COMBINED EFFECTSOF DRUGS

Deepankar Ratha Assistant Professor Department of Pharmacology CUTM, Rayagada

Protocol:

Summation Additive effects Synergism Drug antagonism

EFFECTOF COMBINATION OF DRUGS

Combinations of two/more drugs, simultaneously or in quick succession

- 1. No interference with each other's effects.
- 2. May oppose each other's actions (antagonism)
- May produce similar actions on the same organ (synergism)

Interaction

Pharmacokinetic

Pharmacodynamic

Drug Synergism Syn-together ; ergon-work

- This is facilitation of the effects of one drug by another when given together Types:
 - a. Additive (summation)
 - b. Supra-additive (Potentiation)

Effect of drugs A+B=Effect of drug A+Effect of drug B

- Final effect is same as the algebraic sum of the magnitude of individuals drugs_
- Side effects do not add up Examples of Summation: Different MOA Aspirin : (-) PGsynthesis 🛛 analgesia + Analgesia Codeine : Opioid agonist 🛛 analgesia + Examples of Addition: Same MOA Ibuprofen: (-) PGsynth 🛛 analgesia + Analgesia Paracetamol: (-) PGsynth 2 analgesia+

Other Additive Drug Combinations

Drug Combination

Amlodipine + Atenolol Antihypertensive

Effect

Glibenclamide + Metformin Hypoglycemic

Supraadditive (Potentiation)

Effect of drug A + B > Effect of drug A + Effect of drug B

When two drugs are given together the final effect is much more than the simple algebraic sum of the magnitude of individuals drugs.

Examples:

Sulphamethoxazole & Trimethoprim--- sequential blockade of two steps in synthesis of folic acid in micro-organisms.

Synergism by altering Pharmacokinetics of the other:

Levodopa + Carbidopa

Other supraadditive drug combinations

DRUG PAIR	BASIS OF POTENTIATION
Ach + Physostigmine	Inhibition of break down
Adrenaline + Cocaine	Inhibition of neuronal uptake
Tyramine + MAO inhibitors	Increasing releaseable CAT store

Drug Antagonism

Drug Antagonism

Definition:

Combined effect of two drugs is less than the sum of the effects of the individual drugs

Effect of drugs A+B<Effect of drug A+Effect of drug B

One drug decreases / opposes / reverses / counters the effect of other drugby different mechanisms

Types:

- a. Pharmacological Antagonism :
 - i. Competitive (Reversible)
 - ii. Non-competitive (Irreversible)
- b. Chemical Antagonism
- c. Physiological Antagonism
- d. Physical antagonism

Competitive Antagonism

D-R interactions

■ NO EFFECT

🔵 = Agonist

Agonist

🔵 = Agonist

🔵 = Agonist

Reversible-Competitive

D

B

- Weak bond
- Same agonist site
- Short duration

Reversible-Competitive

Conc dependant 2 Dynamic Equilibrium

Competitive (Reversible) Antagonism /Competitive (Equilibrium) Antagonism

- 1. Same receptor by forming Weak bonds
- 2. Maximal response depends on <u>concentration</u> of both agonist and antagonist
- 3. The effect of antagonist can be overcome by increasing the concentration of agonist. The same **maximal response can be attained** by increasing dose of agonist---It is "surmountable antagonism".
- 4. Parallel rightward shift of DRC

🔵 = Agonist

e Agonist

Examples: Atropine and Acetylcholine at Muscarinic-R Naloxone and Morphine at opioid-R Propranolol and NE at β_2 -R Irreversibly Competitive or Non
Equilibrium Competitive Antagonism:
1. Have affinity for the same receptor sites and bind in an irreversible manner by covalent bond

- 2. Effects cannot be overcome even by increasing the concentration of the agonist (unsurmountable)
- 3. LDR curves of agonist (in presence of antagonist) would show reduced efficacy but unaltered potency

Irreversibly-Competitive

- Same agonist site
- Strong bond
- LDRO? efficacy (flatten)
- Long duration

Effect of antagonists

- DOA of irreversible antagonist is longer
- Equilibrium between Antagonist Agonist cannot be established even after increasing the dose of agonist hence the term "Nonequilibrium competitive antagonism"
- E.g. Dibenamine and NE at α_1 adrenoceptors

Pseudo-reversible Antagonism:

- Lesser degree of receptor occupancy by the antagonist & availability of spare receptors
- Increasing conc. of agonist- shift LDR to right
- Increasing conc. of antagonist- reduction in maximal response.
- Hence the term "Pseudo-reversible Antagonism"

Pseudo-Reversible Competitive

Antagonists: Psaud>PesveurdsdbeRceovmepsebteiCeompetitive

Inc. dose of agonist log (Dose)

Effect

Pseudo-Reversible Competitive

E.g.

Phenoxybenzamine -

Methysergide -(5HT receptor blocker) at α_1 adrenoceptor at 5HT receptor

Non Competitive Antagonism

Non Competitive Antagonism

- Via Allosteric Modulation
- Receptor-Effector pathway modulation

(Down-stream regulation)

NO Competition for Agonist site

Antagonism through Allosteric receptor site binding:

Antagonism through Allosteric receptor site binding:

- i. Binds to site other than the agonist site
- ii. Prevent the receptor activation by the agonist
 - E.g.
- Flumazenil by binding to BZDsite antagonises the effects of BZDby preventing the binding of GABAto GABA_A receptor
- Bicuculline and BZD

Antagonism through Allosteric receptor site binding:

46

Receptor-Effector pathway modulation (Down-Stream Regulation)

Receptor-Effector pathway modulation (Down-stream regulation)

Effects on log DRC

- There is downward shift .The slope is reduced and maximum response is diminished
- The parallelism is not maintained
- No shift of curve on dose axis

log (Dose)

- <u>Competitive Antagonism</u> (equilibrium or reversible)
- Action of agonist is blocked if conc. of antagonist is ?
- Antagonism can be overcome by ^[2] conc. of agonist
- Agonist can produce max.
 response in higher conc.
- Competitive antagonist shifts
 LDRCof agonist to right
- ED₅₀ of agonist D in presence of antagonist, e.g., Ach & atropine; Adr & Prop.; Morphine & Naloxone

- Non-competitive
 (non-surmountable
 Antagonist)
- Antagonist binds to another site of receptor
- IDRC is flattened + max. response is ?
- e.g. Diazepam and bicuculline

Chemical Antagonism

A type of antagonism where a drug counters the effect of another by simple chemical reaction / neutralization (not binding to the receptor)

- 1. Protamine sulphate & Heparin
- 2. Calcium sodium edetate form insoluble complexes with arsenic / lead
- Neutralization of gastric acid by antacids like Aluminium hydroxide, Magnesium hydroxide, Sodium bicarbonate

Physiological Antagonism

Definition:

- Atype of antagonism **in which o**ne drug opposes / reverses the effect of another drug by binding to a different receptor and producing opposite **physiological effects**
- **Examples:**
- Histamine and adrenaline on bronchial muscles and BP
- 2. Glucagon and insulin on blood sugar level

Physical antagonism

 Based on the physical property of drugse.g.
 Charcoal adsorbs alkaloids and can prevent their absorption- used in alkaloidal poisonings