Heterocyclic Compounds

(PYRROLE, FURAN & THIOPHENE)

Structures of some heterocyclic compounds

furan

S thiophene

Ν

pyridine

Tetrahydrofuran

Cont...

Heterocyclic compounds

Rings with more than one heteroatom

- Provide the set of th
- A saturated heteroatom with an extra-hydrogen attached is given priority over an unsaturated form of the same atom, as in 1H-1,3-diazole (see the following discussion).
- The numbers are grouped together in front of the heteroatom listings (thus, 1,3-oxazole, not 1-oxa-3-azole).
- The heteroatom prefixes follow the numbers in the priorities given previously

Rings with more than one heteroatom

5-ethyl-4-methyl-1,2-oxazole

N N Me

1-methyl-1H-1,3-diazole (N-methylimidazole)

1. Aromaticity

- Pyrrole have 4 C and 1 N, all are sp^2 hybridized
- sp^2 hybridization is planar, it makes a planar pyrrole ring structure.
- Each ring atom also contains unhybridized p orbital that is perpendicular to the plane of σ bonds (plane of ring).
- Here p orbitals are parallel to each other, so <u>overlapping</u> by p orbitals is possible.
- the total nu of non bonding <u>e- are 6 (4 of four C, 2 from one N)</u>
- The resonance of 6 e- follows the Hückel's rule
- So the pyrrole is aromatic .

Method of preparation

- 1. From Furans
- Industrial process
- Passing furan over ammonia in presence of alumina as catalyst at high temp.

$$(1) \qquad (1) \qquad (1)$$

2. By passing a mixture of acetylene and ammonia through a red hot tube

- 3. Paal-Knorr synthesis
- 1,4 Dicarbonyl compounds react with ammonia *or* primary amines to give pyrroles.

Mechanism

- Successive <u>nucleophilic additions</u> of the amine nitrogen to each of the two carbonyl carbon atoms, <u>imine formation</u> and the <u>dehydration</u> represent the net course of the synthesis.

4.By heating ammonium mucate with glycerol at 200^o C

Synthesis

- 4. Knorr synthesis
- Condensation of α aminocarbonyl component with 2nd component containing an electron-withdrawing group (e.g. an ester) α to a carbonyl group

Chemical properties

Basic character

Weak base Pka 3.4

Acidic character

Weak acid Pka 1.5

Electrophilic substitution reaction

Pyrrole undergoes electrophilic substitution reaction primarily at C-2

1. Electrophilic substitution

Pyrrole undergoes electrophilic substitution reaction at 2^{nd} position

2 reasons...

- C2 attack gives more resonance contributing structures than C3.
- Extra stable contributing structure generates upon C2 attack

Electrophilic substitution reactions of pyrrole are not carried in the presence of strong acids or reagents which give rise to strong acids , because under such conditions pyrrole undergoes polymerization and resinification

Nitration

Mechanism

STEP-2

The electrophile attacks pyrrole at C-2 to form the resonance stabilised cation

STEP-3

A hydrogen ion is eliminated to yield 2-nitropyrrole

Sulphonation

Pyrrole is sulphonated with sulphur trioxide in pyridine at about 100°C to yield pyrrole-2-sulphonic acid

Halogenation

Chlorination--- with chlorine in sulphuryl chloride in ether 0^oC Bromination----with bromine in ethanol at 0^oC Iodination----with iodine in an aq. Solution of KI

Diazocoupling

pyrrole couples with benzenediazonium chloride in a weakly acidic solution to give 2-phenylazopyrrole

2-phenylazopyrrole

Friedel-craft's acylation

Pyrrole acetylated with acetic anhydride at 250°C to give 2-acetyl pyrrole

Reimer-Tiemann formylation

Pyrrole reacts with chloroform in the presence of alkalito yield pyrrole-2aldehyde and 3-chloro pyridine

Reduction

Oxidation

Application

- Pyrrole is a structural constituent of haem, chlorophyll, vit- B_{12} and bile pigments
- Pyrrole ring is present in tolmetin, ketorolac(NSAID)sunitinib (anticancer)procyclidine(antimuscarinic) atorvastatin (lipid lowering drug)
- Antipsychotic, anxiolytic, antibacterial, antifungal, antimalarial and anticancer therapeutic activities

Furan

Furan is a Heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen. The class of compounds containing such rings are also referred to as furans

Physical Properties:

- It is colorless, flammable and highly volatile liquid.
- Melting point: -85.6°C
- Boiling Point: 31.3°C
- Soluble in alcohol, ether and acetone but slightly soluble in water
- Toxic and may be carcinogenic

FURAN

Interesting Furan Containing Drugs

Nifurzide Anti-Infective Drug

CH₃ H₃C

Ranitidine H2 receptor antagonist

Furaneol Perfume distilled from Strawberries

Method of preparation

1. By dry distillation of mucic acid

2.Oxidation of furfural

By oxidation of furfural with potassium dichromate to give furoic acid and subsequent decarboxylation at 200-300^oC

3.By decarbonylation of furfural in steam in the presence of silver oxide catalyst

4. By dehydration of succinic dialdehyde by heating with P₂O₅ or ZnCl₂

Chemical Properties

Nitration

Sulphonation

Halogenation

Above 3 reactions are same like pyrrole

Furan

□ Reacts vigorously with Cl2 and Br2 at rt

Does not react at all with iodine

□ Milder conditions have to be used to obtain monochloro or monobromo derivatives

2-chlorofuran

Friedel-Crafts Acylation

Furan undergoes acetylation with acetic anhydride in the presence of BF3 or SnCl4 at 0^o to yield 2-acetyl fuan

Mercuration

Furan undergoes mercuration on heating with mercuric chloride in aq.sodium acetate to yield 2-chloromercurifuran

Reaction with n-butyl lithium

Diazocoupling : furan is not sufficiently reactive to undergo Reduction

tetrahydrofuran

THIOPHENE

Method of Preparation

1. By passing a mixture of acetylene and hydrogen sulphide through a tube containing aluminium oxide at 400°C

2. By heating sodium succinate with phosphorous trisulphide

Cont..

3. By distillation of furoic acid with barium sulphide

4.By reaction of sulphur with n-butane in the gas phase at 650° C

Properties (physical)

- Colourless liquid
- Bp 84⁰C
- Benzene like odour
- \circ $\,$ Insoluble in water but miscible with most organic solvents

Chemical Properties

Thiophene does not show any basic properties

It is much more stable to acids than pyrrole and furan

Electrophilic substitution reaction

Nitration same

Sulphonation

Thiophene-2-sulphonic acid

Halogenation

CHLORINATION

Friedel-Crafts Acylation

Chloromethylation

Mercuration

Reaction with n-Butyl-lithium same like furan Diazocoupling: do not undergo Reduction

USES

Thiophene derivatives have different activities like anti-bacterial, antiinflammatory, antianxiety, antipsychotic, antiarrythmic and anticancer activities

Ex lemoxicam

Pyrantel (antiparasitic)

Raltitrixed (anticancer)

Cephalothin(antimicrobial)

Suproprofen (anti-inflammatory)

Ticrynafen(antihypertensive) etc