Nucleophilic Substitution Reactions $S_N 1$ and $S_N 2$ - A nucleophile, a species with an unshared electron pair (lone-pair electrons), reacts with an alkyl halide (substrate) by replacing the halogen substituent (leaving group). - In nucleophilic substitution reactions, the C—X bond of the substrate undergoes heterolysis, and the lone-pair electrons of the nucleophile is used to form a new bond to the carbon atom. A nucleophile is any negative ion or any neutral molecule that has at least one unshared electron pair-General Reaction for Nucleophilic Substitution of an Alkyl Halide by Hydroxide Ion. - To be a good leaving group the substituent must be able to leave as a relatively stable, weakly basic molecule or ion. - In alkyl halides the leaving group is the halogen substituent it leaves as a halide ion. - Because halide ions are relatively stable and very weak bases, they are good leaving groups. # NUCLEOPHILIC SUBSTITUTION REACTION AN S_N^2 REACTION - The rate of the reaction depends on the concentration of methyl chloride and the concentration of hydroxide ion - The reaction is second order overall. - The reaction is first order with respect to methyl chloride and first order with respect to hydroxide ion **Rate equation:** Rate \propto [CH₃Cl] [OH⁻] \Rightarrow Rate = k [CH₃Cl] [OH⁻] k is the rate constant. # MECHANISM FOR THE S_N2 REACTION - The nucleophile attacks the carbon bearing the leaving group from the back side. - The bond between the nucleophile and the carbon atom is forming, and the bond between the carbon atom and the leaving group is breaking. - The configuration of the carbon atom becomes inverted during $S_{\rm N}2$ reaction. - Because bond formation and bond breaking occur simultaneously in a single transition state, the S_N^2 reaction is a *concerted reaction*. ### **Mechanism** #### Mechanism: ### Free Energy Diagram Reaction coordinate ### For Methanol Reaction coordinate ### **Stereo Chemistry** ### Reactions of Alkyl Halides (R-X): [SN1, SN2 reactions] $$H_3C - \overline{}^{\delta^+}$$ $$\Delta$$ EN (F-C) = $$(4.0 - 2.5) = 1.5$$ $$H_3C - CI$$ $$\Delta$$ EN (CI-C) = $$(3.0 - 2.5) = 0.5$$ $$H_3C \longrightarrow Br$$ $$\Delta$$ EN (Br-C) = $$(2.8 - 2.5) = 0.3$$ $$\Delta$$ EN (I-C) = $$\Delta EN (I-C) = (2.5 - 2.5) = 0.0$$ The α -carbon in an alkyl halide is electrophilic (electron accepting) for either or both of two reasons... - a) the C to X (F, Cl, Br) bond is polar making carbon δ + - b) X (Cl, Br, I) is a leaving group decreasing basicity, increasing stability The best leaving groups are the weakest bases. | pKb = 23 | pKb = 22 | pKb = 21 | pKb=11 | pKb = -1.7 | |----------|----------|----------|------------------|------------| | I. | Br · | Cl. | \mathbf{F}^{-} | но. | | 30,000 | 10,000 | 200 | 1 | 0 | The poorest leaving groups are the strongest bases. # 2nd Order Nucleophilic Substitution Reactions, i.e., $S_N 2$ reactions The rate of an S_N 2 reaction depends upon 4 factors: - 1. The nature of the substrate (the alkyl halide) - 2. The power of the nucleophile - 3. The ability of the leaving group to leave - 4. The nature of the solvent ### 1. Consider the nature of the substrate: Unhindered alkyl halides, those in which the back side of the α -carbon is not blocked, will react fastest in S_N2 reactions, that is: \Box While a methyl halides reacts quickly in S_N2 reactions, a 3° does not react. The back side of an α-carbon in a 3° alkyl halide is completely blocked. ### Effect of nature of substrate on rate of S_N2 reactions: #### SPACE FILLING MODELS SHOW ACTUAL SHAPES AND RELATIVE SIZES ### Effect of the nucleophile on rate of S_N2 reactions: •The α -carbon in vinyl and aryl halides, as in 3° carbocations, is completely hindered and these alkyl halides do not undergo s_{N^2} reactions. The overlapping p-orbitals that form the π -bonds in vinyl and aryl halides completely block the access of a nucleophile to the back side of the α -carbon. # ncreasing ### Effect of nature substrate on rate of $S_N 2$ reactions: ### **Consider the power of the nucleophile:** - The better the nucleophile, the faster the rate of S_N^2 reactions. - The table below show the relative power or various nucleophiles. - The best nucleophiles are the best electron donors. | Reactivity | Nu: | Relative Reactivity | |------------|--|---------------------| | very weak | HSO ₄ , H ₂ PO ₄ , RCOOH | < 0.01 | | weak | ROH | 1 | | | HOH, NO ₃ | 100 | | fair | F | 500 | | | Cl ⁻ , RCOO ⁻ | 20×10^3 | | | NH ₃ , CH ₃ SCH ₃ | 300×10^{3} | | good | N_3 , Br | 600×10^{3} | | | OH ⁻ , CH ₃ O ⁻ | 2×10^{6} | | very good | CN ⁻ , HS ⁻ , RS ⁻ , (CH ₃) ₃ P:, NH ₂ ⁻ , RMgX, I ⁻ , H ⁻ | $> 100 \times 10^6$ | #### Effect of nature of the leaving group on rate of $S_N 2$ reactions: ### 3. Consider the nature of the leaving group - The leaving group usually has a negative charge - Groups which best stabilize a negative charge are the best leaving groups, i.e., the weakest bases are stable as anions and are the best leaving groups. - Weak bases are readily identified. They have high pKb values. | pKb = 23 | pKb = 22 | pKb = 21 | pKb = 11 | pKb = -1.7 | pKb = -2 | pKb = -21 | |----------|----------|----------|----------|------------|----------|-------------------------------| | I- | Br - | CI- | F- | HO- | RO- | H ₂ N ⁻ | | 30,000 | 10,000 | 200 | 1 | 0 | 0 | 0 | Increasing leaving ability - ☐ Iodine (-I) is a good leaving group because iodide (I-) is non basic. - The hydroxyl group (-OH) is a poor leaving group because hydroxide (OH⁻) is a strong base. ### Effect of the solvent on rate of $S_N 2$ reactions: ### 4. Consider the nature of the solvent - There are 3 classes of organic solvents: - Protic solvents, which contain –OH or –NH₂ groups. Protic solvents slow down S_N² reactions. - Polar aprotic solvents like acetone, which contain strong dipoles but no –OH or –NH₂ groups. Polar aprotic solvents speed up S_N² reactions. - Non polar solvents, e.g., hydrocarbons. S_N2 reactions are relatively slow in non polar solvents. Protic solvents (e.g., H_2O , MeOH, EtOH, CH_3COOH , etc.) cluster around the Nu:-(solvate it) and lower its energy (stabilize it) and reduce its reactivity via H-bonding. A solvated anion (Nu:-) has reduced nucleophilicity, reduced reactivity and increased stability A solvated nucleophile has difficulty hitting the α -carbon. # CH₃—c = N: Effect of the solvent on rate of S_N^2 acetonitrile reactions: - □ Polar Aprotic Solvents solvate the cation counterion of the nucleophile but not the nucleophile. - Examples include acetonitrile (CH₃CN), acetone (CH₃COCH₃), dimethylformamide (DMF) [(CH₃)₂NC=OH], dimethyl sulfoxide, DMSO [(CH₃)₂SO], hexamethylphosphoramide, HMPA {[(CH₃)₂N]₃PO} and dimethylacetamide (DMA). Polar aprotic solvents solvate metal cations leaving the anion counterion (Nu: -) bare and thus more reactive ### Effect of the solvent on rate of $S_N 2$ reactions: •Non polar solvents (benzene, carbon tetrachloride, hexane, etc.) do not solvate or stabilize nucleophiles. S_N2 reactions are relatively slow in non polar solvents similar to that in protic solvents. ### Solvent Effect for S_N2 reactions Requires a polar, aprotic solvent... • NO alcohols or amines → OH # Why...because hydrogen bonding with the nucleophile can occur...slowing down the reaction ### Polar, Aprotic Solvents **DMSO** 0 | |S dimethyl sulfoxide _____N acetonitrile **DMF** dimethyl formamide **HMPA** hexamethyl phosphamide ### S_N2 Conditions Summary - 1) Substrate (methyl > primary > secondary >> tertiary) - 2) Nucleophile (negative charge > neutral) - 3) leaving group (Y) (Y stabilizes a negative charge) - 4) solvent (needs to be polar and aprotic) ### AN S_N1 REACTION • THE REACTION OF TERT-BUTYL CHLORIDE WITH HYDROXIDE ION # 1st Order Nucleophilic Substitution Reactions, i.e., $S_N 1$ reactions - \square 3° alkyl halides are essentially inert to substitution by the S_N^2 mechanism because of steric hindrance at the back side of the a-carbon. - Despite this, 3° alkyl halides do undergo nucleophilic substitution reactions quite rapidly, but by a different mechanism, i.e., the S_N1 mechanism. - \square S_N1 = Substitution, Nucleophilic, 1st order (unimolecular). - \Box S_N1 reactions obey 1st order kinetics, i.e., Rate = k·[RX]. - ☐ The rate depends upon the concentration of only 1 reactant, the alkyl halide-not the nucleophile - \square The order of reactivity of substrates for $S_N 1$ reactions is the reverse of $S_N 2$ • $$3^{\circ}$$ > 2° > 1° > vinyl > phenyl > Me $^{\circ}$ • R_3 C-Br R_2 HC-Br RH_2 C-Br CH_2 =CH-Br ϕ -Br H_3 C-Br increasing rate of S_N1 reactions ### Mechanism of S_N1 reactions The mechanism of an S_N1 reaction occurs in 2 steps: - Reaction Steps ... - 1. the slower, rate-limiting dissociation of the alkyl halide forming a C+ intermediate - 2. a rapid nucleophilic attack on the C+ Note that the nucleophile is not involved in the slower, rate-limiting step. ### The Rate of S_N1 reactions - The rate of an S_N1 reaction depends upon 3 factors: - 1. The nature of the substrate (the alkyl halide) - 2. The ability of the leaving group to leave - The nature of the solvent - The rate is independent of the power of the nucleophile. ### • 1. Consider the nature of the substrate. Highly substituted alkyl halides (substrates) form a more stable C+. #### **Stability of Carbocations** - Alkyl groups are weak electron donors. - \Box They stabilize carbocations by donating electron density by induction (through σ bonds) H₃C → C + CH₃ Inductive effects: Alkyl groups donate (shift) electron density through sigma bonds to electron deficient atoms. This stabilizes the carbocation. ☐ They stabilize carbocations by hyperconjugation (by partial overlap of the alkyl C-to-H bonds with the empty p-orbital of the carbocation). #### **Stability of Carbocations** Allyl and benzyl halides also react quickly by $S_N 1$ reactions because their carbocations are unusually stable due to their resonance forms which delocalize charge over an extended π System $$H_{2}C \xrightarrow{+} H_{2}C^{+} \longrightarrow H_{2}C^{+}$$ ### Relative Stability of All Types of Carbocations #### Increasing C+ stability and rate of S_N1 reaction Note that 1° allylic and 1° benzylic C+'s are about as stable as 2°alkyl C+'s. Note that 2° allylic and 2° benzylic C+'s are about as stable as 3° alkyl C+'s. Note that 3° allylic and 3° benzlic C+'s are more stable than 3° alkyl C+'s Note that phenyl and vinyl C+'s are unstable. Phenyl and vinyl halides do not usually react by $S_N 1$ or $S_N 2$ reactions ### Effect of the nucleophile on rate of $S_N 1$ reactions: #### Consider the nature of the Nucleophile: - Recall again that the nature of the nucleophile has no effect on the rate of S_N1 reactions because the slowest (rate-determining) step of an S_N1 reaction is the dissociation of the leaving group and formation of the carbocation. - ☐ All carbocations are very good electrophiles (electron acceptors) and even weak nucleophiles, like H₂O and methanol, will react quickly with them. - \square The two $S_N 1$ reactions will proceed at essentially the same rate since the only difference is the nucleophile. # Effect of nature of the leaving group on rate of S_N1 reactions: - 2. Consider the nature of the leaving group: - The nature of the leaving group has the same effect on both $S_N 1$ and $S_N 2$ reactions. - The better the leaving group, the faster a C+ can form and hence the faster will be the $S_N 1$ reaction. - The leaving group usually has a negative charge - Groups which best stabilize a negative charge are the best leaving groups, i.e., the weakest bases are stable as anions and are the best leaving groups. - Weak bases are readily identified. They have high pKb values. | pKb = 23 | pKb = 22 | pKb = 21 | pKb = 11 | pKb = -1.7 | pKb = -2 | pKb = -21 | |----------|----------|----------|----------|------------|----------|-------------------| | I- | Br - | CI- | F- | HO- | RO- | H ₂ N⁻ | | 30,000 | 10,000 | 200 | 1 | 0 | 0 | 0 | #### Increasing leaving ability - ☐ Iodine (-I) is a good leaving group because iodide (I-) is non basic. - ☐ The hydroxyl group (-OH) is a poor leaving group because hydroxide (OH⁻) is a strong base. ### Effect of the solvent on rate of $S_N 1$ reactions: - 3. Consider the nature of the solvent: - For S_N1 reactions, the solvent affects the rate only if it influences the stability of the charged transition state, i.e., the C+. The Nu: is not involved in the rate determining step so solvent effects on the Nu: do not affect the rate of S_N1 reactions. - Polar solvents, both protic and aprotic, will solvate and stabilize the charged transition state (C+ intermediate), lowering the activation energy and accelerating S_N1 reactions. - Nonpolar solvents do not lower the activation energy and thus make S_N1 reactions relatively slower The relative rates of an S_N1 reaction due to solvent effects are given $$(CH_3)_3C-CI + ROH \rightarrow (CH_3)_3C-OR + HCI$$ H_2O 20% EtOH (aq) 40% EtOH (aq) EtOH $100,000$ 14,000 100 1 ### Effect of the solvent on rate of $S_N 1$ reactions: - Solvent polarity is usually expressed by the "dielectric constant", ε , which is a measure of the ability of a solvent to act as an electric insulator. - ☐ Polar solvents are good electric insulators because their dipoles surround and associate with charged species. - ☐ Dielectric constants of some common solvents are given in the following table | name | dielectric constant | name | dielectric constant | | |---------------|---------------------|-----------------|---------------------|--| | aprotic | solvents | protic solvents | | | | hexane | 1.9 | acetic acid | 6.2 | | | benzene | 2.3 | acetone | 20.7 | | | diethyl ether | 4.3 | ethanol | 24.3 | | | chloroform | 4.8 | methanol | 33.6 | | | HMPA | 30 | formic acid | 58.0 | | | DMF | 38 | water | 80.4 | | | DMSO | 48 | | | | ### **HMPA** ### **DMSO** ### DMF ### Reactivity of alkyl halides toward substitution and elimination | Halide type | S_N1 | S_N2 | E1 | E2 | |------------------|--|---|--|---| | Primary halide | Does not occur | Highly favored | Does not occur | Occurs when
strong, hindered
bases are used | | Secondary halide | Can occur under
solvolysis
conditions in polar
solvents | Favored by good
nucleophiles in
polar aprotic
solvents | Can occur under
solvolysis
conditions in polar
solvents | Favored when strong bases are used | | Tertiary halide | Favored by nonbasic nucleophiles in polar solvents | Does not occur | Occurs under solvolysis conditions | Highly favored
when bases are
used | ### Effects of reaction variables on substitution and elimination reactions | Reaction | Solvent | Nucleophile/base | Leaving group | Substrate
structure | |----------|--|---|---|--| | $S_N 1$ | Very strong
effect; reaction
favored by polar
solvents | Weak effect; reaction
favored by good
nucleophile/weak
base | Strong effect;
reaction favored by
good leaving group | Strong effect;
reaction favored by
3°, allylic, and
benzylic substrates | | S_N2 | Strong effect;
reaction favored
by polar aprotic
solvents | Strong effect;
reaction favored by
good nucleophile/
weak base | Strong effect;
reaction favored by
good leaving group | Strong effect;
reaction favored by
1°, allylic, and
benzylic substrates | | E1 | Very strong
effect; reaction
favored by polar
solvents | Weak effect; reaction favored by weak base | Strong effect;
reaction favored by
good leaving group | Strong effect;
reaction favored by
3°, allylic, and
benzylic substrates | | E2 | Strong effect;
reaction favored
by polar aprotic
solvents | Strong effect;
reaction favored by
poor nucleophile/
strong base | Strong effect;
reaction favored by
good leaving group | Strong effect;
reaction favored by 3°
substrates | ### Overall Summary of S_N1 , S_N2 , E1 and E2 Reactions | CH ₃ X
Methyl | RCH₂X
1° | RR'CHX
2° | RR'R"CX
3° | |----------------------------------|--|---|---| | | Bimolecular reactions | only | $S_{\rm N}1/E1$ or $E2$ | | Gives S _N 2 reactions | Gives mainly S _N 2 except with a hindered strong base [e.g., (CH ₃) ₃ CO ⁻] and then gives mainly E2 | Gives mainly $S_N 2$ with weak bases (e.g., Γ , CN^- , RCO_2^-) and mainly $E2$ with strong bases (e.g., RO^-) | No S _N 2 reaction. In solvolysis gives S _N 1/E1, and at lower temperatures S _N 1 is favored. When a strong base (e.g., RO ⁻) is used E2 predominates |