# **Transmembrane Protein**

#### **Transmembrane Protein**

- Every protein assumes a specific shape and performs a specific function.
- Of these proteins that are found embedded in cellular membranes, called as membrane proteins, are of particular importance because they form targets for over 60% of drugs on the market.
- Membrane proteins are crucial for many biological functions and have become attractive targets for pharmacological agents.
- It is seen that 20% 30% of all the proteins in any organism are membrane proteins.

### **Membrane Proteins**



- A membrane protein is a protein molecule that is attached to, or associated with the membrane of a cell or an organelle.
- More than half of all proteins interact with membranes.

### **Membrane Structure**



## **Membrane Proteins**

- Biological membranes consists of a phospholipid bilayer and a variety of proteins that accomplish vital biological functions.
- Structural proteins are attached to microfilaments in the cytoskelection which ensures stability of the cell.
- Cell adhesion molecules allow cells to identify each other and interact.
- Membrane enzymes produce a variety of substances essential for cell function.
- Membrane receptor proteins serve as connection between the cell's internal and external environments.
- Transport proteins play an important role in the maintainance of concentration of ions.

#### **Transmembrane Protein Prediction**

- Transmembrane protein plays important role in the life activity of the cells.
- Transmembrane  $\alpha$ -helix bundle is a common structural feature of membrane proteins
- Bent helices are required for appropriate helix-helix and protein-protein interaction in membrane protein complexes.
- Determination of kink in a helix is a computationally intensive task.
- Thus the functions of transmembrane proteins are attributed by kinks (bends) in helices.
- Therefore, knowledge of kink and its prediction from amino acid sequences is of great help in understanding the function of proteins.
- Hence it is a computationally intensive task which is useful in drug design and development
- The best current prediction methods appear to correctly predict all membrane helices for about 50%–70% of all proteins, and to falsely predict membrane helices for about 10% o all globular proteins.

#### **TMHMM Server v. 2.0 Prediction of transmembrane helices in proteins**

Services are gradually being migrated to https://services.healthtech.dtu.dk/.

A Not secure | cbs.dtu.dk/services/TMHMM/ С  $\rightarrow$ 

DTU Bioinformatics Department of Bio and Health Informatics

1HMM Server v. 2.0

diction of transmembrane helices in proteins

BMISSION

mission of a local file in FASTA format (HTML 3.0 or higher) oose File No file chosen

by pasting sequence(s) in FASTA format:

out format:

Extensive, with graphics

Extensive, no graphics

One line per protein

er options: Jse old model (version 1)

bmit Clear

trictions:

nost 10,000 sequences and 4,000,000 amino acids per submission; each sequence not more than 8,000 amino acids.

infidential and will be delated after processing

fidentiality:



\*

Instructions

Please try out the new site.

## **TMpred**

#### **Prediction of Transmembrane Regions and Orientation**

| embnet.vital-it.ch/software/TN           | MPRED_form.html                                                                                                                                                                                                                                                                                                                                |   |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| EXPASy<br>Bioinformatics Resource Portal | TMpred                                                                                                                                                                                                                                                                                                                                         | н |
|                                          | Prediction of Transmembrane Regions and Orientation                                                                                                                                                                                                                                                                                            |   |
|                                          | The TMpred program makes a prediction of membrane-spanning regions and their orientation. The algorithm is based on the statistical analysis of TMbase, a database of naturally occurring transmembrane proteins. The prediction is made using a combination of several weight-matrices for scoring.                                           |   |
|                                          | <ul> <li>K. Hofmann &amp; W. Stoffel (1993)</li> <li>TMbase - A database of membrane spanning proteins segments</li> <li>Biol. Chem. Hoppe-Seyler 374,166</li> </ul>                                                                                                                                                                           |   |
|                                          | For further information see the TMbase documentation.                                                                                                                                                                                                                                                                                          |   |
|                                          | <ul> <li>Usage: Paste your sequence in one of the supported formats into the sequence field below<br/>and press the "Run TMpred" button.</li> <li>Make sure that the format button (next to the sequence field) shows the correct format<br/>Choose the minimal and maximal length of the hydrophic part of the transmembrane helix</li> </ul> |   |
|                                          | Output format html v minimum 17 v maximum 33 v                                                                                                                                                                                                                                                                                                 |   |
|                                          | Query title (optional)                                                                                                                                                                                                                                                                                                                         |   |
|                                          | Input sequence format                                                                                                                                                                                                                                                                                                                          |   |
|                                          | Query sequence:<br>or ID or AC or GI<br>(see above for valid<br>formats)                                                                                                                                                                                                                                                                       |   |
|                                          | Run TMpred Clear Input                                                                                                                                                                                                                                                                                                                         |   |

