Methohexital Sodium

Mechanism of action of methohexital

- It is believed that methohexital decreases the electrical nerve activity in the CNS that leads to general anesthetic action.
- ❖ Methoxehital binds to GABA-BZD receptors-Chloride ion channel complex. This binding increases affinity of GABA for the GABA_A receptor.
- ❖It leads to increase in chloride ion conduction via an increase in the frequency of the chloride channel opening. At higher dose, it directly increase conductance of Cl⁻ ion and inhibit calcium dependant release of neurotransmitter.

❖In addition to above it also depress glutamate induced neuronal depolarization through AMPA receptor. At very high dose barbiturates depress Na⁺ and K⁺ ion channels also.

Uses:

It is primarily used to induce anesthesia. It is only used in hospital under strict supervision. It has been used to induce deep sedation for surgery and dental procedure.

Thiamylal sodium

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

MOA: Similar to methohexital sodium.

Uses: It has sedative, hypnotic and anticonvulsant properties and is used as a short acting sedative. It is used primarily for induction of surgical anesthesia or as an anticonvulsant to counteract side effects from other anesthetics.

Thiopental Sodium

$$C_2H_5$$
 C_2H_5
 N
 $-$ +
 SNa
 $H_3C-CH_2-CH_2-CH$
 CH_3

MOA: Similar to methohexital sodium.

Uses: Thiopental is an extremely short acting barbiturate that makes anesthesia pleasant and smooth for the patient. It has been used to induce deep sedation for surgery and dental procedure.

Ketamine Hydrochloride

Reaction mechanism for step-5

Mechanism of Action

- *Ketamine show multiple therapeutic properties like analgesic, anesthetic and sympathomimetic effects by acting on different sites.
- N-methyl-D-aspartate (NMDA)-receptor antagonism is the most important neuropharmacological mechanism for the analgesic effects of ketamine.
- Effects on opiate receptors may contribute to the analgesic proporties as well as to dysphoric reactions.
- Sympathomimetic properties are mediated by enhanced central and peripheral monoaminergic transmission.

❖ Inhibition of central and peripheral cholinergic transmission may contribute to the induction of anaesthetic state and hallucinations.

Uses:

Ketamine is a specific drug for non-inhalation anesthesia. It is used in brief surgical procedures. It is indicated as the sole anesthetic agent for diagnostic and surgical procedures.