Antitubercular Drug

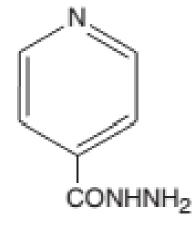
Dr. Deepak K Gupta

Introduction

- Tuberculosis most important communicable disease in the world.
- Mycobacteria are intrinsically resistant to most antibiotics
 - Grows more slowly than other bacteria antibiotics active against rapidly growing cells
 - lipid-rich mycobacterial cell wall is impermeable to many agents
 - It grows inside macrophage poorly penetrated by drugs
 - Excellent ability to develop resistance Multiple Drug Resistant (MDR)

Introduction

- Combinations of two or more drugs
 - to overcome these obstacles
 - to prevent emergence of resistance during the course of therapy
- The response of mycobacterial infections to chemotherapy is slow - treatment must be administered for months to years, depending on which drugs are used


Classification

- According to clinical utility the anti TB drugs can be divided into 2 groups
 - First Line : high antitubercular efficacy as well as low toxicity – routinely used
 - Isoniazid (H), Rifampin (R), Pyrazinamide (Z), Ethambutol (E), Streptomycin (S) - HRZES
 - Second Line : low antitubercular efficacy or high toxicity
 - Paraminosalicylic Acid, Cycloserine, Kanamycin, Amikacin, Ciprofloxacin, Olfloxacin, Clarithromycin, Azithromycin

First Line Drug

ISONIAZID

- Isonicotinic acid hydrazide
- Most active drug for the treatment of tuberculosis
- freely soluble in water
- bactericidal for actively growing tubercle bacilli
- less effective against atypical mycobacterial species
- penetrates into macrophages and is active against both extracellular and intracellular organisms

Isoniazid

Mechanism of Action & Basis of Resistance

- inhibits synthesis of mycolic acids essential components of mycobacterial cell walls
- Higly selective for mycobacterium
- Resistance
 - Its prodrug activated by enzyme catalase-peroxidase
 - Mutation causes inhibition of this enzyme
 - No cross resistance occurs with other antitubercular drug
 - Always given in combination

Pharmacokinetics

- readily absorbed from the gastrointestinal tract diffuses readily into all body fluids and tissues.
- acetylation by liver N -acetyltransferase, is genetically determined
- half-lives :1 hour(fast acetylators) and 3 hours (slow acetylators)
- Excreted, mainly in the urine need not be adjusted in renal failure
- Contraindicated severe preexisting hepatic insufficiency

Clinical Uses

- Typical dosage of isoniazid is 5 mg/kg/d 10 mg/kg/d (sever infection) or 15 mg/kg dose – twice weekly
- Adult dose : 300 mg oral dose O.D.
- Pyridoxine, 25–50 mg/d predisposing to neuropathy, an adverse effect of isoniazid
- Can also be given parenterally in the same dosage
- Latent tuberculosis : 300 mg/d (5 mg/kg/d) or 900 mg twice weekly for 9 months

Adverse Reactions

- Depends on dosage and duration of administration
- Immunologic Reactions
 - Fever and skin rashes are occasionally seen.
 - Drug-induced systemic lupus erythematosus has been reported.

• Direct Toxicity

- Clinical hepatitis with loss of appetite, nausea, vomiting, jaundice – promptly discontinued
- The risk of hepatitis is greater in individuals
 - Alcohol dependence
 - Possibly during pregnancy and the postpartum period

Adverse Reactions : Direct

- Peripheral neuropathy is observed in 10–20% occur in slow acetylators and patients with predisposing conditions
 - malnutrition,
 - alcoholism,
 - diabetes,
 - AIDS, and uremia
- Relative pyridoxine deficiency promotes excretion of pyridoxine
- readily reversed by administration of pyridoxine in a dosage as low as 10 mg/d
- Central nervous system toxicity : less common, includes memory loss, psychosis, and seizures.

RIFAMPIN

- Semisynthetic derivative of rifamycin -produced by *Streptomyces mediterranei*
- Active in vitro against gram-positive and gramnegative cocci, some enteric bacteria, mycobacteria, and chlamydiae.
- Resistant mutants approximately 1 in 10⁶ organisms
- Rapidly selected out if rifampin is used as a single drug – must be used in combination
- no cross-resistance to other classes of antimicrobial drugs

Mechanism of Action & Resistance

- Binds to the bacterial DNA-dependent RNA polymerase inhibits RNA synthesis
- Bactericidal for mycobacteria
- Readily penetrates most tissues and penetrates into phagocytic cells
- Can kill organisms that are poorly accessible to many other drugs
 - Intracellular organisms
 - sequestered in abscesses and lung cavities
- **Resistance:** mutations result in reduced binding of rifampin to RNA polymerase

Pharmacokinetics

- Well absorbed after oral administration and excreted mainly through the **liver into bile**
- Enterohepatic recirculation bulk excreted as a deacylated metabolite in feces and a small amount excreted in the urine
- Dosage adjustment for renal or hepatic insufficiency is not necessary.
- Distributed widely in body fluids and tissues.
- Relatively highly protein bound

Clinical Uses

- 10 mg/kg/d O.D. for 6 months in combination with isoniazid or other antituberculous drugs to patient.
- Some atypical mycobacterial infections and in leprosy
- 600 mg twice daily for 2 days can eliminate meningococcal carriage
- 20 mg/kg/d for 4 days prophylaxis in contacts of children with *Haemophilus influenzae* type b disease
- Serious staphylococcal infections osteomyelitis and prosthetic valve endocarditis

Adverse Reactions

- harmless orange color to urine, sweat, and tears
- Occasional adverse effects include
 - rashes, thrombocytopenia, and nephritis
 - cholestatic jaundice and occasionally hepatitis
 - light-chain proteinuria
 - flu-like syndrome characterized by fever, chills, myalgias, anemia, and thrombocytopenia

Adverse Reactions

- Induces most cytochrome P450 isoform elimination of numerous other drugs
 - Methadone,
 - Anticoagulants,
 - Cyclosporine,
 - Some anticonvulsants,
 - Protease inhibitors,
 - some nonnucleoside reverse transcriptase inhibitors
 - contraceptives,
 - And a host of others

ETHAMBUTOL

- Synthetic, water-soluble, heat-stable compound - dispensed as the dihydrochloride salt
- Bacteriostatic
- Additionally it slows the rate of sputum conversion
- Development of resistance
- Given in the combination with RHZ

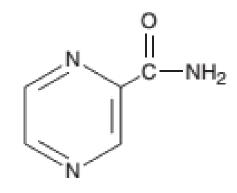
Mechanism of action

- Inhibits mycobacterial arabinosyl transferases
 an essential component of the mycobacterial cell wall.
- Resistance due to alteration in target gene
- No cross resistance with other drug
- Reesistance to ethambutol emerges rapidly when the drug is used alone - combination with other antituberculous drugs

Pharmacokinetics

- well absorbed from the gut
- 20% of the drug is excreted in feces and 50% in urine in unchanged form
- crosses the blood-brain barrier only when the meninges are inflamed
- Temporarily stored in RBC
- T ¹/₂ 4 hrs
- Caution taken for renal failure patient

Clinical Use


- Ethambutol hydrochloride 15–25 mg/kg/d
 O.D
- higher dose is recommended for treatment of tuberculous meningitis
- 50 mg/kg when a twice-weekly dosing schedule

Adverse Reactions

- **Retrobulbar neuritis** 25 mg/kg/d continued for several months.
 - loss of visual acuity and red-green color blindness.
 - 15 mg/kg/d or less, visual disturbances are very rare
- Contraindicated in children too young to permit assessment of visual acuity and red green color discrimination

PYRAZINAMIDE

- Relative of nicotinamide
- Stable and slightly soluble in water but week drug
- Inactive at neutral pH, but at pH 5.5 it inhibits tubercle bacilli
- Taken up by macrophages and exerts its activity
- Highly effective during the first 2 month of therapy

Pyrazinamide (PZA)

Mechanism of Action

- Pyrazinamide is converted to pyrazinoic acid (active form) - by mycobacterial pyrazinamidase.
- Disrupts mycobacterial cell membrane metabolism and transport functions
- Resistance
 - impaired uptake of pyrazinamide
 - mutations of enzyme causing conversion of pyrazinamide to its active form

Pharmacokinetics

- well absorbed from the gastrointestinal tract
- widely distributed in body tissues, including inflamed meninges
- half-life is 8–11 hours
- Metabolized by the liver
- Metabolites are renally
- no cross-resistance

Clinical Use

- Used as front line drug for tuberculosis with rifampin and isoniazid
- Normal Dose: 40–50 mg/kg thrice weekly or twice-weekly treatment regimens for 6 months
- Hemodialysis patients & creatinine clearance less than 30 mL/min : 25–35 mg/kg three times weekly (not daily)

Adverse Effect

- Hepatotoxicity (in1–5% of patients) less common in Indian population
- Nausea, vomiting, drug fever, and hyperuricemia.
 - occurs uniformly drug therapy should be not stopped
- Contraindicated in liver disease patient

Streptomycin

- Part of aminoglycosides antibiotic
- First clinically useful antitubercular drug, but less effective than INH or rifampin
- Acts only on extracellular bacilli poor penetration into cells
- Doesn't cross the BBB, but penetrates tubercular cavities

Mechanism of action

- Irreversible inhibitors of protein synthesis,
- Bactericidal
- Inside the cell, aminoglycosides bind to specific 30S-subunit ribosomal proteins and inhibits protein synthesis

Resistance

- Inactivation by adenylylation, acetylation, or phosphorylation
- impaired entry into the cell
- receptor protein on the 30S ribosomal subunit deleted or altered as a result of a mutation

Pharmacokinetics

- absorbed very poorly from the intact gastrointestinal tract
- intramuscular injection or usually administered intravenously as a 30- to 60minute infusion
- Normal half-life 2–3 hours, but in renal failure patient it reduces to 24-48 hrs

Clinical Use

- Treatment of infections resistant to other drugs
- Adults: 20–40 mg/kg/d daily for several weeks
 - Followed by 1–1.5 g two or three times weekly for several months
- Other drugs are always given in **combination** to prevent emergence of resistance
- Nontuberculosis species of mycobacteria other than Mycobacterium avium complex (MAC) and Mycobacterium kansasii are resistant
- Dose is reduced to half in hemodialysis patient

Adverse Reactions

- Ototoxic and nephrotoxic
- Vertigo and hearing loss common adverse effects and may be permanent
- Dose-related, and the risk is increased in the elderly
- Therapy should be limited no more than 6 months whenever possible

Second Line Drugs

Second Line Drugs

- This drugs are considered only when
 - resistance to first-line agents
 - failure of clinical response to conventional therapy;
 - Serious treatment-limiting adverse drug reactions
- Expert guidance to deal with the toxic effects is required
- Ex: Paraminosalicylic Acid, Cycloserine, Kanamycin, Amikacin, Ciprofloxacin, Olfloxacin, Clarithromycin, Azithromycin

Para-aminosalicyclic Acid

- structural analogue of *paminobenzoic acid* (PABA)
- highly specific for *M. tuberculosis* not effective against other mycobacterium species
- Combined with isoniazid an alternative substrate and block hepatic acetylation of isoniazid- increasing free isoniazid levels.
- limited to the treatment of MDR tuberculosis
- Discouraged its use : primary resistance, poor compliance due to GI intolerance, and lupus like reactions

Ethionamide

- Chemically related to isoniazid
- Blocks the synthesis of mycolic acids
- Poorly water soluble and available only in oral form.
- Dosage of 15 mg/kg/d initial dose of 250 mg once daily, which is increased in 250-mg increments to the recommended dosage
- Intense gastric irritation and neurologic symptoms as well as hepatotoxic

Capreomycin

- **peptide protein synthesis** inhibitor antibiotic obtained from *Streptomyces capreolus*
- Daily injection of 15 mg/kg/d intramuscularly
- treatment of drug-resistant tuberculosis
- Strains of *M tuberculosis* that are resistant to streptomycin or amikacin - susceptible to capreomycin.
- Nephrotoxic and ototoxic Tinnitus, deafness, and vestibular disturbances occur
- local pain, and sterile abscesses may occur

Cycloserine

- inhibitor of cell wall synthesis
- 0.5–1 g/d in two divided oral doses
- Cleared renally Dose is reduced to half in case of renal dysfunction
- peripheral neuropathy and central nervous system dysfunction, including depression and psychotic reactions.
- Pyridoxine, 150 mg/d given in addition to it

Kanamycin & Amikacin

- Treatment of tuberculosis suspected or known to be caused by streptomycin-resistant or multidrugresistant strains
- Kanamycin is more toxic comparatively **absolute**
- Prevalence of **amikacin-resistant strains** is low (< 5%)
- Also active against atypical mycobacteria.
- 15 mg/kg intravenous infusion
- No cross-resistance between streptomycin and amikacin but it occurs with kanamycin
- used in combination with at least one and preferably two or three other drugs

Fluoroquinolones

- In addition to their activity against many gram-positive and gram-negative bacteria inhibit strains of *M. tuberculosis*
- Also active against atypical mycobacteria
- Standard dosage
 - **Ciprofloxacin:** 750 mg orally twice a day
 - **Levofloxacin:** 500–750 mg once a day
 - **Moxifloxacin:** 400 mg once a day

Revised National Tuberculosis Control Programme (RNTCP 1997) Guidelines-India

TB category	Type of TB	Initial phase	Continuation Phase	Total duration
I	New, untreated TB	2H ₃ R ₃ Z ₃ E ₃	4H ₃ R ₃	6
II	Smear positive failure, relapse and interrupted treatment cases	$2H_{3}R_{3}Z_{3}E_{3}S_{3}-1H_{3}R_{3}Z_{3}E_{3}$	5H ₃ R ₃ E ₃	8
III	Less severe form extra- pulmonary TB – smear negative	2H ₃ R ₃ Z ₃	4H ₃ R ₃	6

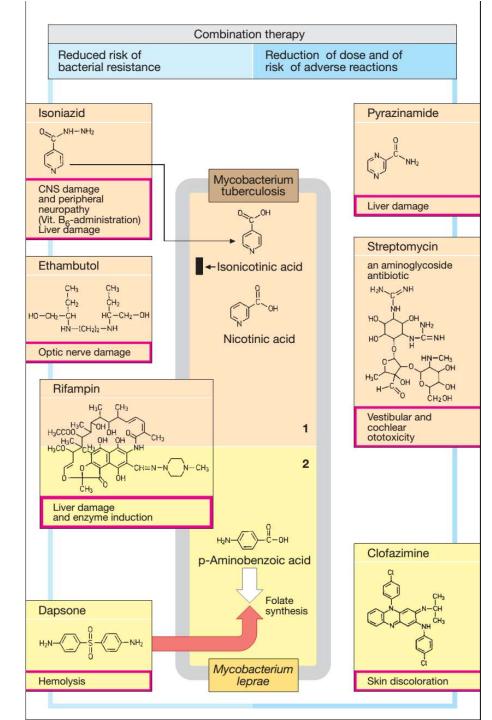
* Numeral before a phase is duration in months # Sub-script numbers – does per week Followed Under DOTS - Directly Observed Treatment

Summary

Regimen (in Approximate Order of Preference)	Duration in Months
Isoniazid, rifampin, pyrazinamide	6
Isoniazid, rifampin	9
Rifampin, ethambutol, pyrazinamide	6
Rifampin, ethambutol	12
Isoniazid, ethambutol	18
All others	≥ 24

Drug	Typical Adult Dosage ¹		
First-line agents (in approximate order of preference)			
Isoniazid	300 mg/d		
Rifampin	600 mg/d		
Pyrazinamide	25 mg/kg/d		
Ethambutol	15-25 mg/kg/d		
Streptomycin	15 mg/kg/d		
Second-line agents			
Amikacin	15 mg/kg/d		
Aminosalicylic acid	8–12 g/d		
Capreomycin	15 mg/kg/d		
Ciprofloxacin	1500 mg/d, divided		
Clofazimine	200 mg/d		
Cycloserine	500–1000 mg/d, divided		
Ethionamide	500-750 mg/d		
Levofloxacin	500 mg/d		
Rifabutin	300 mg/d ²		
Rifapentine	600 mg once or twice weekly		

Summary


Subclass	Mechanism of Action	Effects	Clinical Applications	Pharmacokinetics, Toxicities, Interactions
ISONIAZID	Inhibits synthesis of mycolic acids, an essen- tial component of mycobacterial cell walls	Bactericidal activity against susceptible strains of <i>M tuberculosis</i>	First-line agent for tuberculosis • treatment of latent infection • less active against other mycobacteria	Oral, IV • hepatic clearance (half-life 1 h) • reduces levels of phenytoin • <i>Toxicity:</i> Hepatotoxic, peripheral neurop- athy (give pyridoxine to prevent)
RIFAMYCINS				
• Rifampin	Inhibits DNA-dependent RNA polymerase, thereby blocking production of RNA	Bactericidal activity against susceptible bacteria and mycobacteria • resistance rapidly emerges when used as a single drug in the treat- ment of active infection	First-line agent for tuberculosis • atypical mycobacterial infections • eradication of meningococcal coloni- zation, staphylococcal infections	Oral, IV • hepatic clearance (half- life 3.5 h) • potent cytochrome P450 inducer • turns body fluids orange color • <i>Toxicity:</i> Rash, nephritis, thrombocytopenia, cholestasis, flu-like syndrome with intermittent dosing

Rifabutin: Oral; similar to rifampin but less cytochrome P450 induction and fewer drug interactions

· Rifapentine: Oral; long-acting analog of rifampin that may be given once weekly in the continuation phase of tuberculosis treatment

Summary

PYRAZINAMIDE	Not fully understood • pyrazinamide is converted to the active pyrazinoic acid under acidic conditions in macrophage lysosomes	Bacteriostatic activity against susceptible strains of <i>M tuberculosis</i> • may be bactericidal against actively dividing organisms	"Sterilizing" agent used during first 2 months of therapy • allows total duration of therapy to be shortened to 6 months	Oral • hepatic clearance (half-life 9 h), but metabolites are renally cleared so use doses 3 × weekly if creatinine clearance < 30 mL/ min • <i>Toxicity</i> : Hepatotoxic, hyperuricemia
ETHAMBUTOL	Inhibits mycobacterial arabinosyl transferases, which are involved in the polymerization reac- tion of arabinoglycan, an essential component of the mycobacterial cell wall	Bacteriostatic activity against susceptible mycobacteria	Given in four-drug initial combination therapy for tuberculosis until drug sensitivities are known • also used for atypical mycobacterial infections	Oral • mixed clearance (half-life 4 h) • dose must be reduced in renal failure • <i>Toxicity:</i> Retrobulbar neuritis
STREPTOMYCIN	Prevents bacterial protein synthesis by binding to the S12 ribosomal subunit (see also Chapter 45)	Bactericidal activity against susceptible mycobacteria	Used in tuberculosis when an injectable drug is needed or desirable and in treatment of drug-resistant strains	IM, IV • renal clearance (half-life 2.5 h) • administered daily initially, then 2 × week • <i>Toxicity</i> : Nephrotoxic, ototoxic

References

- **Basic & Clinical Pharmacology** Bertram G. Katzung Twelfth Edition
- Essential of medical pharmacology K.D. Tripathi 6th edition
- Lippincott Modern Pharmacology With Clinical Applications 6E
- Color Atlas Of Pharmacology, 2Nd Ed (Lüllmann, Thieme 2000)