

Octal and Hexadecimal Number Systems

Octal and Hexadecimal Number Systems

OCTAL or **BASE-8** numbers uses eight symbols: 0, 1, 2, 3, 4, 5, 6, and 7 (count them!) and position plays a major role in expressing their meaning. For example $53,702_8$ means

$$\frac{5 \times 8^4}{4096's}$$
 + $\frac{3 \times 8^3}{512's}$ + $\frac{7 \times 8^2}{512y}$ + $\frac{0 \times 8^1}{512y}$ + $\frac{2 \times 8^0}{512y}$ Ones (Units

To change this number to base 10, multiply each placeholder by the amount its location represents and add: $(5 \times 4096) + (3 \times 512) + (7 \times 64) + (0 \times 8) + (2 \times 1) = 20,480 + 1536 + 448 + 0 + 1 = 22,466_{10}$

Now you try some:

$$524_8 = (base 10)$$

Base 16	Α	В	С	D	E	F	
Base 10	10	11	12	13	14	15	
							' < >

HEXADECIMAL or **BASE-16** numbers uses sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, $\stackrel{\checkmark}{A}$, B, C, D, and E (count them!) and position plays a major role in expressing their meaning. For example 537CA₁₆ means

$$\frac{5 \times 16^4}{65.536's}$$
 + $\frac{3 \times 16^3}{4096's}$ + $\frac{7 \times 16^2}{256's}$ + $\frac{C \times 16^1}{Sixteens}$ + $\frac{A \times 16^0}{Ones (Units)}$

To change this number to base 10, multiply each placeholder by the amount its location represents and add: $(5 \times 65,536) + (3 \times 4096) + (7 \times 256) + (12 \times 8) + (10 \times 1) = 327,680 + 12,288 + 1792 + 96 + 10 = 341,866_{10}$

Now you try some:

$$4B6_{16} =$$
______(base 10)

$$EDA_{16} =$$
______(base 10)

Changing a Decimal Number to an Octal Number

Repeatedly divide by eight and record the remainder for each division – read "answer" upwards.

Example: Rewrite the decimal number 215₁₀ as an octal number.

The octal result is read upwards[↑], therefore 215₁₀ = 327₈

Now you try one:

Changing a Decimal Number to an Hexadecimal Number

Repeatedly divide by sixteen and record the remainder for each division – read "answer" upwards.

Example: Rewrite the decimal number 215₁₀ as an octal number.

The octal result is read upwards↑, therefore 215₁₀ = D7₁₆

Now you try one:

1682₁₀ = _____

Note how the above algorithms can be adapted to change a decimal number to any chosen base.

Changing Bases Back and Forth between Binary, Octal, and Hexadecimal Systems: An Easy Task!

- 1. From Binary to Octal Count off from right to left by three and translate each triad into base 10. These digits will be the base-8 symbols to express this binary number in octal.
- 2. From Binary to Hexadecimal Count off from right to left by four and translate each quad into base 10. These digits will be the base-16 symbols to express this binary number in hexadecimal.
- 3. From Hexadecimal OR Octal to Binary Change each symbol to binary and you are done!
- 4. From Octal to Hexadecimal OR from Hexadecimal to Octal Change the higher base to binary and then use #1 or #2 above to change the binary number to the base desired.

EXAMPLES:

a) Change 1101001010_2 to an octal number.

therefore, the octal number is 15128

b) Change 1001011101₂ to a hexadecimal number.

0010 0101 1101

2 5 13/D therefore, the hexadecimal number is **25D**₁₆

c) Change $A3D9_{16}$ to a binary number.

A 3 D 9

1010 0011 1101 1001 therefore, the binary number is **1010001111011001**₂

d) Change 630076₈ to a binary number.

6 3 0 0 7 6

110 011 000 000 111 110 therefore, the binary number is

110011000000111110₂

e) Change A45₁₆ to octal.

A 4 5
1010 0100 0101 (rewritten in binary)
101 001 001 101 (regrouped the binary digits into groups of three)
5 1 1 5 therefore the octal number is **5115**₈

f) Change 5401₈ to hexadecimal.

Further Exercises

- 1. Express each number as a decimal number.
 - a. 263_8
 - b. B21₁₆
 - c. 5100_8
 - d. $100E_{16}$
 - e. 100332₈
 - f. 10011₁₆
- 2. Express each number as a binary number.
 - a. 2524₈
 - b. BAC9₁₆
 - c. 332210₈
 - d. $4009D_{16}$
- 3. Express each number as an octal number.
 - a. 101001001₂
 - b. 1001010000100010_2
 - c. $B78_{16}$
 - d. 1234₁₆
- 4. Express each number as a hexadecimal number.
 - a. 101010000001010101010_2
 - b. 1010101010₂
 - c. 2526_8
 - d. 50004734₈

ANSWERS

'Now your try some' answers:

Octal to Decimal

- a) 286
- b) 664
- c) 340

Hexadecimal to Decimal

- a) 1206
- b) 4660
- c) 3802

Decimal to Octal

b) 1252

Decimal to Octal

a) 692

'Further Exercises' answers:

Exercise Set #1

- a. 179
- b. 2849
- c. 2624
- d. 4110
- e. 32,986
- f. 65,553

Exercise Set #2

- a. 010101010100
- b. 1011101011001001
- c. 011011010010001000
- d. 0100000000010011101

Exercise Set #3

- a. 511
- b. 112042
- c. 5564
- d. 11064

Exercise Set #4

- a. 540AA
- b. 2AA
- c. 556
- d. A009DC