Fisher's Least Significant Difference Test

- To test which population means are significantly different
 - e.g.: $\mu_1 = \mu_2 \neq \mu_3$
 - Done after rejection of equal means in randomized block ANOVA design
- Allows pair-wise comparisons
 - Compare absolute mean differences with critical range

$$\mu_1 = \mu_2$$

 μ_3

Fisher's Least Significant Difference (LSD) Test

$$LSD = t_{\alpha/2} \sqrt{MSW} \sqrt{\frac{2}{b}}$$

where:

 $t_{\alpha/2}$ = Upper-tailed value from Student's t-distribution for $\alpha/2$ and (k-1)(n-1) degrees of freedom

MSW = Mean square within from ANOVA table

b = number of blocks

k = number of levels of the main factor

Fisher's Least Significant Difference (LSD) Test

$$LSD = t_{\alpha/2} \sqrt{MSW} \sqrt{\frac{2}{b}}$$

Is
$$\left| \overline{\mathbf{x}}_{i} - \overline{\mathbf{x}}_{j} \right| > LSD$$
?

If the absolute mean difference is greater than LSD then there is a significant difference between that pair of means at the chosen level of significance.

$$\left|\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right|$$

$$|\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_3|$$

$$\left|\overline{\mathbf{x}}_{2}-\overline{\mathbf{x}}_{3}\right|$$

etc...