# MANGO

Botanical Name: Mangifera indica,

Family: Anacardiaceae;

Chromosome Number: 2n=40, n=20

Origin: Indo-Burma region

#### **BOTANY**

- ➤ Medium to large (9-31 m) evergreen tree: Open or dense symmetrical canopy;
- >Long tap root and dense fibrous roots;
- > Lanceolate shaped leaves-simple and leathery;
- ➤ Inflorescence —panicle (male & hermaphrodite flowers); The flowers are produced in panicles which are about ten to twelve inches in length. hermaphrodite flower is male and female flowers in the same flower panicle.
- >Fruit —drupe, Shape (round, oval or ovoid-oblong), size (60g-2.3kg);
- >single seeded may be mono or polyembryonic.







## USES

- Unripe Fruits: pickles, chutneys and amchur.
- Ripe fruits: table fruits, squash, nectar, jam, mango leather and toffee.
- Leaves: tender leaves are used as vegetables in Java, Philippines, fumes from burning leaves are used for relief from hiccups.
- Flowers: treating diarrhoea and chronic dysentery and also yield tannin, worship
- Bark: bark yields *mangiferine* and tannin, useful against diphtheria and rheumatism.
- Wood: furniture, flooring, packing boxes, match boxes, boats etc.
- Mangoes are full packed with vitamins, minerals and anti-oxidants and contain like all fruits very few proteins, fats and calories. They are perfect to replenish salts, vitamins and energy after physical exercise.
- Dietary fiber has a protective effect against degenerative diseases, especially with regards to the heart; may help prevent certain types of cancer, as well as lowering blood cholesterol levels.

# Scope and Importance for Mango Cultivation and its National Importance

Mango occupies about 36% of the total area and production share about 20.7% under fruits comprising of 25.16 lakh hectares.

Fresh mangoes and mango pulp are the important items of agriexports from India. India's main export destinations for mango are UAE, Bangladesh, UK, Saudi Arabia, Nepal, Kuwait, USA, Japan and other Middle East countries with a limited quantity being shipped to European market. Although, India is the largest mango producing country, accounting about 45% of world production, the export of fresh fruit is limited to Alphonso, Kesar and Dashehari varieties. India's share in the world mango market is about 15 percent. Mango accounts for 40 percent of the total fruit exports from the country. There is good scope for increasing the area and productivity of mango in the country.

## **Cultural Requirements of Mango Cultivation**

#### **Climate**

| ☐ Mango can be grown under both tropical and sub-tropical    |
|--------------------------------------------------------------|
| climate from sea level to 1400 m altitude, provided there is |
| no high humidity, rain or frost during the flowering period. |
| ☐ Places with good rainfall and dry summer are ideal for     |
| mango cultivation.                                           |
| ☐ It is better to avoid areas with winds and cyclones which  |
| may cause flower and fruit shedding and breaking of          |
| branches.                                                    |
| ☐ Localities which experience bright sunny days & relatively |
| low humidity during flowering are ideal.                     |

# CLIMATE

- Mango is a mainly tropical fruit crop.
- It can grow from sea level to about 1400 meters provided there is no high humidity, rain or frost during the flowering period.
- Temperature ranging from 24-30°C although it can grow as high as 48°C during the period of fruit development and maturity (if irrigation facility available).
- The most favourable temperature for growth of young mango plant is 25°C.
- Cold temperature limits the crop production.

#### Soil

- ☐ Mango can be grown on a wide range of soils from alluvial to laterite provided they are deep (minimum 6') and well drained and except black cotton soils.
- ☐ It prefers slightly acidic soils (pH 5.5 to 7.5).

Saline and alkaline soils are not conducive to profitable mango cultivation.

# **Mango Variety**

| Alphonso     | Maharashtra, Goa, Karnataka, Gujarat, Himachal Pradesh, |
|--------------|---------------------------------------------------------|
|              | Tamil Nadu, Kerala                                      |
| Banganapalli | Andhra Pradesh, Kerala, Tamil Nadu, Karnataka, Odisha   |
| Bombay       | Bihar, Jharkhand, West Bengal, Odisha, Chhattisgarh,    |
| Green        | Madhya Pradesh,                                         |
|              | Uttarakhand, Uttar Pradesh, Assam                       |
| Chausa       | Uttar Pradesh, Uttarakhand, Punjab, Bihar, Jharkhand,   |
|              | Himachal Pradesh,                                       |
|              | Haryana, Jammu & Kashmir, Rajasthan, Delhi              |
| Dashehari    | Uttar Pradesh, Punjab, Uttarakhand, Bihar, Jharkhand,   |
|              | Gujarat, Rajasthan,                                     |
|              | Haryana, Odisha, Himachal Pradesh, Chhattisgarh, Madhya |
|              | Pradesh, Jammu & Kashmir, Delhi                         |
| Fazli        | Uttar Pradesh, Uttarakhand, Bihar, Jharkhand, Madhya    |
|              | Pradesh, Chhattishgarh, West Bengal                     |

| <b>Gulab Khas</b>  | Bihar, Jharkhand, Uttar Pradesh, Uttarakhand, West Bengal   |
|--------------------|-------------------------------------------------------------|
| Himsagar           | West Bengal, Bihar, Jharkhand, Odisha, Tripura, Mizoram     |
| Kesar              | Gujarat, Maharashtra                                        |
| <b>Kishen Bhog</b> | West Bengal, Bihar, Jharkhand, Rajasthan                    |
| Langra             | Uttar Pradesh, Punjab, Uttarakhand, Bihar, Jharkhand,       |
|                    | Odisha, West Bengal, Himachal Pradesh, Delhi, Chhattisgarh, |
|                    | Madhya Pradesh, Jammu & Kashmir, Haryana, Rajasthan,        |
|                    | Gujarat                                                     |
| Mankurad           | Goa, Maharashtra (Ratnagiri)                                |
| Neelum             | Andhra Pradesh, Tamil Nadu, Karnataka, Kerala, Gujarat      |
| Pairi              | Maharashtra, Karnataka, Kerala                              |
| Totapuri           | Andhra Pradesh, Karnataka, Tamil Nadu, Odisha, Gujarat      |
| Mulgoa             | Tamil Nadu, Kerala, Karnataka                               |
| Imam               | Andhra Pradesh, Kerala                                      |
| <b>Pasand</b>      |                                                             |

| <u></u>                                                                       |                                                                           |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Suvernarekha                                                                  | Andhra Pradesh                                                            |  |  |
| Vanraj                                                                        | Gujarat                                                                   |  |  |
| Zardalu                                                                       | West Bengal, Bihar                                                        |  |  |
| CISH (Centra                                                                  | l Institute for Subtropical Horticulture), Lucknow (Hybrid)               |  |  |
| Ambika                                                                        | Gujarat, Andhra Pradesh, Karnataka                                        |  |  |
| IARI (Indian A                                                                | gricultural Research Institute), New Delhi                                |  |  |
| Mallika                                                                       | Uttar Pradesh, Bihar, Delhi, Jharkhand, Karnataka, Andhra Pradesh, Tamil  |  |  |
|                                                                               | Nadu, Odisha, Uttarakhand, Haryana, Punjab, Rajasthan, Chhattisgarh,      |  |  |
|                                                                               | Madhya Pradesh, Kerala, Tripura, Jammu & Kashmir                          |  |  |
| Amrapali                                                                      | Uttar Pradesh, Bihar, Delhi, Jharkhand, Andhra Pradesh, Tamil Nadu,       |  |  |
|                                                                               | Odisha, Madhya Pradesh, Chhattisgarh, West Bengal, Punjab, Uttarakhand,   |  |  |
| Tripura, Nagaland, Assam, Karnataka, Himachal Pradesh, Haryana, Delhi,        |                                                                           |  |  |
|                                                                               | Rajasthan, Jammu & Kashmir                                                |  |  |
| Pusa Arunima Uttar Pradesh, Uttarakhand, Bihar, Jharkhand, Punjab, Andhra Pra |                                                                           |  |  |
|                                                                               | Tamil Nadu, Odisha, West Bengal                                           |  |  |
| Pusa Surya                                                                    | Uttar Pradesh, Bihar, Jharkhand, Andhra Pradesh, Tamil Nadu, Odisha, West |  |  |
|                                                                               | Bengal, Punjab, Uttarakhand                                               |  |  |
| Pusa Lalima                                                                   | Uttar Pradesh, Delhi, Punjab, Haryana                                     |  |  |
| Pusa Shreshth                                                                 | Uttar Pradesh, Bihar, Jharkhand, Andhra Pradesh                           |  |  |
| Pusa Pratibha                                                                 | All over India                                                            |  |  |
| Pusa Peetamber                                                                | Uttar Pradesh, Delhi, Punjab, Haryana, Rajasthan                          |  |  |
|                                                                               |                                                                           |  |  |

| BSKKV (Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli,    |                        |                                        |
|---------------------------------------------------------------|------------------------|----------------------------------------|
| Maharashtra                                                   |                        |                                        |
| Ratna                                                         | Maharashtra, Karnataka |                                        |
| Sindhu                                                        | Maharashtra, Gujarat   |                                        |
| IIHR (Indian Institute of Horticultural Research ), Bangalore |                        |                                        |
| Arka Aruna                                                    |                        | Andhra Pradesh, Karnataka, Tamil Nadu, |
| (Banganapalli x                                               |                        | Andaman & Nicobar Islands (Port Blair) |
| Alphonso)                                                     |                        |                                        |
| Arka Anmol (Alphonso                                          |                        | Andhra Pradesh, Karnataka, Tamil Nadu, |
| x Janardhan Pasand)                                           |                        | Andaman & Nicobar Islands (Port Blair) |
| Arka neelkiran                                                |                        | Andhra Pradesh, Karnataka              |
| (Alphonso x Neelum)                                           |                        |                                        |

# HYBRIDS OF MANGO

| Hybrids        | Parents                       | Released               | Characteristics                                                  |
|----------------|-------------------------------|------------------------|------------------------------------------------------------------|
| Amrapali       | Dashehari × Neelum            | I.A.R.I.,<br>Delhi     | Dwarf, regular                                                   |
| Mallika        | Neelum × Dashehari            | Do                     | Semi-vigorous,<br>regular, first released<br>hybrid of           |
| Pusa Arunima   | Amrapali × Sensation          | Do                     |                                                                  |
| Arka Aruna     | Banganpalli $\times$ Alphonso | I.I.H.R.,<br>Bangalore | Dwarf, regular, free from spongy tissue                          |
| Arka Anmol     | Alphonso × Janardan Pasand    | Do                     | Semi-vigorous,<br>fibreless, regular, free<br>from spongy tissue |
| Arka Neelkiran | Alphonso × Neelum             | Do                     | Good colour, fit for export, semi-vigorous                       |
| Arka Puneet    | Alphonso × Banganpalli        | Do                     | Free from spongy tissue, fibre less                              |

| Hybrids        | Parents                           | Released                                                       | Characteristics                                |
|----------------|-----------------------------------|----------------------------------------------------------------|------------------------------------------------|
| Aurumani       | Rumani × Mulgoa                   | (R.F.R.S.), (Regional fruit research station) Kodur, Karnataka | Prolific bearer,<br>fibreless, good<br>flavor  |
| Neeleshan      | <b>Neelum</b> × Baneshan          | Do                                                             |                                                |
| Neelgoa        | Neelum × Pera Mulgoa              | Do                                                             |                                                |
| Neeluddin      | <b>Neelum</b> × <b>Himayuddin</b> | Do                                                             |                                                |
| Swarnajehangir | Chinasuvarnarekha ×<br>Jehangir   | R.F.R.S.,<br>Anantapuram,<br>AP                                |                                                |
| Ratna          | Neelum × Alphonso                 | R.F.R.S.,<br>Vengurla, MH                                      | Regular, free from spongy tissue               |
| Sindhu         | Ratna × Alphonso                  | Do                                                             | Stone very thin,<br>free from spongy<br>tissue |
| Ruchi          | Neelum × Alphonso                 | Do                                                             | Regular,<br>Good for pickling                  |

| Hybrids           | Parents                         | Released                                                            |
|-------------------|---------------------------------|---------------------------------------------------------------------|
| Sundar Langra     | Langra × Sundar<br>Pasand       | Sabour Ag. College, Bihar                                           |
| Alfazli           | Alphonso $\times$ Fazli         | R.F.R.S., Sabour, Bihar                                             |
| Prabha Sankar     | Bombai × Kalapadi               | Do                                                                  |
| Mahmood Bahar     | Bombai × Kalapadi               | Do                                                                  |
| Neeleshan Gujarat | <b>Neelum</b> × <b>Baneshan</b> | R.F.R.S., Paria, Gujarat                                            |
| Neeleshwari       | Neelum $	imes$ Dashehari        | Do                                                                  |
| Neelphonso        | Neelum × Alphonso               | Do                                                                  |
| A.U. Rumani       | Rumani × Mulgoa                 | R.F.R.S., Sangareddy,<br>Telengana                                  |
| Manjira           | Rumani × Neelum                 | Do                                                                  |
| P.K.M. 1          | Chinasuvarnarekha ×<br>Neelum   | R.F.R.S., Periyakulam,<br>Tmilnadu                                  |
| Ambika            | Amrapali × Janardan<br>Pasand   | C. I.S.H.                                                           |
| Sai Sugandh       | Kesar × Totapuri                | M.P.K.V.(Mahatma Phule<br>Krishi Vidyapeeth), Rahuri,<br>Maharastra |

#### Major Mango Producing Belts in Odisha and Andhra Pradesh

Andhra Pradesh: Srikakulam, West Godavari, Guntur, Nellore, Prakasam, Chittoor, Kadapa, Anantapur, Kurnool, Mahabubnagar, Rangareddy, Medak, Nizamabad, vKarimnagar, Warangal, Adilabad, Khammam, Nalgonda.

Odisha: All Districts (Amrapali, Mallika), Koraput, Nabaranpur, Rayagade, Kendujhar (Keonjhar), Mayurbhanj, Kandhamal, Debagarh (Deogarh), Sundergarh, Sambalpur, Dhenkanal, Angul, Subarnapur (Sonepur), Cuttack, Puri, Gajapati.

## Commercial mango varieties grown in different states

| Andhra     | Banganapalli, Suvarnarekha, Neelum   |  |
|------------|--------------------------------------|--|
| Pradesh    | and Totapuri                         |  |
| Karnataka  | Alphonso, Totapuri, Banganapalli,    |  |
|            | Pairi, Neelum and Mulgoa             |  |
| Tamil Nadu | Alphonso, Totapuri, Banganapalli and |  |
|            | Neelum                               |  |

| Himaehal             | Chausa, Dashehari and Langra            |  |
|----------------------|-----------------------------------------|--|
| Pradesh              |                                         |  |
| Punjab               | Chausa, Dashehari and Malda             |  |
| <b>Uttar Pradesh</b> | Bombay Green, Chausa, Dashehari and     |  |
|                      | Langra                                  |  |
| West Bengal          | Fazli, Gulabkhas, Himsagar, Kishenbhog, |  |
|                      | Langra and Bombay                       |  |
|                      | Green                                   |  |
| Rajasthan            | Bombay Green, Chausa, Dashehari and     |  |
|                      | Langra                                  |  |
| Haryana              | Chausa, Dashehari, Langra and Fazli     |  |
| Bihar                | Bombay green, Chausa, Dashehari, Fazli, |  |
|                      | Gulabkhas, Kishen Bhog,                 |  |
|                      | Himsagar, Zardalu and Langra            |  |

| Gujarat     | Kesar, Alphonso, Rajapuri, Jamadar, |  |  |
|-------------|-------------------------------------|--|--|
|             | Totapuri, Neelum, Dashehari         |  |  |
|             | and Langra                          |  |  |
| Maharashtra | Alphonso, Kesar and Pairi           |  |  |
| Madhya      | Alphonso, Bombay Green,             |  |  |
| Pradesh     | Dashehari, Fazli, Langra and Neelum |  |  |

## State wise availability of mango in India

| Andhra Pradesh          | March to mid – August   |
|-------------------------|-------------------------|
| Bihar                   | May-end to mid-August   |
| Gujarat                 | April to July           |
| Haryana                 | June to August          |
| <b>Himachal Pradesh</b> | mid-June to mid- August |
| Karnataka               | May to July             |
| Madhya Pradesh          | Mid-April to July       |
| Maharashtra             | April to July           |
| Rajasthan               | May to July             |
| Tamil Nadu              | April to August         |
| <b>Uttar Pradesh</b>    | Mid-May to August       |
| West Bengal             | May to August           |

## POLYEMBRYONIC CULTIVARS

- Bappakai
- Chandrakaran
- Goa
- Kurukkan
- Olour
- Vellaiculamban
- Nakkare

- Bellary
- Kasargod
- Mazagaon
- Nileswar Dwarf
- Salem

### **SUCKING MANGO CULTIVARS**

- Small fruited,
- Highly fibrous types
- Can not be sliced easily

#### Ex:

- Gaurjit
- Safeda Jauhari
- Sukul
- Sinduri
- Yakuti
- Gilas
- Mithawa

# COLOURED MANGO CULTIVARS

- Golabkhas Red (Sinduriya)
- Surkha Calcutta
- Zafran
- Husnara
- Janardan Pasand

- Lal Mulgoa
- Vanraj
- Suvarnarekha
- Sensation

(most brilliant coloured cultivars of mango from Florida, USA)

#### Banganpalli:

**Bombay Green:** 

Carabao:

**Creeping:** 

**Dusehri Aman:** 

**Edward:** 

**Extrema: Native place Brazil** 

Fazli:

Florigon:

Naomi: originated in Israel

Menaka: selection from Gulabkhas, Bihar

Niranjan: Selection from private garden of Nizam.

## Gaurjit:

**Gulab Jamun:** 

**Gulab Khas:** 

**Headen: Florida** 

Himsagar:

**Irwin: Florida** 

Jamadar: Gujarat

Jawahar: BAU, Sabour

**Keitt: Florida** 

KMH-1: Cherukurasam x Khader

#### Commercial Cultivars for different Regions of India

### **Northern Region**

Dashehari, Langra, Chausa Bombay Green

## **Eastern Region**

Himsagar, Langra, Fazli, Krishnabhog Gulabkhas

## Western Region

Alphonso, Pairi, Kesar, Rajapuri, Mankurad Jamadar

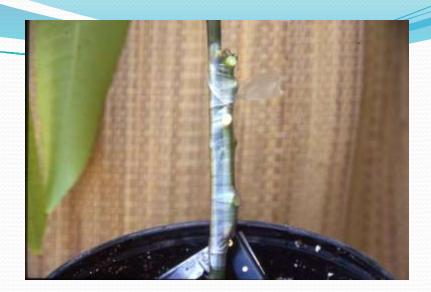
## **Southern Region**

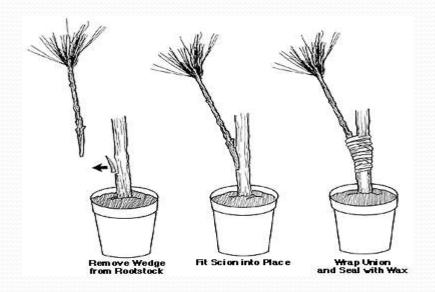
Bangalora, Neelum, Swarnarekha, Pairi(Peter),

Banganpalli, Mulgoa and Badami (Alphonso)

#### **Rootstock:**

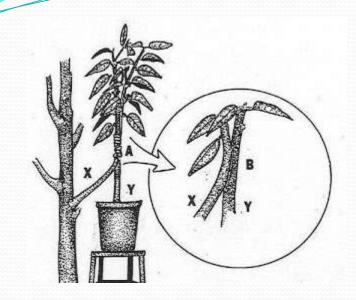
**Seedling rootstock is used.** 


#### Other rootstocks are:


- **✓** Creeping: dwarfing
- ✓ Kurukkan: Polyembryonic and salt tolerant
- **✓** Olour: Dwarfing
- **✓ Rumani: Dwarfing**
- **✓ Totapuri Red Small: dwarfing**

## **Veneer Grafting (commercial method):**

| ☐ In this method a terminal shoot of 10-15 cm length having pencil thickness is used as scion. |
|------------------------------------------------------------------------------------------------|
|                                                                                                |
| ☐ About 10 days before grafting, the scion —shoot is defoliated to                             |
| facilitate swelling of bud.                                                                    |
| ☐ Shallow downward incision is prepared on the root stock.                                     |
| ☐ Similar matching cut in slanting manner is prepared on lower                                 |
| portion of scion.                                                                              |
| ☐ Both rootstock and scion are united together using polythene                                 |
| tape.                                                                                          |
| □ During May and Sept this system is quite successfuly and good result is obtained.            |
| ☐ When scion sprouts completely, the upper portion of root                                     |
| stock above graft union is removed.                                                            |
|                                                                                                |

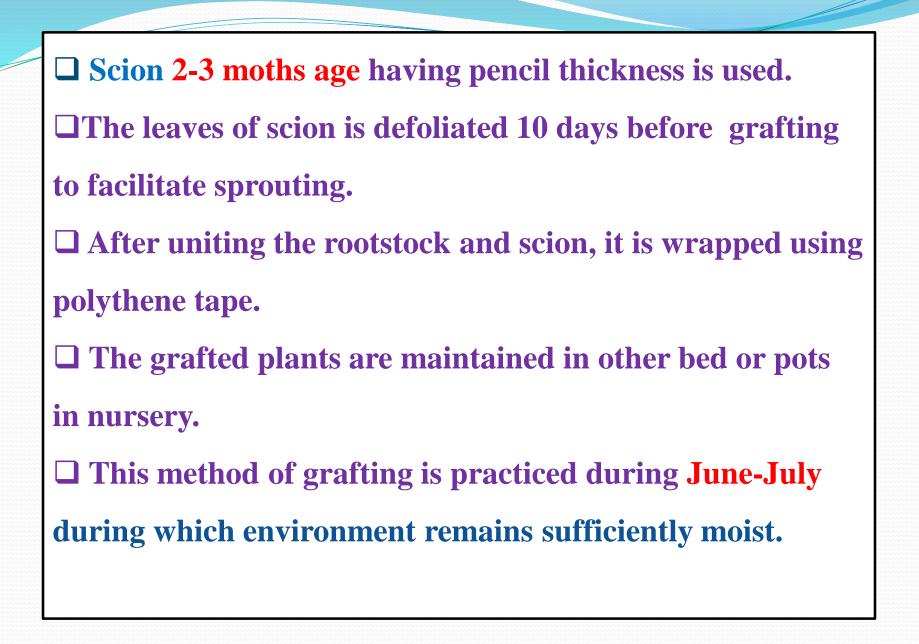







| <b>Inarching:</b>                                                |
|------------------------------------------------------------------|
| ☐ In this method scion is detached after completion of union.    |
| □ Root stock is grown in pot or container and this root stock is |
| brought close to the scion.                                      |
| □About one-year-old seedlings are most suitable when they        |
| attain a height of about 30-45 cm and thickness ranging from     |
| 0.75 to 1.5 cm.                                                  |
| ☐ The root stock and scion shoots of pencil thickness are        |
| selected.                                                        |
| ☐ Both are brought to close to each other and wrapped using      |
| polythene tape.                                                  |
| ☐ When union takes place, the upper portion of rootstock is cut  |
| and scion shoot is detached from the mother plant.               |
| □ During July-Aug is the best time.                              |
|                                                                  |

## **Inarching:**








## **Epicotyl or Stone grafting**

| ☐ It is also known as stone grafting.                             |
|-------------------------------------------------------------------|
| ☐ In this method seeds of mango are sown in nursery bed and       |
| covered with 5-7 cm thick layer of FYM.                           |
| <b>☐</b> While sowing seed, preference is given to sand bed which |
| provides ease in uprooting of seedling.                           |
| $\Box$ The germinated seedlings of 7-10 days age, when it leaves  |
| remain coppery in colour used for grafting.                       |
| ☐ The seedling is deheaded at a height of 10 cm above the         |
| ground level.                                                     |
| ☐ A vertical cut of 2.5-4cm length is given on deheaded portion   |
| of rootstock.                                                     |
|                                                                   |
|                                                                   |



# **Epicotyl or Stone grafting**



Fig: 1 ten days old seedling



Fig: 2 scion prepared for the grafting



Fig: 3 scion union at the base of grafted rootstock



Fig: 4 one year old graft for sale

#### **Soft wood grafting**

☐ It is very successful technique of *in situ* grafting. ☐ In this method mango seeds are sown at desired distance in the field. ☐ When plant becomes one year old and attain pencil thickness, it is used for grafting. ☐ It is done during rainy season when new growth appears on rootstock. **☐** When new leaves start turning green from coppery colour grafting is performed. Scion shoot 10-15 cm length, 3-5 months of age and pencil thickness girth is selected.

☐ At 10-15 cm height, the root stock is beheaded and left 3-4 leaves. ☐ A vertical slit of 2.5-4.0 cm length is given on rootstock. ☐ On scion shoot similar matching cut is prepared in slanting manner on both the surface in lower portion. It is inserted in incision on rootstock and wrapped using polythene tape. ☐ In about 4-5 weeks sprouting starts and graft starts growing.

## **Planting distance:**

Plant to Plant: 8 to 10 m.

Row to Row: 8 to 10 m.

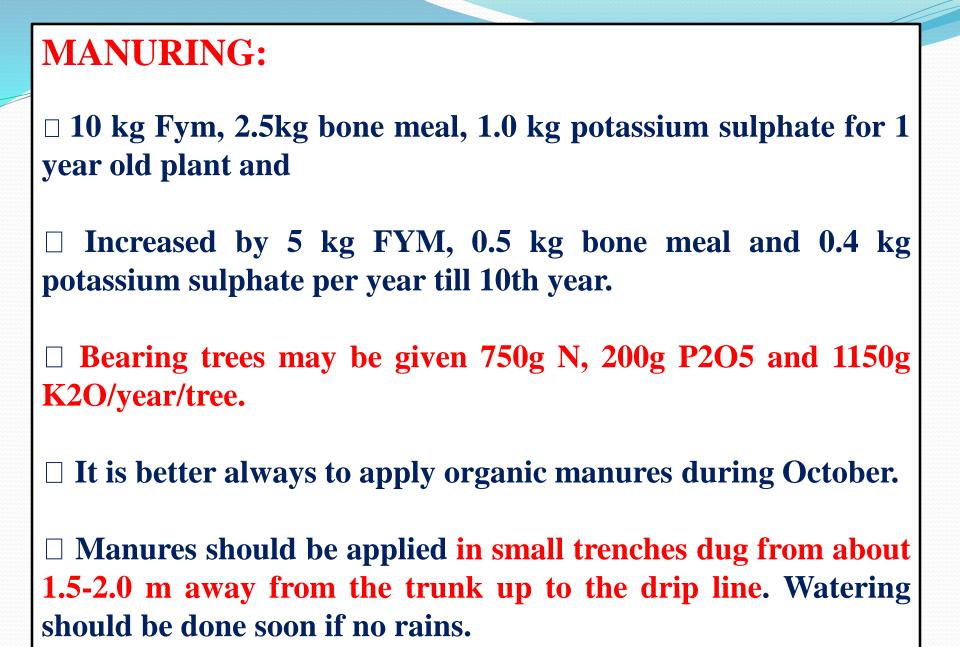
For high Density Planting: 5 x 5 m

Planting System: Square, Quincunx, or Triangular system.

**Planting time:** July to October

#### **Pit size:** 1 x 1 x 1 m

- ☐ Pit should be dug out and filled about one month before planting and allow to settle.
- ☐ Pit should be filled first with top soil, well mixed with 30 kg well rotten FYM.
- ☐ Then the pit should be filled with the subsoil mixed with 10-15 kg FYM and ½kg SSP and 10ml Chloropyrifos / 10 L water per pit


## **Planting time**

July to October: Early planting is desirable.

If adequate irrigation facilities are available, the plantation can be done in spring (February-March).

Irrigate newly planted trees to get high survival rate.

| One year old healthy, straight growing grafts from reliable sources can be planted at the centre of pits along with the ball of the earth intact during rainy season in such a way that the roots are not expanded and the graft union is above the ground level. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Plants should be irrigated immediately after planting.                                                                                                                                                                                                          |
| ☐ In the initial one or two years, it is advisable to provide some shade to the young plants and also stake to make them grow straight.                                                                                                                           |
|                                                                                                                                                                                                                                                                   |



## Time of application:

Time of fertilizer application variable depending upon the method adopted and location.

Half dose of manures and fertilizers should be applied just after harvesting of fruits and rest half should be applied during the pea stage of fruit growth in the month of April.

For tropical climate: Beginning of monsoon.

For sub-tropical climate: Two month before flowering.

Srivastava (1984) suggested that following time for manuring in mango trees.

January-February: In, North India trees come to bloom in this period and manuring is done facilitate proper development of fruit. June-July: Manuring is done in this period to enhance the vegetative growth. But it happens that major portion of fertilizers (especially nitrogenous fertilizer) wash out in case of heavy rain in North India.

September-October: This period is through to be better than June-July for fertilizer application in those area receiving heaving rainfall. This period of fertilizer application is recommended for most part of country.

- ☐ In A.P. the manures and fertilizers are applied in two split doses.
- □ First dose is given during June-July, consisting of complete Nitrogen with half potash at the onset of monsoon.
- ☐ The second dose is applied during September-October with FYM, super phosphate and remaining half of potash.

## Foliar application:

- ☐ To promote growth, improve fruit set, yield and quality Foliar spray is given with urea @ 1-2% and
- ☐ Another after flowering and at marble stage to improve fruit set and to reduce fruit drop.

### IRRIGATION:

- $\Box$  Irrigation should be given according to the soil and weather conditions.
- $\Box$  Bearing trees need to be irrigated regularly at 10-15 days interval from fruit set to maturity.
- □ Plant should be given rest by withholding irrigations at least 2-3 months before flowering for maximum fruit bud development.
- ☐ Through drip irrigation the tree may be given @ 40 liters/tree twice a week.

#### INTERCULTURAL:

☐ It should be done in pre-bearing period to keep the land free from weeds. ☐ Intercropping can also be taken with phalsa, papaya and pineapple or vegetables if irrigation facilities are available. ☐ Cover crops like sun hemp, daincha, cow pea, cluster bean, etc, can also be grown during rainy season and ploughed into the soil before the end of the rainy season. ☐ Land should be ploughed twice a year during April-May and October- November.

#### PRUNING AND TRAINING:

- ☐ Mango needs no regular pruning except removing dead and diseased branches.
- ☐ Young plants should be trained properly to get good framework.

# **Training:**

- ☐ The training of mango plants in the initial stages is very essential to give them proper shape.
- □ At least 75 cm of the main stem should be kept free from branching and the first leader of main branch should be allowed.
- □ After that The main branches should be spaced in such a way that they grow in different directions and are at least 20-25cm apart. Otherwise there is every chance of breakage due to smaller crotch angles.

# **Pruning:**

- □ Proper pruning of mango trees after the harvest gives the best results in terms of disease and pest management, diversion of food materials to the productive shoots, increased photosynthetic activity and increased carbohydrate and starch content, early production of new flush that bear the crop in the next season.
- □ Pruning also helps in increased *cytokinin*, *Ascorbic acid and auxin content*, which is beneficial for flowering. Abscissic acid level will also increase which inhibits the vegetative growth and promote flowering. Thus pruning helps in obtaining regular fruiting and production of quality fruits.

#### **FLOWERING AND FRUIT SET:**

- $\Box$  Flower bud formation takes place 2-3 months prior to flowering.
- •Time of flowering:

South India - November to December

East India – January to February

North India – February to March

•Duration of flowering: flowering period of flowering of mango is usually of short duration of 2 to 3 weeks, low temperature extends it and high temperature may shorten it.

# **Fruit Drop:**

Fruit drop is serious problem in mango and cause great loss to the growers.

A tree producing several thousand panicles yields only a few hundred fruits. Most of the flowers falling down after full bloom or at later stage of development.

Only 0.1 to 0.25% perfect flowers or even less develop in to mature fruit.

□ Maximum fruit drop takes place in last week of April or first week of May depends upon favourable condition.

# Fruit Drop:

- ☐ The fruit drop can be divided in to three distinct phases eg., pin head drop, post setting drop and May drop.
- ☐ The flower drop as well as the fruit drop is primarily due to the formation of an abscission layer at the point of attachment of the fruit with the twig.
- □ Several factors have been considered responsible for the formation of abscission layer.
- ☐ The causes can be divided in to two-

#### **External causes:**

Unfavorable climatic conditions.

High incidence of serious diseases like powdery mildew and anthracnose and pests like hoppers and mealy bugs.

## **Internal causes:**

- I. Poor soil
- II. Lack of pollination
- III. Low stigmatic receptivity
- IV. Defective perfect flowers
- V. Poor pollen transference
- VI. Occurrence and extent of self incompatibility.
- VII. Abortion of embryo
- VIII. Degeneration of ovules.
- IX. Competition between developing fruit lets.
- X. Drought / lack of irrigation.

# Measures to prevent fruit drop:

Spraying of 2, 4-D @ 10 ppm or NAA @ 50 ppm at pea stage and at marble stage helps in preventing fruit drop.

Providing pollenisers for self incompatible types.

Maintaining sufficient soil moisture also prevents fruit drop and helps in increasing the size of the fruit.

Provision of wind beaks all around the orchards, which prevents drop due to high velocity winds at the time of fruit development.

# Physiological disorder:

## Mango malformation:

- □ Production of thick vegetative shoots and transformation of floral parts into a compact mass of sterile flowers.
- □ Some varieties like Chausa and Bombay green are more susceptible than others in N. India.
- ---Two types of malformation:
- vegetative malformation and
- Floral malformation.

Vegetative malformation: is more pronounced in young plants. Affected mango seedlings or young plants develop excessive vegetative branches which have limited growth, swollen and with very short internodes and develop abnormally compact rosette like shoots presenting a bunchy top appearance.



Floral malformation: The affected inflorescence becomes clustered and round. Most of the flowers lack essential organs and don't set fruit and its inflorescence continuously hang on the tree for months, being more green and sturdy.

Causes: Various causes like nutritional disorders, physiological, viral and fungal are reported.



- ☐ Malformation is serious in North India than in South India. It may result in loss of about 50-60% crop.
- ☐ Krishnabhog, Collecter, Langra, Neelum are tolerant (seedling trees are found to be tolerant).

## **Causes:**

Virus, fungus, mites, nutrients, C/N ratio, carbohydrates, nucleic acids, amino acids, proteins, phenolic compounds, enzymatic activity in the plant, phytohormones and occurance of malformation like substance are all supposed to be the probable causes for malformation.

#### **Control measures:**

- a. Destruct the infected small plant or plant parts
- b. Spraying a fungicide like Captan @ 3g. or Bavistin @ 1g. / litre of water
- c. Remove the affected parts by pruning 30 cm below and paste with Bordeaux paste.
- d. Early deblossoming at bud burst stage combined with NAA 20 ppm spray during October also reduces this considerably.
- e. Application of nutrients: High NPK added with FeSO4, Cobalt sulphate

- f. Growing of resistant varieties like Bhadauran, Alib and Illaichi Bhardhan are resistant and free from this infestation.
- g. In spite of this, malformation is still a puzzling problem. It is therefore concluded that malformation can be kept under check by maintaining
  - ✓ Orchards cleanly using disease free planting materials only.
  - **✓** Regularly inspecting the orchard
  - ✓ Regularly removing all malformation parts and
  - ✓ Spraying of insecticides and after each pruning.

## **Spongy tissue:**

- ☐ A non-edible patch of flesh develops in the mesocarp of the fruit and becomes spongy, sour and yellowish is termed as spongy tissue.
- ☐ This can be detected only after cutting the ripen fruit.
- ☐ It is a physiological disorder in which the fruit pulp remains
- unripe because of un-hydrolised starch due to inactivation of
- ripening enzyme because of high temperature, convective heat,
- exposing to sunlight after harvest are supposed to be the causes.
- ☐ Alphonso variety is very susceptible to this spongy tissue.

# Remedial measures: □ Sod culture and mulching are useful in reducing spongy tissue. ☐ Growing mango hybrids Ratna and Arka Puneet, which are free from this problem. ☐ Harvesting fruits when they are three fourths matured rather than fully matured ones also reduces this malady.



#### **BLACK TIP:**

- ☐ The distal end of fruit become black and hard
- ☐ Due to polluted atmosphere with smoke, carbon monoxide, carbon dioxide, sulphur dioxide, acetylene. \
- ☐ Spraying with Borax @ 0.6% from fruit set at 10-15 days intervals controls this disorder (Punjab, UP, Bihar, W,B).

## **Soft Nose**

□ Physiological disorder caused by Ca deficiency causing breakdown of flesh towards the apex of the fruit before ripening.

#### **BIENNIAL BEARING IN MANGO:**

Mango producing good crop one year and no crop or fewer crops in the next year is known as biennial bearing or alternate bearing. This is genetic and inherent in mango varieties.

#### **CAUSES FOR BIENNIAL BEARING:**

- 1. Climatological factors: Rain, high humidity, low temperature making on to off year
- 2. Age and size of shoots: Shoots of 8-10 months maturity will be productive.

- 3. Carbon/Nitrogen ratio: High carbon/moderate N encourages flower bud formation (30-40)
- 4. Hormonal balance: Higher levels of auxin and inhibitor like substance and lower levels of gibberellins like substances were found to be vital for a flowering shoot.

Inspite of several studies, the biennial bearing is still an unsolved problem which is thought could be corrected by genetic engineering only.

#### **SUGGESTIONS/ MEASURES:**

- 1. Proper maintenance of mango orchards.
- 2. Deblossoming in on year with NAA application.
- 3. Smudging and chemical regulation like application of paclobutrazol (5-10gm/tree), spraying 1-2% KNO3, 6-8% CaNO3, etc.
- 4. Pruning: Pruning of the fruited shoots to keep open the tree top properly.
- 5. Growing regular bearing cultivars: Bangalora, Rumani, Neelum, Amrapalli and almost all hybrids.

# **Harvesting:**

 $\square$  Mango normally takes 90-120 days from fruit set to maturity .

Stage of harvesting is very important, which will be indicated by

- (1) Starting of Colour development
- (2) Falling of one or two fruits from the plant
- (3) Specific gravity of 1.0 to 1.02(more reliable)
- ☐ Fruits should be harvested individually along with pedicel and collected gently in baskets with the help of mango harvesters for minimizing damage.

#### Yield:

- \* The yield of mango depends on no. of factors like
- > Age of the plant,
- > Soil fertility,
- > Climatic conditions,
- ➤ Variety, type of plant material like graft or seedling, management of the orchard etc.
- ☐ Mango grafts come to bearing in about 2-3 years but commercial yields can be had from 8-10 years and may continue up to 40-60 years.
- □ Average yield is 8 tonnes/ha and may vary according to variety and locality.

### **PACKING AND TRANSPORT:**

| ☐ Mangoes are normally packed in bamboo baskets using straw as the padding material.                          |
|---------------------------------------------------------------------------------------------------------------|
| ☐ Wooden and card board boxes are also used. Wrapping fruits individually maintains the quality of the fruit. |
| ☐ Waxing 3% with hot water treatment improves storage life.                                                   |
| ☐ Mangoes can be stored at 5-14°c and 90% RH for about 2-7 weeks depending upon the variety.                  |

#### **Plant Protection**

Mango hopper: Two sprays (at panicles emergency and at pea size of fruits) of carbaryl (0.15%), monocrotophos (0.04%) or phosphamidan (0.05).

### Mealy bug:

- **✓ Ploughing inter spaces in November**
- ✓Dusting 2% methyl parathion @200 g per tree near the trunk Fixing 20 cm wide 400 gauge polythene strips around the trunk with grease applied on the lower edge in January as prophylactic measures and
- **√**Two sprays of monocrotophos (0.04%) at 15 days interval as control are needed.

**Powdery mildew:** Two to three sprays of wettable sulphur (0.2%) or Karathane (0.1%) at 10-15 days interval.



**Anthracnose:** Two sprays of Bavistin (0.1%) at fortnight interval.





