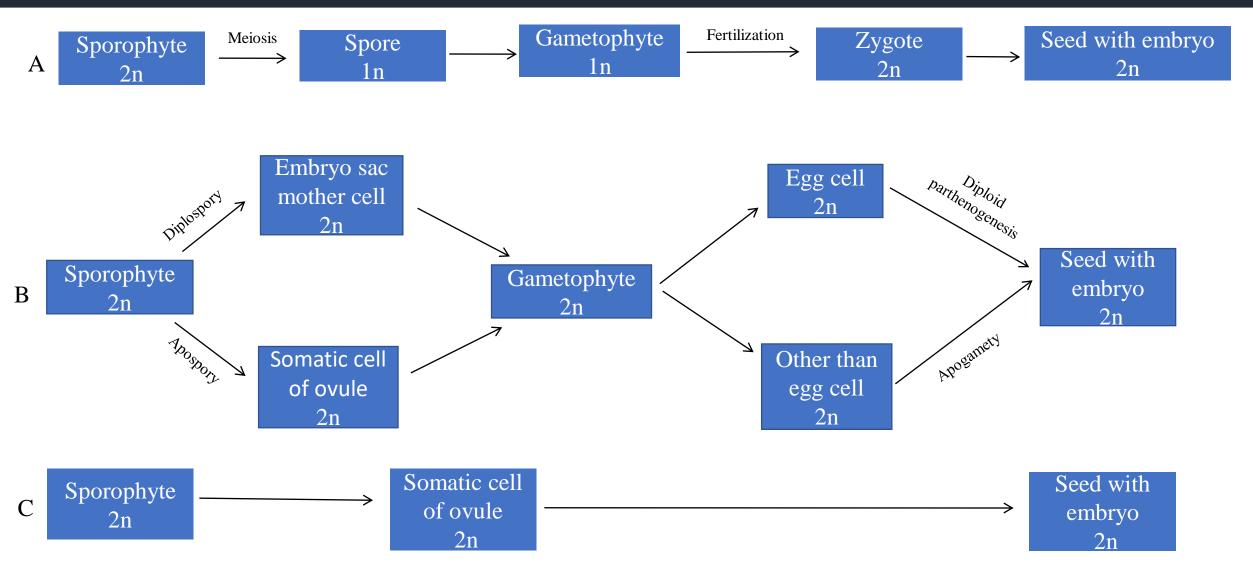


Session118: Seed Production in Apomictic Grasses

Introduction

- ➤In more than 33 families of angiosperms (Carman, 1997), including the grass family Poaceae, seeds also form asexually by apomixis (apo= without, mixis=union)
- Among the grasses it prevails in polyploid species of Paspalum, Panicum, Poa, Bothriochloa, Dichanthium, Eragrostis, Pennisetum and Cenchrus (Bashaw, 1975).
- ➤ **Apomixis** is a clonal reproductive mode that involves avoidance of the process of meiosis, fertilization-free embryo development (parthenogenesis), and endosperm formation with or without fertilization of the polar nuclei (Koltunow, 1993)
- Apomixis is synonymous with agamospermy i.e. seed formation without fertilization of the egg cell
- ➤ Burton (1948) first reported that **bahiagrass** reproduced by obligate apomixis after making controlled crosses and the F1 progeny were classified through visual progeny tests carried out on a few F2 plants, and chromosome counts
- \triangleright Panicum maximum (guinea grass) is a model crop for apomixis and polyploidy studies. It is predominantly tetraploid (2n = 32) and is characterized by gametophytic apomixis, Panicum-type apospory and pseudogamous endosperm development

TYPES OF APOMIXIS AND DEFINITIONS


Diplospory: a non-reduced embryo-sac develops from an archespore cell (embryo-sac mother cell) through omission or restitution of meiosis

Apogamety: egg cell develops parthenogenetically into an embryo, or another cell of the embryo-sac divides and develops into an embryo

Apospory: the non-reduced embryo-sac develops from a somatic cell of the nucellus or the integument instead of the embryo-sac mother cell

Adventitious or nucellar embryony: the embryo develops directly from the sporophytic tissue, without formation of a gametophyte

Modes of agamospermous reproduction

A. Normal sexual life cycle; B. Gametophytic apomixis & C. Adventitious embryony

Development of Apomictic lines

Apomictic lines can be developed by following three different approaches:

- 1. Gene transfer from wild species
- 2. Induce mutation
- 3. Selection of Apomictic recombinants from interspecific crosses

Production and Maintenance of Apomictic Hybrid

➤In case where apomixis is dominant, a sexually reproducing line is used as the female parent and an obligate apomictic line is used as male parent to produce the hybrid that is apomictic

The hybrid will produce only apomictic seeds, which are used for maintenance, multiplication and cultivation of the hybrid variety

Ex: Buffel grass and Bahia grass

➤In case of facultative apomixis (Ex: Kentucky blue grass and Guinea grass), at least some of the hybrids may be highly apomictic and used for fixation of heterosis.

Apomictic line Sexually reproducing line (Male parent) (Female parent) **Apomictic hybrid** Maintained and multiplied through seed

Problems in utilization of apomixis

- ➤ Apomixis is very complicated
- Estimation of the level of apomixix in case of facultative apomixis is tedious and time consuming
- ➤ In case of facultative apomixis, the proportion of sexual reproduction is affected by environmental factors
- The genetic basis of apomixis is not clear in most cases

