Conversion of Binary, Octal and Hexadecimal Numbers

From Binary to Octal

Starting at the binary point and working left, separate the bits into groups of three and replace each group with the corresponding octal digit.
$10001011_{2}=010001011=213_{8}$

From Binary to Hexadecimal

Starting at the binary point and working left, separate the bits into groups of four and replace each group with the corresponding hexadecimal digit.

$$
10001011_{2}=1000 \quad 1011=8 \mathrm{~B}_{16}
$$

From Octal to Binary

Replace each octal digit with the corresponding 3-bit binary string.

$$
213_{8}=010001011=10001011_{2}
$$

From Hexadecimal to Binary

Replace each hexadecimal digit with the corresponding 4-bit binary string.

$$
8 \mathrm{~B}_{16}=1000 \quad 1011=10001011_{2}
$$

Conversion of Decimal Numbers

From Decimal to Binary

From Binary to Decimal
10001011 ${ }_{2}$

$$
\begin{aligned}
& =1 \times 2^{7}+0 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =128+8+2+1
\end{aligned}
$$

Conversion of Fractions

Starting at the binary point, group the binary digits that lie to the right into groups of three or four.
$0.10111_{2}=0.101 \quad 110=0.56_{8}$
$0.10111_{2}=0.1011 \quad 1000=0 . \mathrm{B8}_{16}$

Problems convert the following

Binary	Octal	Decimal	Hex
10011010			
	2705		
		2705	3 BC

Binary	Octal	Decimal	Hex
10011010	232	154	9 A
10111000101	2705	1477	5 C 5
101010010001	5221	2705	A91
1110111100	1674	956	3 BC

8	2705	1	16	2705	1
8	338	2	16	169	9
8	42	2		$10=\mathrm{A}$	

Add

1111
$+\quad 10001$
100000

Subtract

11	0	0	0	
-	1	1	1	1
	0	0	1	

Multiply

	100	0	1	1
+	1	1	1	0
1	0	0	0	0

| 100 | 0 | 1 | |
| ---: | ---: | ---: | ---: | ---: |
| - | $1 \quad 1$ | 1 | 1 |
| | 1 | 0 | 0 |

for implementation - add the shifted multiplicands one at a time.

$$
\begin{array}{lllllllll}
& & & 1 & 1 & 1 & 0 \\
& & & & & \\
& & & 1 & 1 & 0 & 1 \\
& & & 1 & 1 & 0 \\
& & & 0 & 0 & 0 & 0 & & \\
& & 0 & 1 & 1 & 1 & 0 & \\
& & 1 & 1 & 1 & 0 & & & \\
& 1 & 0 & 0 & 0 & 1 & 1 & 0 & \\
& 1 & 1 & 1 & 0 & & & & \\
\hline & 0 & 1 & 1 & 0 & 1 & 1 & 0 & \\
\hline
\end{array}
$$

Divide

1101	110
1111)11000101\|	1101)1011001\|
1111	$\underline{1101}$
1001101 \|	100101
$\underline{1111}$	$\underline{1101}$
10001	1011
$\underline{00001}$	$\underline{00001}$
10001 \|	1011
1111	
10	
1001	
1101)1111001\|	
$\underline{1101}$	
100011	
$\underline{0000-1}$	
100011	
$\underline{0000-1}$	
100011	
$\underline{1101}$	
100	

Sign-Magnitude

$0=$ positive
$1=$ negative
n bit range $=-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$
4 bits range $=-7$ to +7
2 possible representation of zero.

2's Complement

flip bits and add one.
n bit range $=-\left(2^{n-1}\right)$ to $+\left(2^{n-1}-1\right)$
4 bits range $=-8$ to +7
$0000=0$
$0001=1$
$0010=2$
0011
0100
0101
0110
$0111=7$
$1000=-8$
$1001=-7$
1010
1011
1100
1101
$1110=-2$
$1111=-1$

Example

$1110=14$
0001 flip bits
0010 add one WRONG this is not -14 . Out of range. Need 5 bits
$01110=14$
10001 flip bits
10010 add one. This is -14 .

Sign Extend

add 0 for positive numbers
add 1 for negative numbers

Add 2's Complement

1110	$=-2$			
+1101	$=-3$	\quad	1110	$=-2$
---:	:---			
+0011	$=3$			
11011	ignore carry $=-5$	$\quad+0001 \quad$ ignore carry $=1$		

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum if different from the signs of both operands. Ex.

0100	$=4$
+0101	$=5$
1001	$=-7$ WRONG

$$
\begin{aligned}
1100 & =-4 \\
+\quad 1011 & =-5 \\
\hline+0111 & \text { ignore carry }=7 \text { WRONG }
\end{aligned}
$$

Multiply 2's Complement

1110	$=-2$	1110	$=-2$
* 1101	$=-3$	* 0011	$=3$
11111110	sign extend to 8 bits	11111110	sign extend to 8 bits
+ 0000000		+1111110	
11111110		411111010	ignore carry $=-6$
$\begin{array}{r}1 \\ +\quad 111110 \\ \hline\end{array}$			
411110110	ignore carry		
$\begin{array}{r} \\ +\quad 00010 \\ \hline\end{array}$	negate -2 for sign bit		
400000110	ignore carry $=6$		
10010	$=-14$		
* 10011	$=-13$		
1111110010	sign extend to 10 bits		
+ 111110010			
+1111010110	ignore carry		
$\begin{array}{r}+00000000 \\ \hline\end{array}$			
1111010110			
$\begin{array}{r} \\ +\quad 0000000 \\ \hline\end{array}$			
1111010110			
$\begin{array}{r}1 \\ +\quad 001110 \\ \hline\end{array}$	negate -14 for sign bit		
40010110110	ignore carry $=182$		

Floating-Point Numbers

mantissa $x(\text { radix })^{\text {exponent }}$
The floating-point representation always gives us more range and less precision than the fixed-point representation when using the SAME number of digits.

Mantissa sign	Sign exponent	Mantissa magnitude

General format

0	1	
Mantissa sign	8-bit excess-127 characteristic	23-bit normalized fraction
32-bit standard	Implied binary point	
0	1	12

Mantissa sign	11-bit excess 1023 charactstic	52-bit normalized fraction

64-bit standard

Normalized fraction - the fraction always starts with a nonzero bit. e.g.
$0.01 \ldots \times 2^{\mathrm{e}}$ would be normalized to $0.1 \ldots \times 2^{\mathrm{e}-1}$
$1.01 \ldots \times 2^{\mathrm{e}}$ would be normalized to $0.101 \ldots \times 2^{\mathrm{e}+1}$
Since the only nonzero bit is 1 , it is usually omitted in all computers today. Thus, the 23-bit normalized fraction in reality has 24 bits.

The exponent is represented in a biased form.

- If we take an m-bit exponent, there are 2^{m} possible unsigned integer values.
- Re-label these numbers: 0 to $2^{m}-1 \rightarrow-2^{m-1}$ to $2^{m-1}-1$ by subtracting a constant value (or bias) of 2^{m-1} (or sometimes $2^{m-1}-1$).
- Ex. using $m=3$, the bias $=2^{3-1}=4$. Thus the series $0,1,2,3,4,5,6,7$ becomes $-4,-3,-2,-$ $1,0,1,2,3$. Therefore, the true exponent -4 is represented by 0 in the bias form and -3 by +1 , etc.
- zero is represented by $0.0 \ldots \times 2^{0}$.

Ex. if $n=1010.1111$, we normalize it to 0.10101111×2^{4}. The true exponent is +4 . Using the 32 -bit standard and a bias of $2^{m-1}-1=2^{8-1}-1=127$, the true exponent $(+4)$ is stored as a biased exponent of $4+127=131$, or 10000011 in binary. Thus we have
$0|10000011| 0101111000000000000000$
Notice that the first 1 in the normalized fraction is omitted.
The biased exponent representation is also called excess \boldsymbol{n}, where n is $2^{m-1}-1$ (or 2^{m-1}).

