

Marker-assisted selection in plant breeding

Marker Assisted Selection

- Marker-assisted selection refers to the manipulation of genomic regions that are involved in the expression of traits through DNA markers.
- The principal concept on which Marker Assisted Selection (MAS) works on is that the presence of a gene from the presence of a marker must be tightly linked to the gene of interest.
- If the marker and the gene are located far apart then the possibility of transmitting together to the progeny individuals will be reduced.
- The important traits that are most looked for are tolerance to abiotic stresses, resistance to pathogen, insects and nematodes, quality parameters and quantitative traits.

population development

parental selection and hybridization

QTL mapping

linkage map construction phenotypic evaluation for trait(s) QTL analysis

QTL validation

confirmation of position and effect of QTLs
verification of QTLs in independent
populations and testing in different genetic
backgrounds
fine mapping

marker validation

testing of markers in important breeding material identification of 'toolbox' of polymorphic markers

marker-assisted selection

• Pre-Requisites:

There are certain pre-requisites for marker assisted selection such as:

- (i) a tight linkage between molecular marker and gene of interest (1cM or less)
- (ii) high heritability of the gene of interest.
- (iii) An efficient means of screening large populations for molecular markers should be available.
- (iv) High reproducibility across laboratories.
- (v) It should be cost effective.

Markers Used:

MAS makes use of various types of molecular markers. The most commonly used molecular markers include:

- o amplified fragment length polymorphisms (AFLP),
- o restriction fragment length polymorphisms (RFLP),
- o random amplified polymorphic DNA (RAPD),
- o simple sequence repeats (SSR) or micro satellites,
- o single nucleotide polymorphisms (SNP), etc.

The use of molecular markers differs from species to species also.

Advantages of MAS

- Accuracy,
- Rapid Method,
- Non-transgenic Product,
- Identification of Recessive Alleles,
- Early Detection of Traits,
- Screening of Difficult Traits,
- Highly Reproducible,
- Small Sample for Testing,
- Gene Pyramiding
- Permits QTL Mapping

Table 1. Examples of marker-assisted backcrossing in cereals.

species	trait(s)	gene/QTLs	foreground selection	background selection	reference
barley	barley yellow dwarf virus	Yd2	STS	not performed	Jefferies et al. (2003)
barley	leaf rust	Rphq6	AFLP	AFLP	van Berloo et al. (2001)
barley	stripe rust	QTLs on 4H and 5H	RFLP	not performed	Toojinda et al. (1998)
barley	yield	QTLs on 2HL and 3HL	RFLP	RFLP	Schmierer et al. (2004)
maize	corn borer resistance	QTLs on chromosomes 7, 9 and 10	RFLP	RFLP	Willcox et al. (2002)
maize	earliness and yield	QTLs on chromosomes 5, 8 and 10	RFLP	RFLP	Bouchez et al. (2002)
rice	bacterial blight	Xa21	STSa	RFLP	Chen et al. (2000)
rice	bacterial blight	Xa21	STS ^a	AFLP	Chen et al. (2001)
rice	bacterial blight	xa5, xa13 and Xa21	STS, CAPS	not performed	Sanchez et al. (2000)
rice	bacterial blight	xa5, xa13 and Xa21	STS	not performed	Singh et al. (2001)
rice	bacterial blight+ quality	xa13, Xa21	STS and SSR	AFLP	Joseph et al. (2004)
rice	blast	Pi1	SSR	ISSR ^b	Liu et al. (2003)
rice	deep roots	QTLs on chromosomes 1, 2, 7 and 9	RFLP and SSR	SSR	Shen et al. (2001)
rice	quality	waxy	RFLP ^a	AFLP	Zhou et al. (2003a)
rice	root traits and aroma	QTLs on chromosomes 2, 7, 8, 9 and 11	RFLP and SSR	RFLP and SSR	Steele et al. (2006)
rice	submergence tolerance	Sub1 QTL	phenotyping and SSR ^a	SSR	Mackill et al. (2006)
rice	tolerance, disease resistance, quality	Subchr9 QTL, Xa21, Bph and blast QTLs and quality loci	SSR and STS	not performed	Toojinda et al. (2005)
wheat	powdery mildew	22 Pm genes	phenotyping	AFLP	Zhou et al. (2005)

^a Indicates recombinant selection performed to minimize linkage drag around target locus.
^b ISSR and inter SSRs.

Few Papers On Marker Assisted Selection

Phil. Trans. R. Soc. B (2008) 363, 557-572 doi:10.1098/rstb.2007.2170 Published online 22 August 2007

Marker-assisted selection: an approach for precision plant breeding in the twenty-first century

Bertrand C. Y. Collard and David J. Mackill*

Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI). DAPO Box 7777, Metro Manila, The Philippines

trends in plant science update

Journal of Experimental Botany, Vol. 58, No. 2, pp. 351-360, 2007 Integrated Approaches to Sustain and Improve Plant Production under Drought Stress Special Issue

doi:10.1093/jxb/erl214 Advance Access publication 6 December, 2006

SPECIAL ISSUE PAPER

Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives

technical focus

Marker-assisted selection: new tools and strategies

Jean-Marcel Ribaut 1,* and Michel Ragot2

- CIMMYT, Apartado Postal 6-641, 06600 Mexico DF, Mexico
- ² Syngenta Seeds SAS, 12 chemin de l'Hobit, F31790 St-Sauveur, France

Markers and marker techniques

Identification and access to allelic variation of a sequenced gene that affects the plant phenotype.

The DNA sequence or parts of it are used for searching new allelic variants of the same

Allele mining

	(resistance) gene.		
Diagnostic marker	Markers that could be used in multiple genetic backgrounds, ideally the marker-trait association is valid in all germplasm.		
Genomic selection	Selection based on genomic breeding values that are calculated as the sum of the effects of dense genetic markers, or haplotypes of these markers, across the entire genome, thereby potentially capturing all QTL that contribute to variation in a trait and similarly to multiple traits.		
MABC: marker-assisted backcrossing	A molecular marker is used for indirect selection during backcrossing of the gene/QTL of interestinto elite material.		
Mapping	Assigning markers, genes, and/or QTL in order, indicating the relative distances among them, and assigning them to their linkage groups on the basis of their recombination values from all pairwise combinations.		
Molecular marker	Specific fragments of DNA with a known location on the chromosome that can be identified within the whole genome and reveal neutral sites of variation. Markers that are in close linkage with a particular gene/QTL of interest can be used for MAS.		
MAS: marker-assisted selection	A marker (morphological, biochemical, or one based on DNA/RNA variation) is used for indirect selection of a gene/QTL.		
Perfect marker	A marker without recombination to the gene of interest, ideally drawn directly from the gene sequence.		
QTL: quantitative trait locus/loci	Location of a gene that affects a trait measured on a quantitative (linear) scale. QTL are identificated via statistical procedures that integrate genotypic and phenotypic data.		
SNP: single nucleotide polymorphism	DNA sequence variation occurring when a single nucleotide in a shared sequence differs between members of a biological species or paired chromosomes in an individual.		
SSR: single sequence repeat	Also called microsatellite. It consists of a specific sequence of DNA nucleotides that contain tandem repeats, e.g., GTGTGTGTGTGT would be referred to as (GT) ₆ . Alleles at a specific locus can differ in the number of repeats.		
AT .			

Limitations of MAS

- MAS is a not cost effective as it requires well equipped laboratory.
- MAS requires well trained manpower for handling of sophisticated equipment.
- The detection of various linked DNA markers (AFLP, RFLP, RAPD, SSR, SNP etc.) is a difficult, laborious and time consuming task.
- MAS sometimes involves use of radioactive isotopes in labeling of DNA, which may lead to serious health hazards.
- It has been reported that MAS may become less efficient than phenotypic selection in the long term.