
Conversion of Binary, Octal and
Hexadecimal Numbers

From Binary to Octal
Starting at the binary point and working left, separate the bits into
groups of three and replace each group with the corresponding octal
digit.

100010112 =  010  001  011 = 2138

From Binary to Hexadecimal
Starting at the binary point and working left, separate the bits into
groups of four and replace each group with the corresponding
hexadecimal digit.

100010112 =  1000  1011 = 8B16

From Octal to Binary
Replace each octal digit with the corresponding 3-bit binary string.

2138 =  010  001  011 = 100010112

From Hexadecimal to Binary
Replace each hexadecimal digit with the corresponding 4-bit binary
string.

8B16 = 1000  1011 = 100010112



Conversion of Decimal Numbers

From Decimal to Binary

17 12

34 02

69 12

139 12

8 02

4 02

2 02

1 MSD

LSD

From Binary to Decimal

100010112

= 1×27 + 0×26 + 0×25 + 0×24 + 1×23 + 0×22 + 1×21 + 1×20

= 128 + 8 + 2 + 1

13910 = 100010112



Conversion of Fractions

Starting at the binary point, group the binary digits that lie to
the right into groups of three or four.

0.101112 =  0.101  110 = 0.568

0.101112 =  0.1011  1000 = 0.B816

Problems Convert the following

Binary Octal Decimal Hex
10011010

2705
2705

3BC

Binary Octal Decimal Hex
10011010 232 154 9A

10111000101 2705 1477 5C5
101010010001 5221 2705 A91

1110111100 1674 956 3BC

5

42 28

338 28

2705 18

10=A

169 916

2705 116



Add

1 1 1 1 1 0 0 1 1

+    1    0    0    1 +          1    1    1    0

1 1 0 0 0 1 0 0 0 0 1

Subtract

1 1 0 0 0 1 0 0 1 1

-           1    1    1    1 -           1    1    1    1

1 0 0 1 1 0 0

Multiply

normally for implementation - add the shifted

multiplicands one at a time.

1 1 1 0 = 14 1 1 1 0

*    1    1    0    1 = 13 *    1    1    0    1

1 1 1 0 1 1 1 0

0 0 0 0 +    0    0    0    0    

1 1 1 0 0 1 1 1 0

+    1    1    1    0                      +    1    1    1    0          

1 0 1 1 0 1 1 0 1 0 0 0 1 1 0

+    1    1    1    0                

1 0 1 1 0 1 1 0 (8 bits)



Divide

               1 1 0 1                1 1 0 

1 1 1 1 ) 1 1 0 0 0 1 0 1 | 1 1 0 1 ) 1 0 1 1 0 0 1 |

1 1 1 1          | 1 1 0 1       |

1 0 0 1 1 0 1 | 1 0 0 1 0 1 |

1 1 1 1       | 1 1 0 1    |

1 0 0 0 1 | 1 0 1 1 |

0 0 0 0    | 0 0 0 0 |

1 0 0 0 1 | 1 0 1 1

1 1 1 1 |

1 0

            1 0 0 1 

1 1 0 1 ) 1 1 1 1 0 0 1 |

1 1 0 1          |

1 0 0 0 1 |

0 0 0 0       |

1 0 0 0 1 |

0 0 0 0    |

1 0 0 0 1 |

1 1 0 1 |

1 0 0



Sign-Magnitude
0 = positive
1 = negative
n bit range = -(2n-1-1) to +(2n-1-1)
4 bits range = -7 to +7
2 possible representation of zero.

2's Complement

flip bits and add one.
n bit range = -(2n-1) to +(2n-1-1)
4 bits range = -8 to +7

0 0 0 0 = 0
0 0 0 1 = 1
0 0 1 0 = 2
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1 = 7
1 0 0 0 = -8
1 0 0 1 = -7
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0 = -2
1 1 1 1 = -1

Example

1 1 1 0 = 14
0 0 0 1 flip bits
0 0 1 0 add one WRONG this is not -14.  Out of range. Need 5 bits

0 1 1 1 0 = 14
1 0 0 0 1 flip bits
1 0 0 1 0 add one.  This is -14.

Sign Extend

add 0 for positive numbers
add 1 for negative numbers



Add 2's Complement
1 1 1 0 = -2 1 1 1 0 = -2

      +    1 1 0 1 = -3 +    0 0 1 1 = 3

1 1 0 1 1 ignore carry = -5 1 0 0 0 1 ignore carry = 1

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum if
different from the signs of both operands. Ex.

0 1 0 0 = 4 1 1 0 0 = -4

      +    0 1 0 1 = 5 +    1 0 1 1 = -5

1 0 0 1 = -7 WRONG 1 0 1 1 1 ignore carry = 7 WRONG

Multiply 2's Complement

1 1 1 0 = -2 1 1 1 0 = -2

      *    1 1 0 1 = -3 *    0 0 1 1 = 3

1 1 1 1 1 1 1 0 sign extend to 8 bits 1 1 1 1 1 1 1 0 sign extend to 8 bits

+       0 0 0 0 0 0 0 + 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 ignore carry = -6

+       1 1 1 1 1 0

1 1 1 1 1 0 1 1 0 ignore carry

+       0 0 0 1 0 negate -2 for sign bit

1 0 0 0 0 0 1 1 0 ignore carry  = 6

1 0 0 1 0 = -14

      *    1 0 0 1 1 = -13

1 1 1 1 1 1 0 0 1 0 sign extend to 10 bits

+    1 1 1 1 1 0 0 1 0

1 1 1 1 1 0 1 0 1 1 0 ignore carry

+    0 0 0 0 0 0 0 0

1 1 1 1 0 1 0 1 1 0

+    0 0 0 0 0 0 0

1 1 1 1 0 1 0 1 1 0

+    0 0 1 1 1 0 negate -14 for sign bit

1 0 0 1 0 1 1 0 1 1 0 ignore carry  = 182



Floating-Point Numbers

mantissa x (radix)exponent

The floating-point representation always gives us more range and less precision than the
fixed-point representation when using the SAME number of digits.

11-bit excess
1023 charactstic

Mantissa
sign

52-bit normalized fraction

Sign
exponent

Mantissa
sign

Mantissa magnitude

8-bit excess-127
characteristic

Mantissa
sign

23-bit normalized fraction

General format

32-bit standard

64-bit standard

0 1 12 63

31910

Implied binary point

Normalized fraction - the fraction always starts with a nonzero bit. e.g.

0.01 … x 2e would be normalized to 0.1 … x 2e-1

1.01 … x 2e would be normalized to 0.101 … x 2e+1

Since the only nonzero bit is 1, it is usually omitted in all computers today. Thus, the 23-bit
normalized fraction in reality has 24 bits.

The exponent is represented in a biased form.

• If we take an m-bit exponent, there are 2m possible unsigned integer values.
• Re-label these numbers: 0 to 2m-1 → -2m-1 to 2m-1-1 by subtracting a constant value (or

bias) of 2m-1 (or sometimes 2m-1-1).
• Ex. using m=3, the bias = 23-1 = 4. Thus the series 0,1,2,3,4,5,6,7 becomes -4,-3,-2,-

1,0,1,2,3. Therefore, the true exponent -4 is represented by 0 in the bias form and -3 by
+1, etc.

• zero is represented by 0.0 … x 20.

Ex. if n = 1010.1111, we normalize it to 0.10101111 x 24. The true exponent is +4. Using the
32-bit standard and a bias of 2m-1-1 = 28-1-1 = 127, the true exponent (+4) is stored as a biased
exponent of 4+127 = 131, or 10000011 in binary. Thus we have

0 | 1 0 0 0 0 0 1 1 | 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notice that the first 1 in the normalized fraction is omitted.

The biased exponent representation is also called excess n, where n is 2m-1-1 (or 2m-1).


