Energy

What is Energy?

That which helps in doing work is *Energy*

Types of energy

There are two main types of energy

Potential energy

Kinetic energy

 The stored up energy which has the potential to do work is called *potential energy.*

Potential Energy

• Energy due to position or stored energy.

Measure by: PE= (weight) (gravity) (Height)

Potential energy is calculated by: The object's weight, multiplied by the earth's gravitational pull (9.8 m/sec sq), multiplied by the distance the object can fall.

Examples of Potential Energy

Stretching a rubber band..

-Stores energy

Water at the top of a waterfall.. -Stores energy

Yo–Yo in held in your hand.. -Stores energy because of position

Drawing a Bow... -Stores energy because of position

Potential Energy

- When the position of an object is altered it, creates Potential Energy.
- A yo-yo on the table, doesn't have energy, but when picked up, it alters its position and now it has the ability (or potential) to do work.
- A bow doesn't have the capacity to do work, unless it's held at an elevated position.

 Every moving object has energy. The energy that a body gets because of its motion is called *kinetic energy.*

The energy of motion.

Measured by: KE= ½ (Mass) (Velocity)²

Kinetic energy is calculated by one half of the object's mass, multiplied by the object's speed-squared.

Examples of Kinetic Energy

- Shooting a rubber band.
- Water falling over the fall.
- A Yo-Yo in motion.
- Releasing the arrow from the bow.

Potential Energy gets converted to Kinetic Energy

When stored energy begins to move, the object now transfers from potential energy into kinetic energy.

Standing still

Running

Common Examples

Forms of energy

Transformation of energy

- Energy can neither be *created* or *destroyed*.
- It can be *converted* from one form into another.
 - Kinetic energy is converted into *heat* energy.
 - Potential energy is converted to kinetic energy
 - Chemical energy to Heat energy
- It can be stored

Sources of energy

- Biggest source of energy is our Sun
- Some other sources are
 - Coal
 - Wood
 - Wind
 - Water
 - Food
 - Electricity

Primary Sources of Energy

Sources of energy

- Conventional sources
 - Coal
 - Oil
 - Gas
- These sources of energy are being used as fuel for very long time
- They are known as conventional sources of energy

- Non- conventional sources
 - Solar
 - Wind
 - Agricultural waste
 - Forestry waste
 - Biofuel
- These sources have not been traditionally used as Energy source
- However, these sources will always be available in nature and are renewable
- Hence it is best to use nonconventional sources
- Example Hydro-electric power project located at Koyna dam in Maharashtra

Uses of Energy Sources

The solar cell

- A solar cell is made using thin disc made of *pure silicon*
- Solar energy is converted into electricity in the solar cell

Green energy

- Biogas
 - Cow dung , plant refuse etc. are used as energy sources in gobar (dung) gas or bio gas plants

