERSITY Shaping Lives... Empowering Communities. Mostly, people in pharmaceutical industry does not follow a specific route they follow a hybrid of methods as discussed in previous slide.

Drug Like Properties

Drug-like properties are an integral element of drug discovery projects. Properties of interest to discovery scientists include the following:

Structural properties

Hydrogen Bonding, Polar Surface area , Lipophilicity, Shape , Molecular Weight, Reactivity, pk_a

Physicochemical Properties

Solubility, Permeability, Chemical Stability

Biochemical Properties

Metabolism(Phase 1 and 2), Protein and tissue binding, transport

Pharmacokinetics(PK) and toxicity

Clearance, Half-life, Bioavailability, Drug-Drug Interaction, LD₅₀

Leadlike & Druglike

Leadlike

Centurion

VERSITY

Empowering Communities.

- Molecular weight (MW) = 200–350 (optimization might add 100–200)
- clogP <1.0–3.0 (optimization might increase by 1–2 log units)
- Single charge present (secondary or tertiary amine preferred)
 Importantly, exclude chemically reactive functional groups ,'promiscuous inhibitors', 'frequent hitters' and warheads
- Non-substrate peptides are suitable.

Druglike

- -Importantly, exclude chemically reactive functional groups ,'promiscuous inhibitors', 'frequent hitters' and warheads
- MW < 500
- cloP < 5
- H-bond donors < 5
- Sum of N and O (H-bond acceptors) < 10
- Polar surface area < $140 A^2$
- Number of rotatable bonds <= 10

Filtering molecules using structural properties

Basic Washing –

Removing Salts & Unwanted Elements
 Filter out cationic atoms: Ca2+, Na+, etc.

Filter out metals:

Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd

Often the salt "filter" = keeping the largest molecule in the sdf entry.

- ALLOWED_ELEMENTS H, C, N, O, F, P, S, CI, Br, I
- Check proper Atom Types by adding hydrogen and checks if O, N, C valences are correct.
- Check formal charge

Filter out Reactives (false positives for proteins)

X = F, Ci, Br, I, tosyl, mesyl R = alkyl, aryl, heteroalkyl, heteroaryl X 0 Sulfonyl Acyl halides Alkyl halides Anhydrides Halopyrimidines α-halocarbonyl halides compounds 1, 2-dicarbonyl Aldehydes Aliphatic ketones Perhalo ketones Aliphatic esters Imines compounds R Epoxides Aziridines Thioesters Sulfonate esters Phosphonate esters Michael acceptors and β-heterosubstituted carbonyl compounds Heteroatom-heteroatom single bonds Drug Discovery Today Figure 3. An abridged list of the functional groups responsible for electrophilic proteinreactive false positives [2].

Centurion UNIVERSITY

Empowering Communities.

Shaping Lives.,

Rishton, G.M. "Nonleadlikeness and leadlikeness in biochemical screening" Drug Discovery Today (2003) 8, 86-96

Filter out: Synthesis Intermediates, Chelators

'Warhead' agents - functional groups which shows high reactivity to proteins due which there is high attrition rate in drug development.

PAINS Filter

- PAINS = "Pan-Assay Interference Compounds"
- Problematic scaffolds has cost their Institute time and \$\$

New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. (2010) 53, 2719-2740

Rules-of-Thumb for Hit Selection & Lead Optimization

parameter	rules-of-thumb	comment	programs	key references
oral bioavailability ("rule of 5")	$MW \le 500 Da$ ClogP ≤ 5	violation of these limits decreases or al bioavailability	Biobyte ClogP ^{85,86} or ACD LogP v4.0 ¹²	Lipinski (1997) ¹
(144 01 5)	H-bond donors ≤ 5 #(N + O) ≤ 10	decrement of all production of the	A COMPANY OF A COMPANY	Wenlock (2003)12
oral bioavailability	Nrot ≤ 10 PSA $\leq 140 \text{ Å}^2$	violation of these limits decreases oral bioavailability	tPSA ⁶² (nitrogen and oxygen only)	Veber (2002)13
oral bioavailability ("Golden Triangle")	MW ≤ 500 variable LogD	violation of these limits decreases oral bioavailability	experimental LogD	Johnson (2009)35
	(LogD range: 0 - 5)			201 S. (2013)
toxicity	$ClogP \le 3$ $PSA \ge 75 Å^2$	violation of these limits increases the risk of toxicity	Biobyte ClogP v4.3 ⁸³ tPSA ⁶² (nitrogen and oxygen only)	Hughes (2008) ²
toxicity	LLE ≥ 5	low ligand-lipophilicity efficiency can lead to increased promiscuity	Biobyte ClogP ⁸⁵	Leeson (2007) ¹⁹ Leach (2006) ²³
membrane permeability	$PSA \leq 120 \text{ Å}^2$	violation of this limit decreases membrane permeability	Quanta 3D (nitrogen and oxygen only)	Kelder (1999) ⁶¹
membrane permeability	$MW \le 500$ variable LogD (LogD range: $0.5 - 5$)	violation of these limits decreases membrane permeability	ACD PhysChem Batch ⁸⁷ or AZlogD ⁸⁸	Bhal (2007) ³⁴ Waring (2009) ³⁶
blood-brain barrier penetration	$PSA \le 70 \text{ Å}^2$	violation of this limit decreases brain penetration	Quanta 3D (nitrogen and oxygen only)	Kelder (1999) ⁶¹
solubility	$Fsp3 \ge 0.4$	increased fraction of sp3 hybridized carbons (Fsp3) increases solubility	Pipeline Pilot 7.5	Lovering (2009) ⁵¹
general "developability"	number of aromatic rings ≤ 3	increase in aromatic ring count decreases solubility and increases protein binding	none listed	Ritchie (2009) ⁵²

Muchmore, SW et al. "Cheminformatic Tools for Medicinal Chemists" J. Med. Chem. (2010) 53, 4830 - 4841

Similarity Searching

What is it ??

Chemical, pharmacological or biological properties of two compounds match.

The more the common features, the higher the similarity between two molecules.

Chemical

The two structures on top are chemically similar to each other. This is reflected in their common sub-graph, or scaffold: they share 14 atoms

Pharmacophore

The two structures above are less similar chemically (topologically) yet have the same pharmacological activity, namely they both are Angiotensin-Converting Enzyme (ACE) inhibitors

What is required for a similarity search?

- A Database SQL or NoSQL (Postgres, MySQL, MongoDB) or flat file of descriptors eg: ChemFP
- Chemical Cartridge to generate fingerprints(descriptors) for molecules (RDKit, openbabel)
- Similarity function to calculate similarity(Jaccard, Dice, Tversky) this can be written in c,c++ or python as a function inside SQL databases.

3D based similarity

- Shape-based ROCS (Rapid Overlay of Chemical Structures) Silicos-it.com (Shape it)
- Computationally more expensive than 2D methods
- Requires consideration of conformational flexibility
 - Rigid search based on a single conformer
 - Flexible search
 - Conformation explored at search time
 - Ensemble of conformers generated prior to search time with each conformer of each molecule considered in turn
 - How many conformers are required?

THANK YOU