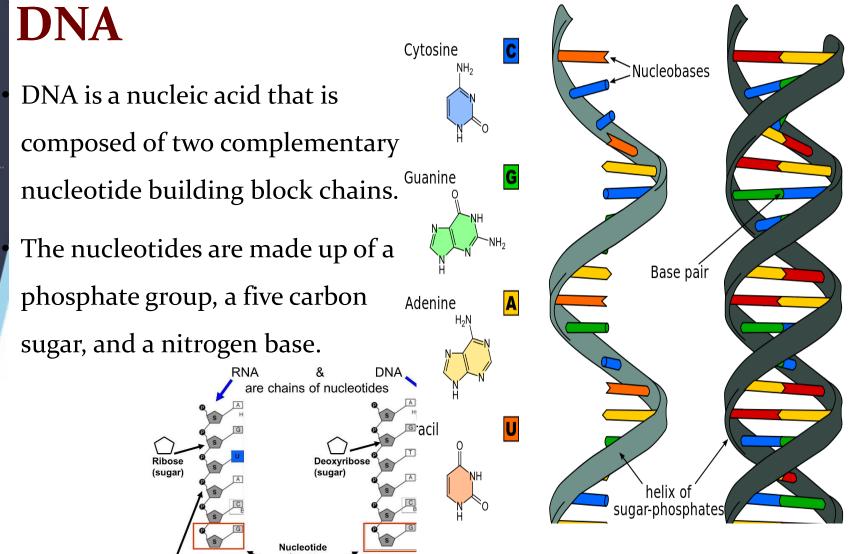


Polymerase Chain Reaction (PCR)

Suman Kumar Mekap

Asst. Professor (Pharmacology) School of Pharmacy and Life Sciences Centurion University, Bhubaneswar


INTRODUCTION


 Polymerase chain reaction (PCR) is a technique used in molecular biology to amplify a single copy or a few copies of a segment of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence.



History

- Developed in 1983 by Kary Mullis, PCR is now a common technique used in clinical and research laboratories for a broad variety of applications.
- In 1993, Mullis was awarded the Nobel Prize in Chemistry for his work on PCR.

• DNA has four nitrogen bases.

- **Two are purines** (2 ringed base) – Adenine (<mark>A</mark>), Guanine (**G**)
- Two are pyrimidines (1 ringed base) - Cytosine (C), Thymine (T)

- These four bases are linked in a repeated pattern by hydrogen bonding between the nitrogen bases.
- The linking of the two complementary strands is called hybridization.

• Example of bonding pattern.

Primary strand

CCGAATGGGATGC

GGCTTACCCTACG

Complementary strand

- A purine always links with a pyrimidine base to maintain the structure of DNA.
- Adenine (A) binds to Thymine (T), with two hydrogen bonds between them.
- Guanine (G) binds to Cytosine (C), with three hydrogen bonds between them.

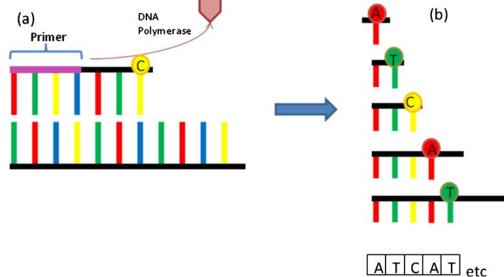
1.

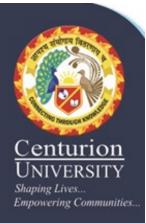
What does PCR need?

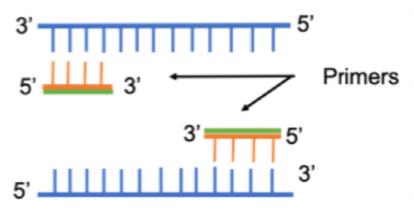
- Template (the DNA you are exploring)
- Sequence-specific primers flanking the target sequence, Forward & Reverse.
- 3. Polymerases
- 4. Nucleotides (dATP, dCTP, dGTP, dTTP)
- 5. Magnesium chloride (enzyme cofactor)
- 6. Buffer
- 7. Water, mineral oil

Deoxyadenosine triphosphate Deoxycytidine triphosphate Deoxyguanosine triphosphate Thymidine triphosphate

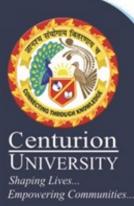
Components for PCR


<u>1. DNA template:</u>


- DNA template is DNA target sequence.
- DNA template is the DNA molecule that contains the DNA region (segment) to be amplified, the segment we are concerned which is the target sequence.


2. Primers:

- Primers are synthetic DNA strands of about 18 to 25 nucleotides complementary to 3' end of the template strand.
 - DNA polymerase starts synthesizing new DNA from the 3' end of the primer .


- Two primers must be designed for PCR; the forward primer and the reverse primer. The forward primer is complimentary to the 3' end of antisense strand (3'-5') and the reverse primer is complimentary to the 3' end of sense strand (5'-3').
- If we consider the sense strand (5'-3') of a gene, for designing primers, then forward primer is the beginning of the gene and the reverse primer is the reverse-compliment of the 3' end of the gene.

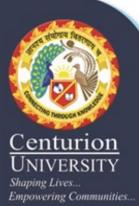
Primer Problems

- Primers should flank the sequence of interest
- Primers that match multiple sequences will give multiple products
- Repeated sequences can be amplified -but only if unique flanking regions can be found where primers can bind
- A primer may form a dimer with itself or with the other primer.
- 5'-ACCGGTAGCCACGAATTCGT-3' |||||||| 3'-TGCTTAAGCACCGATGGCCA-5

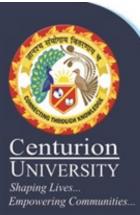
Primers That Form Hairpins

- Primers can have self-annealing regions within each primer (i.e. hairpin and fold back loops)
 - A primer may be self-complementary and be able to fold into a hairpin:

```
5'-GTTGACTTGATA
```


```
|||||T
3'-GAACTCT
```

• The 3' end of the primer is base-paired, preventing it annealing to the target DNA.


Designing PCR Primers:

- Primer sequences should be unique
- Primers should be ~20 bases long.
- The G/C content should be 45–55%.
- The annealing temperatures should be within 1°C of one another.
- The 3'-most base should be a G or C.
- The primers must not base pair with each other or with themselves or form hairpins.
- Primers must avoid repetitive DNA regions.



3. DNA polymerase:

- DNA polymerase sequentially adds nucleotides complimentary to template strand at 3'-OH of the bound primers and synthesizes new strands of DNA complementary to the target sequence.
- The most commonly used DNA polymerase is *Taq* DNA polymerase (from *Thermus aquaticus*, a thermophillic bacterium) found in 176°F hot springs in Yellow Stone National Forest.
- The optimum temperature for *Taq* Polymerase is 72°C

- Another enzyme *Pfu* DNA polymerase (from *Pyrococcus furiosus*) is also used widely because of its higher fidelity (accuracy of adding complimentary nucleotide).
- Mg2⁺ ions in the buffer act as co-factor for DNA polymerase enzyme and hence are required for the reaction.

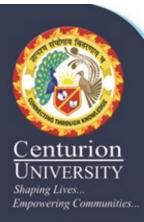
Disadvantages of Taq Pol

- *Taq* Polymarase lacks 3' to 5' exonuclease proof reading activity, commonly present in other polymerases.
- *Taq* mis-incorporates 1 base in 10⁴.
- A 400 base pair target will contain an error in 33% of molecules after 20 cycles.
- Error distribution will be random.

<u> 4. Nucleotides (dNTPs or deoxynucleotide triphosphates)</u>

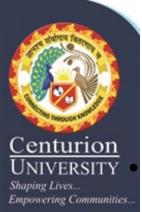
All types of nucleotides are "building blocks" for new DNA strands and essential for reaction. It includes

Adenine(A)


Guanine(G)

Cytosine(C)

Thymine(T)


or

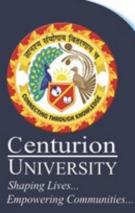
Uracil(U).

<u>5. Magnesium:</u>

 Magnesium affects primer annealing and template denaturation, as well as enzyme activity. An excess of magnesium gives nonspecific amplification products, while low magnesium yields lesser amount of desired product.

6. Buffer:

PCR is carried out in a buffer that provides a suitable chemical environment for activity of DNA polymerase. The buffer pH is usually between 8.0 and 9.5 and is often stabilized by Tris-HCl.
For *Taq* DNA polymerase, a common component in the buffer is potassium ion (K⁺) from KCl, which promotes primer annealing.


7. Water and Mineral oil:

- Water has been used to make up the final volume of the sample in polymerase chain reaction.
 - The template DNA and the DNA polymerase should be added just before the start of the PCR reaction. When a PCR machine is used without a heated lid, 30 µl of mineral oil should be added to the mixture to prevent evaporation.

PCR Requirements

- Magnesium chloride: .5-2.5mM
- Buffer: pH 8.3-8.8
- dNTPs: 20-200µM
- Primers: 0.1-0.5µM
- DNA Polymerase: 1-2.5 units
- Target DNA: 1 µg

Steps in PCR

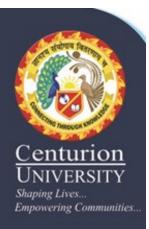
- Denaturation 93 to 95°C 1min
- Annealing 50 to 55°C 45sec
- Elongation 70 to 75°C 1-2min

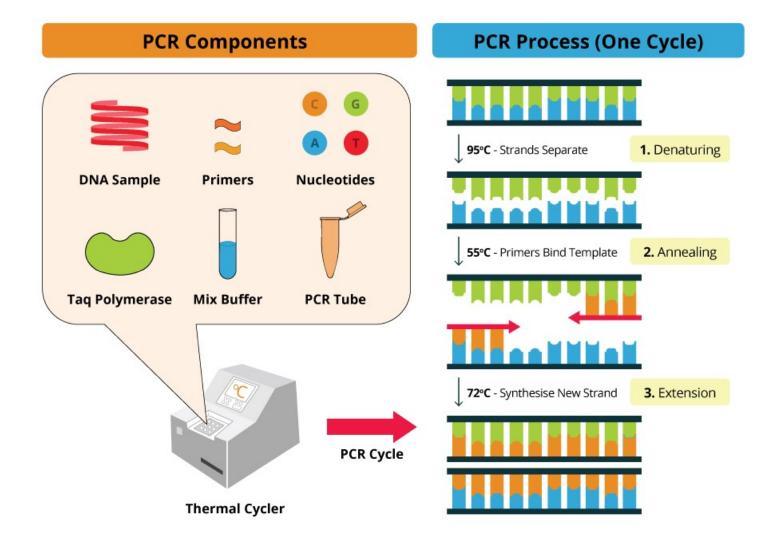

How does PCR work?

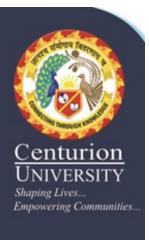
- Heat (94°C) to denature DNA strands
- Cool (54°C) to anneal primers to template
- Warm (72°C) to activate *Taq* Polymerase, which extends primers and replicates DNA
- Repeat multiple cycles

<u>1. Denaturation:</u>

- Denaturation is the first step in PCR, in which the DNA strands are separated by heating to 95°C.
- The Hydrogen bonds between the two strands breaks down and the two strands separates.

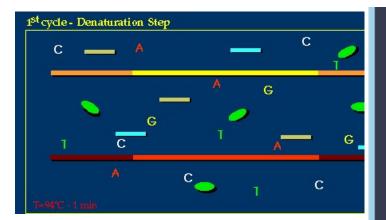

<u>2. Annealing:</u>

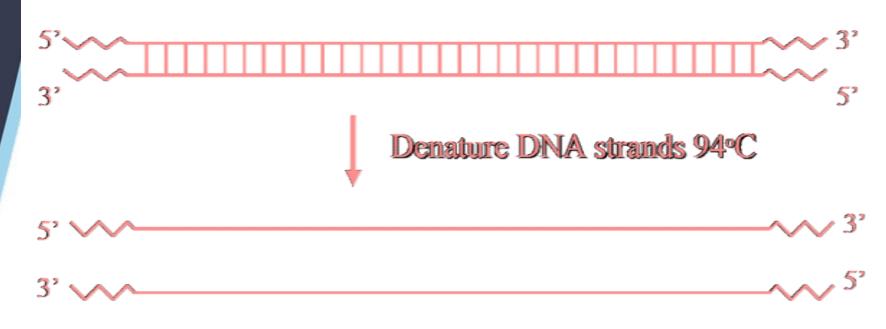

- Annealing is the process of allowing two sequences of DNA to form hydrogen bonds.
- The annealing of the target sequences and primers is done by cooling the DNA to 55°C.
- Time taken to anneal is 45 seconds.

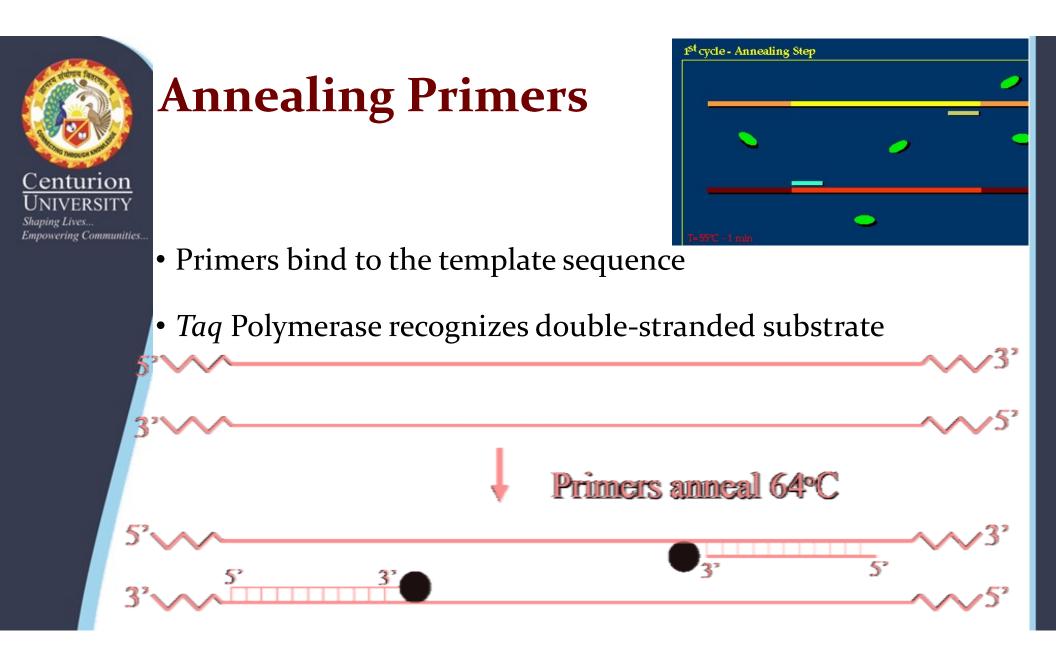


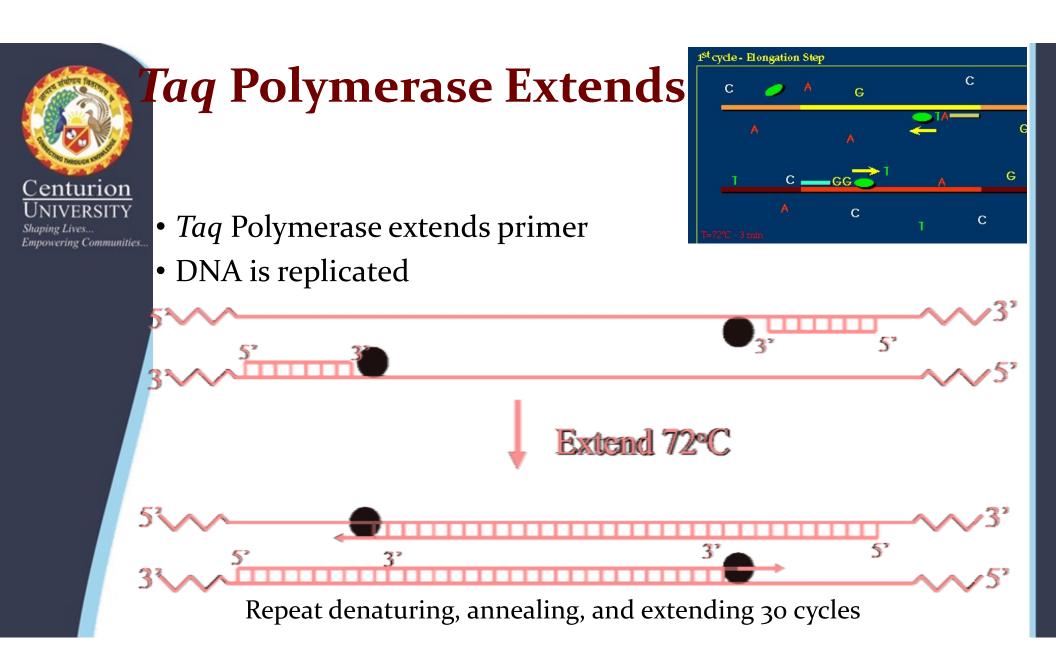
<u>3. Elongation:</u>

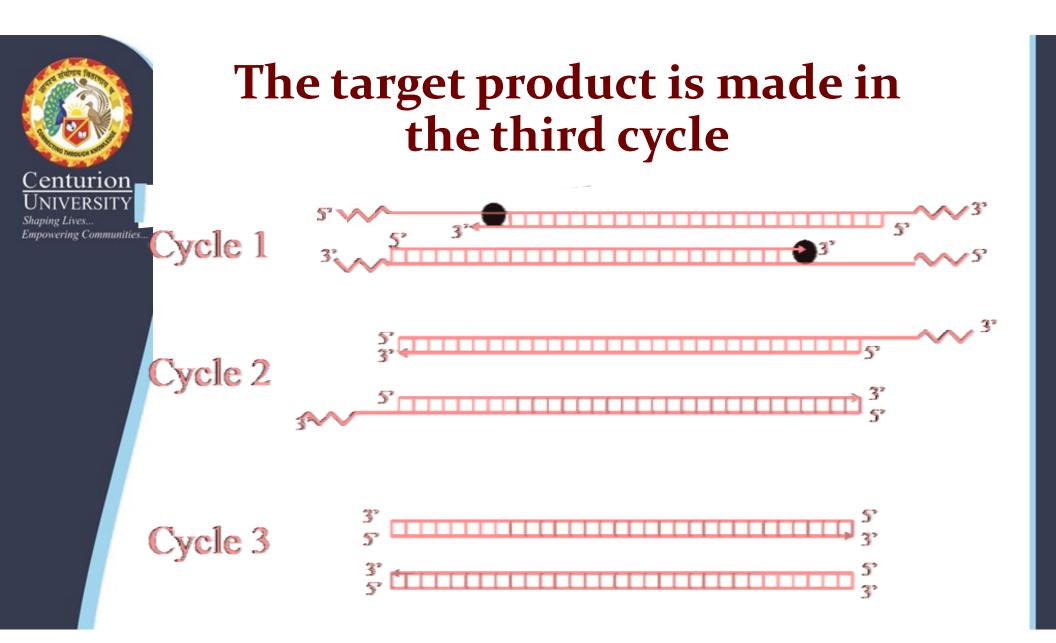
- *Taq* polymerase binds to the template DNA and starts adding nucleotides that are complementary to the first strand.
- This happens at 72°C as it is the optimum temperature for *Taq* Polymerase.

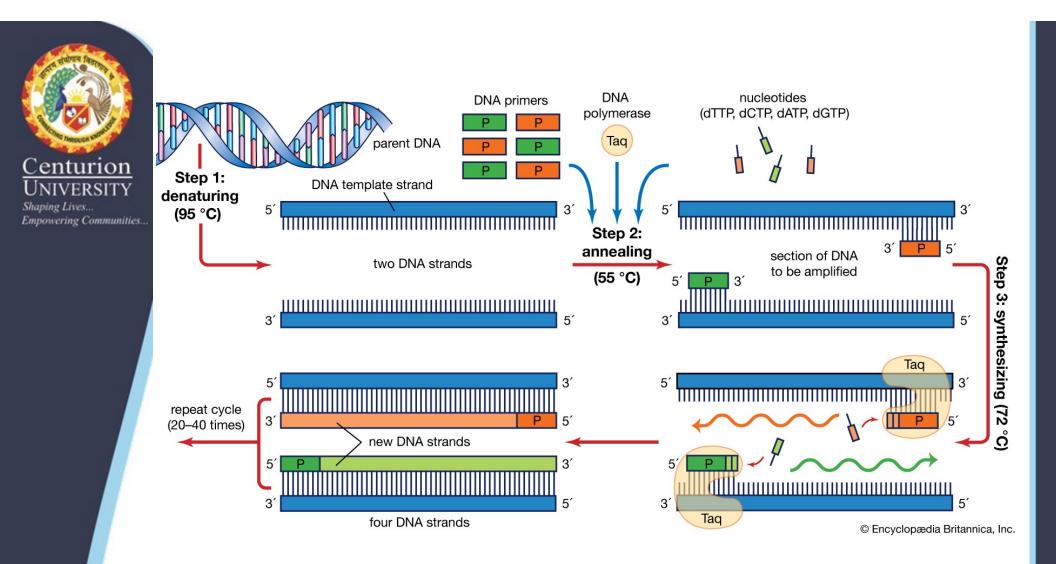



PCR Cycles




Denaturing Template


• Heat causes DNA strands to separate



PCR Cycles Review

- **Denaturation:** 94°- 95°C
- **Primer Annealing:** 55°- 65°C
 - Elongation of DNA: 72°
 - Number of Cycles: 25-40
 - No target products are made until the third cycle.
 - At 30 cycles there are 1,073,741,764 target copies (~1×10⁹).

Limitations of PCR

• Need for target DNA sequence information

Primer Designing for unexplored ones.

Boundary regions of DNA to be amplified must be known.

- Infidelity of DNA replication.
- *Taq* Pol no Proof reading metch Error 40% after 20 cycles
- Short size and limiting amounts of PCR product

Up to 5kb can be easily amplified .

Up to 40kb can be amplified with some modifications.

Cannot amplify gene >100kb

Cannot be used in genome sequencing projects.

How to overcome Difficulties?

- *Pfu* DNA Polymerase from *Pyrococcus furiosus* possesses 3' to 5' exonuclease proofreading activity.
- The error rate is only 3.5% after 20 cycles
- More amount of primer is added to avoid primer dimering.
- For unexplored genes, primers used in closely related species are used.

Advantages of PCR

- Speed
- Ease of use
- Sensitivity
- Robustness

Applications of PCR

- Screening human DNA samples for mutations associated with genetic diseases such as thalassemia and cystic fibrosis.
- Can detect the presence of viral DNA before it turns in to a killer.
- PCR enables rapid amplification of template DNA for screening of uncharacterized mutations
- Can obtain sequences from hair, blood stain, bones, other forensic specimens, other remains preserved at archaeological sites.

THANK YOU

Happy to Answer if you have any question.....