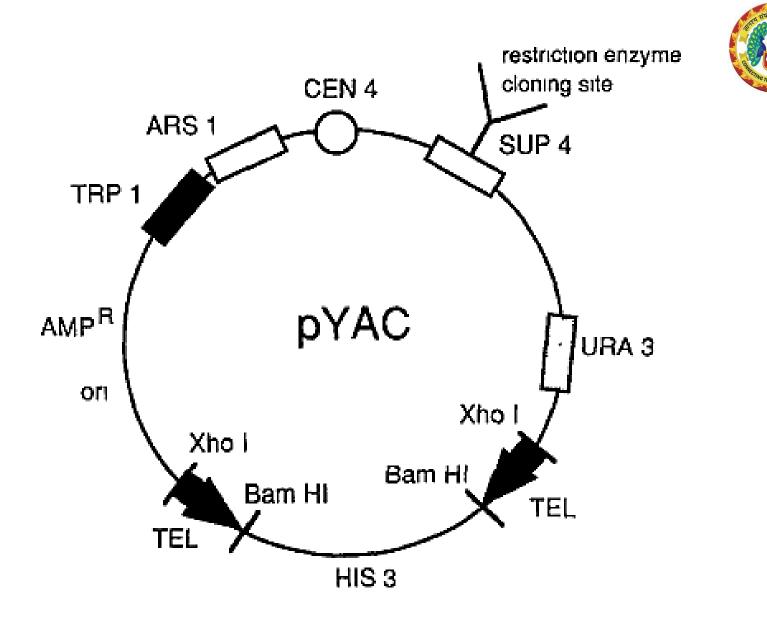


Vectors for Genomic library in genetic engineering: Yeast Artificial Chromosomes

What are Yeast Artificial Chromosomes?

- ☐Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, *Saccharomyces cerevisiae*, which is then ligated into a bacterial plasmid.
- □By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking.
- □ The primary components of a YAC are the ARS, centromere, and telomeres from S. cerevisiae. Additionally, selectable marker genes, such as antibiotic resistance and a visible marker, are utilized to select transformed yeast cells.
- □Without these sequences, the chromosome will not be stable during extracellular replication, and would not be distinguishable from colonies without the vector.


Assembling of YACs

- □A YAC is built using a plasmid and a gene of interest forming a single large recombinant DNA.
- □Then, a selectable marker is ligated into the plasmid vector. This allows for the differential selection of colonies with, or without the marker gene.
- □Ligation of necessary centromeric sequences for mitotic stability.
- DLigation of Autonomously Replicating Sequences (ARS) providing an origin of replication to undergo mitotic replication. This allows the plasmid to replicate extrachromosomally, but renders the plasmid highly mitotically unstable, and easily lost without the centromeric sequences.

- □Ligation of artificial telomeric sequences to convert circular plasmid into a linear piece of DNA.
- □Insertion of DNA sequence to be amplified (up to 1000kb).
- ☐ Finally, Transformation yeast colony.
- □YAC was initially used for the Human Genome Project, however due to stability issues, YACs were abandoned for the use of BAC.

Typical structure map of a YAC vector.

Major features of YAC

CEN1

✓ It is the centromere sequence that helps in segregation.

TEL

✓ It is the telomere sequence that helps in extremity protection.

ARS1

✓ It is the autonomous replicating sequence that helps in replication.

Selectable marker

✓ Usually the amino acid dependence genes on each arm and helps in selection process.

Ori

✓ It is required for the autonomous replication of the YAC.

SUP4

- ✓ Acts as a suppressor tRNA gene which overcomes the effect of the ade-2 ochre mutation and restores wild-type activity, resulting in colorless colonies.
- ✓ The host cells are also designed to have recessive trp1 and ura3 alleles which can be complemented by the corresponding TRP1 and URA3 alleles in the vector, providing a selection system for identifying cells containing the YAC vector.

Limitations of YAC

- □Very fragile and prone to breakage.
- □Unstable, with their foreign DNA inserts often being deleted.
- □Loss of the entire YAC during mitotic growth.
- □Difficult to separate the YAC from the other host chromosomes.
- □Chimaerism and poor DNA yield.