		Overview of		
Enconholitio/	Vir	al infectior	າຣ	
Encephantis/_	Common cold—		Eve	infections
	- Rhinoviruses		- He	erpes simplex virus
- Mossles	- Parainfluenza vi		- Ac	lenovirus
	- Respiratory syn	cvtial	- C\	tomegalovirus
- LCIVI VIIUS	virue	Cytian Contraction	رى	ternegale mae
- Arbovirus	VIIUS		–Parotitis	<i>⊢</i> Pneumonia
- Rables		7	- Mumps/	- Influenza virus,
Pharyngitis	Gingivostomatit	tis	virus /	Types A and B
- Adenovirus	 Herpes simplex 	type 1		- Parainfluenza
- Epstein-Barr v	virus	ALA		virus
- Cytomegalovirus				- Respiratory
eyternegenetin		EBN 20-		syncytial virus
Cardiovascula	r —	<u>8925511</u>		- Adenovirus
- Coxsackie B v	/irus			- SARS coronavirus
		A A A A A		
Hepatitis ——		- 16 1 20 K	3/20	—— Mvelitis
 Hepatitis viru 	S			- Poliovirus
types A, B, C	, D, E			- HTI V-I
Skin infaction		·.·	\sim	
Variable zost	S virus			Gastroontoritis
		······································		
- Human herpe	svirus o		Con la constante	- Adenovirus
- Smallpox	ntagiogum	A flat the		Norovirus
	amayirua	Sexually transmitted	\backslash	
- numan papilio	onavirus	diseases	\backslash	- Astrovirus
- Parvovirus B	19	- Hernes simpley type	2	- Coronavirus
		- Human papillomaviru		Pancreatitis
			3	- Coxsackie B virus
- Coxsackie A	virus	- 1 11 V		

- Coxsackie A virus

Understanding Viruses They are different from other Microbes

Viral replication

- A virus cannot replicate on its own
- It must attach to and enter a host cell
- It then uses the host cell's energy to synthesize protein, DNA, and RNA

Understanding Viruses

Viruses are difficult to kill because they live inside the cells

 Any drug that kills a virus may also kill cells

Illustration: Chris Bickel/Science. Reprinted with permission from Science Vol. 312, page 380 (21 April 2006) © 2006 by AAAS

Antivirals

available for many viral infections

Viruses controlled by current antiviral therapy

- Cytomegalovirus (CMV)
- Hepatitis viruses
- Herpes viruses
- Human immunodeficiency virus (HIV)
- Influenza viruses (the "flu")
- Respiratory syncytial virus (RSV)

- Viruses have no cell wall and made up of nucleic acid components
- Viruses containing envelope antigenic in nature
- Viruses are obligate intracellular parasite
- They do not have a metabolic machinery of their own – uses host enzymes

- Certain viruses multiply in the cytoplasm but others do in the nucleus
- Most multiplication take place before diagnosis is made

- Many antiviral drugs are *Purine or Pyrimidine analogs*.
- Many antiviral drugs are Prodrugs. They must be phosphorylated by viral or cellular enzymes in order to become active.
- Anti-viral agents inhibits active replication so the viral growth resumes after drug removal.

Antivirals how they act Key characteristics of antiviral drugs

□ Able to enter the cells infected with virus

□ Interfere with viral nucleic acid synthesis and/or regulation

□ Some drugs interfere with ability of virus to bind to cells

□ Some drugs **stimulate the body's immune system**

□ Best responses to antiviral drugs are in patients with competent immune systems

A healthy immune system works synergistically with the solution of suppress viral activity

Antiviral Medications

Antiviral drugs

 \square Used to treat infections caused by viruses other than HIV

Antiretroviral drugs

Used to treat infections caused by HIV, the virus that causes AIDS

Herpes-Simplex Viruses

- □ HSV-1 (oral herpes)
- □ HSV-2 (genital herpes)

Varicella Zoster Virus

- Chickenpox
- **Shingles**

Antiviral Drugs: Nonretroviral

□ Mechanism of action

Inhibit viral replication

Used to treat non-HIV viral infections

- Influenza viruses
- HSV (herpes simplex virus), VZV (vericella zoster virus)
- CMV (cytomegalovirus)
- Hepatitis A, B, C (HAV, HBV, NCV)

Adverse Effects

- □ Vary with each drug
- ¹ Healthy cells are often killed also, resulting in serious toxicities

- Current anti-viral agents do not eliminate non-replicating or latent virus
- Effective host immune response remains essential for the recovery from the viral infection
- Clinical efficacy depends on achieving inhibitory conc. at the site of infection within the infected cells

Stages of viral replication

• Cell entry – attachment

- penetration

- Uncoating
- Transcription of viral genome
- Translation
- Assembly of virion components
- Release

Anti-viral drugs Anti-herpes virus agents

- Acyclovir / Valacyclovir
- Famciclovir / Penciclovir
- Ganciclovir / Cidofovir
- Foscarnet
- Trifluridine / Idoxuridine / Vidarabine

Acyclovir & Congeners :

- Valacyclovir is a prodrug of Acyclovir with better bioavailability.
- Famciclovir is hydrolyzed to Penciclovir and has greatest bioavailability.
- Penciclovir is used only topically whereas Famciclovir can be administered orally.

PHARMACOLOGY OF ACYCLOVIR AND CONGENERS

 Acyclovir, Valacyclovir, Ganciclovir, Famciclovir, Penciclovir all are guanine nucleoside analogs.

Mechanism of action of Acyclovir and congeners :

- All drugs are phosphorylated by a viral thymidine-kinase, then metabolized by host cell kinases to nucleotide analogs.
- The analog inhibits viral DNApolymerase
- Only actively replicating viruses are inhibited

- Acyclovir is thus selectively activated in cells infected with herpes virus.
- Uninfected cells do not phosphorylate
 11/18 acyclovir.

Mechanism of Action of Acyclovir

(a) Acyclovir structurally resembles the nucleoside deoxyguanosine.

(b) The enzyme thymidine kinase combines phosphates with nucleosides to form nucleotides, which are then incorporated into DNA.

(c) Acyclovir has no effect on a cell not infected by a virus, that is, with normal thymidine kinase. In a virally infected cell, the thymidine kinase is altered and converts the acyclovir (which resembles the nucleoside deoxyguanosine) into a false nucleotide—which blocks DNA synthesis by DNA polymerase.

Antiviral spectrum :

- Acyclovir: HSV-1, HSV-2, VZV, Shingles.
- Ganciclovir / Cidofovir : CMV
- Famciclovir : Herpes genitalis and shingles
- Foscarnet : HSV, VZV, CMV, HIV
- Penciclovir : Herpes labialis
- Trifluridine : Herpetic keratoconjunctivitis

Pharmacokinetics of Acyclovir :

- Oral bioavailability ~ 20-30%
- Distribution in all body tissues including CNS
- Renal excretion: > 80%
- Half lives: 2-5 hours
- Administration: Topical, Oral, IV

Adverse effects of Acyclovir / Ganciclovir

- Nausea, vomiting and diarrhea
- Nephrotoxicity crystalluria, haematuria, renal insufficiency
- Myelosuppression Neutropenia and thrombocytopenia – Ganciclovir

Therapeutic uses :

Acyclovir is the drug of choice for:

- HSV Genital infections
- HSV encephalitis
- HSV infections in immunocompromised patient

Ganciclovir is the drug of choice for:

- CMV retinitis in immunocompromised patient
- Prevention of CMV disease in transplant patients

Cidofovir :

- It is approved for the treatment of **CMV** retinitis in immunocompromised patients
- It is a nucleotide analog of cytosine no phosphorylation required.
- It inhibits viral DNA synthesis
- Available for IV, Intravitreal inj, topical
- Nephrotoxicity is a major disadvantage.

Anti-viral drugs PHARMACOLOGY OF VIDARABINE

 Vidarabine is a nucleoside analog. (adenosine)

Antiviral spectrum of Vidarabine : HSV-1, HSV-2 and VZV.

Its use is limited to HSV keratitis only

Vidarabine

- The drug is converted to its triphosphate analog which inhibits viral DNApolymerase.
- Oral bioavailability ~ 2%
- Administration: Ophthalmic ointment
- Used in HSV keratoconjunctivitis in immunocompromised patient.
- Anemia and SIADH are adverse effects.

PHARMACOLOGY OF TRIFLURIDINE

• Trifluridine is a Pyrimidine nucleoside analogs - inhibits viral DNA synthesis.

Antiviral spectrum Trifluridine :

- HSV-1, HSV-2 and VZV.
- Use is limited to Topical Ocular HSV Keratitis

PHARMACOLOGY OF FOSCARNET

- Foscarnet is an inorganic pyrophosphate analog
- It directly inhibits viral DNA and RNA -polymerase and viral inverse transcriptase (it does not require phosphorylation for antiviral activity)

Foscarnet

- HSV-1, HSV-2, VZV, CMV and HIV.
- Oral bioavailability ~ 10-20%
- Distribution to all tissues including CNS
- Administration.Rad

Adverse effects of Foscarnet

- Hypocalcemia and hypomagnesemia (due to chelation of the drug with divalent cations) are common.
- Neurotoxicity (headache, hallucinations, seizures)
- Nephrotoxicity (acute tubular nephrosis, interstitial nephritis)

Therapeutic uses of Foscarnet

- It is an alternative drug for
- HSV infections (acyclovir resistant / immunocompromised patient)
- CMV retinitis (ganciclovir resistant / immunocompromised patient)

Respiratory viral infections Influenza –

- Amantadine / Rimantadine
- Oseltamivir / Zanamavir (Neuraminidase inhibitors)
 RSV bronchiolitis –

- Amantadine and Rimantadine : Influenza
- Prevention & Treatment of influenza A
- Inhibition of viral uncoating by inhibiting the viral membrane protein M2
- Influenza A virus
- Amantadine has anti-parkinsonian

Pharmacokinetics of Amantadine

- Oral bioavailability ~ 50-90%
- Amantadine cross extensively BBB whereas Rimantadine does not cross extensively.
- Administration: Oral

Neuraminidase inhibitors : Influenza Oseltamivir / Zanamavir

- Influenza contains an enzyme neuraminidase which is essential for the replication of the virus.
- Neuraminidase inhibitors prevent the release of new virions and their spread from cell to cell.

Neuraminidase inhibitors : Influenza Oseltamivir / Zanamavir

- These are effective against both types of influenza A and B.
- Do not interfere with immune response to influenza A vaccine.
- Can be used for both prophylaxis and acute treatment.

Anti-viral drugs Neuraminidase inhibitors : Influenza Oseltamivir / Zanamavir

- Oseltamivir is orally administered.
- Zanamavir is given intranasal.
- Risk of bronchospasm with zanamavir

PHARMACOLOGY OF RIBAVIRIN

- Ribavirin is a guanosine analog.
- Inhibition of RNA polymerase

Antiviral spectrum : DNA and RNA viruses are susceptible, including influenza, parainfluenza viruses, RSV, Lassa virus

Ribavirin : RSV

- Distribution in all body tissues, except CNS
- Administration : Oral, IV, Inhalational in RSV.
- Anemia and jaundice are adverse effects
- Not advised in pregnancy.

Therapeutic uses Ribavirin *Ribavirin is the drug of choice for:*

- RSV bronchiolitis and pneumonia in hospitalized children (given by aerosol)
- Lassa fever

Ribavirin is an alternative drug for:

• Influenza, parainfluenza, measles virus infection in immunocompromised patients

Hepatic Viral infections :

- Interferons
- Lamivudine cytosine analog HBV
- Entecavir guanosine analog HBV – lamivudine resistance strains
- Ribavirin Hepatitis C (with interferons)

Interferons

- Interferons (IFNs) are natural proteins produced by the cells of the immune systems in response to challenges by foreign agents such as viruses, bacteria, parasites and tumor cells.
- Antiviral, immune modulating and anti-proliferative actions
- Three classes of interferons α , β , γ

Interferons

- α and β interferons are produced by all the cells in response to viral infections
- γ interferons are produced only by T lymphocyte and NK cells in response to cytokines – *immune regulating effects*
- γ has less anti-viral activity compared to α and β interferons

Mechanism of action of Interferons :

- Induction of the following enzymes:
- 1) a protein kinase which inhibits protein synthesis
- *2) an oligo-adenylate synthase which leads to degradation of viral mRNA*
- *3) a phosphodiesterase which inhibit t-RNA* The action of these enzymes leads to an **inhibition of translation**

Antiviral spectrum : Interferon α

- Includes HBV, HCV and HPV.
- Anti-proliferative actions may inhibit the growth of certain cancers - like Kaposi sarcoma and hairy cell leukemia.

Pharmacokinetics : Interferons

- Oral bioavailability: < 1%
- Administered Intralesionally, S.C, and I.V
- Distribution in all body tissues, except CNS and eye.
- Half lives: 1-4 hours

Adverse effects of Interferons

- Acute flu-like syndrome (fever, headache)
- Bone marrow suppression (granulocytopenia, thrombocytopenia)
- Neurotoxicity (confusion, seizures)
- Cardiotoxicity arrhythmia
- Impairment of fertility

Therapeutic uses Interferons

- Chronic hepatitis B and C (complete disappearance is seen in 30%).
- HZV infection in cancer patients (to prevent the dissemination of the infection)
- CMV infections in renal transplant patients
- Condylomata acuminata (given by intralesional injection). Complete clearance is seen ~ 50%.
- Hairy cell leukemia (in combination with zidovudine)
- AIDS related Kaposi's sarcoma

Viru	Diseases	Drug(s) of choice	Alternative drugs
FLU A	Influenza	Amantadine	Rimantadine
RSV	Pneumonia, bronchiolitis	Ribavirin (aerosol)	
HSV	Genital herpes	Acyclovir	Foscarnet
	Keratitis Conjunctivitis	Trifluridine	Idoxuridine Vidarabine
	Encephalitis	Acyclovir	
	Neonatal HSV infection	Acyclovir	Vidarabine
1/18/12	Herpes infections in immuno- compromised host _{Dr.T}	Acyclovir	Foscarnet

VZV	In normal host	No therapy	
	In immunocompro- mised host, or during pregnancy	Acyclovir	Foscarnet
CMV	Retinitis	Ganciclovir	Foscarnet
HIV	AIDS HIV antibody positive with CD4 count < 500/mm ³	Zidovudine ± protease inhibitors	Didanosine, Stavudine
HBV HCV 11/18/12	Hepatitis B, C	Interferons	52

HAART - Highly active antiretroviral therapy

 Includes at least three medications

- "cocktails"

 These medications work in different ways to reduce the viral load

• <u>Reverse transcriptase inhibitors (RTIs)</u>

Block activity of the enzyme reverse transcriptase, preventing production of new viral DNA

<u>Reverse transcriptase inhibitors (RTIs)</u>

- Nucleoside RTIs (NRTIs)
- Nonnucleoside RTIs (NNRTIs)
- Nucleotide RTIs (NTRTIs)

• Examples

abacavir (Ziagen) didanosine (Videx) stavudine (Zerit)

delavirdine (Rescriptor) lamivudine (Epivir) tenofovir (Viread)

- <u>Protease inhibitors</u>
 <u>(PIs)</u>
- Inhibit the protease retroviral enzyme, preventing viral replication
- <u>Examples:</u>

amprenavir (Agenerase) indinavir (Crixivan) nelfinavir (Viracept) ritonavir (Norvir) saquinavir (Invirase)

- Fusion inhibitors
- Inhibit viral fusion,
 preventing viral
 replication
- Newest class of antiretroviral drugs
- Example: enfuvirtide (Fuzeon)

- Combinations of multiple antiretroviral medications are common
- Adverse effects vary with each drug and may be severe-monitor for doselimiting toxicities
- Monitor for signs of opportunistic diseases