Controlled Flocculation

- Assuming that the powder is properly wetted and dispersed, we can now consider the various means by which controlled flocculation can be produced so as to prevent formation of a compact sediment that is difficult to redisperse.
- Electrolytes act as flocculating agents by reducing the electric barrier between the particles, as evidenced by a decrease in the zeta potential and the formation of a bridge between adjacent particles so as to link them together in a loosely arranged structure.
- If we disperse particles of bismuth subnitrate in water, we find that,they possess a large positive charge, or zeta potential.
- Because of the strong forces of repulsion between adjacent particles, the system is deflocculated.
- By preparing a series of bismuth subnitrate suspensions containing increasing concentrations of monobasic potassium phosphate, it gives a correlation between apparent zeta potential and sedimentation volume, caking, and flocculation.
- The addition of monobasic potassium phosphate to the suspended bismuth subnitrate particles causes the positive zeta potential to decrease owing to the adsorption of the negatively charged phosphate anion.
- With the continued addition of the electrolyte, the zeta potential eventually falls to zero and then increases in the negative direction, as shown in Figure.
- Microscopic examination of the various suspensions shows that at a certain positive zeta potential, maximum flocculation occurs and will persist until the zeta potential has become sufficiently negative for deflocculation to occur once again.
- The onset of flocculation coincides with the maximum sedimentation volume determined.
- Surfactants, both ionic and nonionic, have been used to bring about flocculation of suspended particles.
- The concentration necessary to achieve this effect would appear to be critical because these compounds can also act as wetting and deflocculating agents to achieve dispersion.

Flocculation in Structured Vehicles

- Although the controlled flocculation approach is capable of fulfilling the desired physical chemical requisites of a pharmaceutical suspension, the product can look unsightly if F, the sedimentation volume, is not close or equal to 1 .
- Consequently, in practice, a suspending agent is frequently added to retard sedimentation of the flocs.
- Such agents as carboxymethylcellulose, Carbopol 934, Veegum, tragacanth, and bentonite have been employed, either alone or in combination.
- This can lead to incompatibilities, depending on the initial particle charge and the charge carried by the flocculating agent and the suspending agent.
- For example, suppose we prepare a dispersion of positively charged particles that is then flocculated by the addition of the correct concentration of an anionic electrolyte such as monobasic potassium phosphate.
- We can improve the physical stability of this system by adding a minimal amount of one of the hydrocolloids.
- No physical incompatibility will be observed because the majority of hydrophilic colloids are themselves negatively charged and are thus compatible with anionic flocculating agents.
- If, however, we flocculate a suspension of negatively charged particles with a cationic electrolyte (aluminum chloride), the subsequent addition of a hydrocolloid may result in an incompatible product, as evidenced by the formation of an unsightly stringy mass that has little or no suspending action and itself settles rapidly.
- Under these circumstances, it becomes necessary to use a protective colloid to change the sign on the particle from negative to positive.
- This is achieved by the adsorption onto the particle surface of a fatty acid amine (which has been checked to ensure its nontoxicity) or a material such as gelatin, which is positively charged below its isoelectric point.
- We are then able to use an anionic electrolyte to produce flocs that are compatible with the negatively charged suspending agent.

Coated
particles
flocculant

Uncoated particles (positively charged, negatively charged, or neutral particles)

Flocculated
particles

Suspension of
flocculated particles before adding suspending agent

