is the process of constructing a curve,
or mathematical function, that has the best fit to a
series of data points, possibly subject to
constraints.

* Itis a statistical technique use to drive coefficient
values for equations that express the value of
one(dependent) variable as a function of another
(independent variable)



What is curve fitting




Interpolation & Curve fitting
ekt
* In many application areas, one is faced with the test
of describing data, often measured, with an analytic

function. There are two approaches to this problem:-

* 1. In Interpolation, the data is assumed to be correct
and what is desired is some way to descibe what
happens between the data points.

* 2. The other approach is called curve fitting or
regression, one looks for some smooth curve that
“best fits'' the data, but does not necessarily pass
through any data points.

fppt.com
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Engineering applications of curve fitting technique
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Some important relevant parameters

In engineering, two types of applications are encountered:

Predicting values of dependent
variable, may include extrapolation beyond data
points or interpolation between data points.

Comparing existing mathematical
model with measured data.
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Mathematical Background (cont’d)

%5

. Representation of spread by the square of
the standard deviation.

. Has the utility to quantify

the spread of data.
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l Least square method

TS

« The Method of Least Squares is a procedure to determine

the best fit line to data; the

proof uses simple calculus and linear algebra. The basic
problem is to find the best fit

straight line y = ax + b given that, forn €{1, ..., N}, the
pairs (xn, yn) are observed.

The method easily generalizes to finding the best fit of the
form

y=alfl(x)+ - - - + cKfK(x);

it is not necessary for the functions fk to be linearly in x —
all that is needed is that y is to

be a linear combination of these functions.



Least square method

N e —=—"




. Least Squares Regression
Linear Regression
Fitting a straight line to a set of paired observations:
(X3 Vi) (X3 Yohyews (X V).
y=apta;x+e
a, - slope
a,- Intercept

e - error, or residual, between the model and the
observations

fppt.com






)ear Regression: Criteria for a “Best™
A
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Linear Regression: Criteria for a “Best” Fit

fppt.com



Linear curve fltt:ng (Stralght line)?

* Given a set of data point (xi, f(xi)) find a curve that best
captures the general trend

* Where g(x) is approximation function




* Let g(x)=ao0+aix

T Irry to ffit a straight line

h the data
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Llnear curve flttlng(stralght line)

TR ——
* Erroris a function of ao, a1

For error (E) to have extreme value:
OE

o
é‘E
531 =

* Two equation of two unknowns , solve to get
a0,al



Linear Regression: Least Squares Fit

"

S, =2 ¢ =2 (v, measured — y,,model)” = i{.}:— —ay—ax,)’
. i=| =]

i=l i

Yields a unique line for a given set of data.



Linear Regression:
Determination of a, and a,

as,
ca

(]

——22“[{}J —a,x;)x, ] 0

Eﬂl
0= Zy,- "Zau —Za,.r,.
0= yX;,—Y.a.x%—) ax;

L=-23 (v, —-a,—-ax,)=0




I Linear Regressio: |
Determination of ao and al




ay + ax;




Error Quantification of Linear Regression
| A—

* Total sum of the squares around the mean for
the dependent variable, y, is S,

* Sum of the squares of residuals around the
regression line is S,

fppt.com



* The table blew gives the temperatures T in C and
Resistance R in Q of a circuit if R=ao+ a1T

* Find the values of ao and a:



10

20

30

40 . 1600 824

50 I 2500 1040

60 21 3600 1260

in =210 Z_}ri =123.1 Zn‘ﬂ = 910( inyi = 4341




* baot+210a1=123.1 a0=19.867
* 21020+9100a:1=4341 a:1=0.01857
* g(x)=19.867+0.01857*T



. Least Squares Fit of a Straight Line:
Example

="
Fit a straight line to the x and y values in the

following Table:
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Least Squares Fit of a Straight Line: Example

Y =0.07142857 + 0.8392857 x



Least Squares Flt Df a Stralght-Line Example

_(Error Analysis)
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Least Squares; Fit of a Straight Line: Example

« The standard deviation (quantifies the
spread around the mean):

*The standard error of estimate (quantifies the spread
around the regression line)

Because § < S ,the linear regression model has good fitness
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Algorithm for linear regression
W

SUB Regress(x, y. n. al. a0, syx. rZ)

sumx = 0: sumxy = 0: st = 0
sumy = 0: sumxZ2 = 0: sr =0
oo i=1.n

SUMX = Sumx + Xy

sumy = sumy -+ ¥y

SUMXY = Sumxy + X%y

SUMxe = SuUmxe =+ X;*x;
END DO
XN = sSuUmx/n
ym = sumy/n
al = (n*sumxy — sumx*sumy)l/(n*sumx2 — sumx*sumx)
all = ym — al*xm
D0 i= 1. n

st = st + (y; — ym)¥F

sr= sr + (y; — al*x; — a0)’
END DO

syx = (srffn — 2))43
ré = (st — srl/st

END Regress



Linearization of Nonlinear Relationships

® The relationship between the dependent and
independent variables is linear.

® However, a few types of nonlinear functions can
be transformed into linear regression problems.

» The exponential equation.
» The power equation.
» The saturation-growth-rate equation.



Linearization of Nonlinear Relationships

1. The exponential equation.
. ‘h =l —

Intercept = In a,

L

Iny=Ina +bx
I | |

¥ =
y* = a, + a, X



Linearization of Nonlinear Relationships
Zi_leowere uation

log x
Intercept = log u,

logy=loga, +b,logx

y* = a, + a; x*



Linearization of Nonlinear Iielatinships
3. The saturation-growth-rate equation

Slope = b,

Intercept = log 1/a,

s




Fit the following Equation:

To the data in the following table:
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Sum

¥i
0.5
17
3.4
5.7
8.4

19.700

X* =Log(X)
0.0000

0.2010
04771
0.6021

0.6950

2.078

¥*=Log(¥)
-0.3010
0.2304
0.5315
0.7559
0.9243

2.141

ey
0.0000
0.0694
0.2536
0.4551
0.6460

1.424

X*A2
0.0000
0.0906
0.2276
0.3625
0.4886

1.169



Linearization of Nonlinear Functions: Example

N —

log y=-0.334+1.75log x




