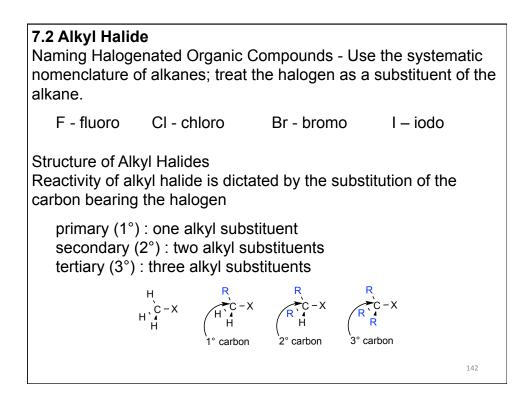
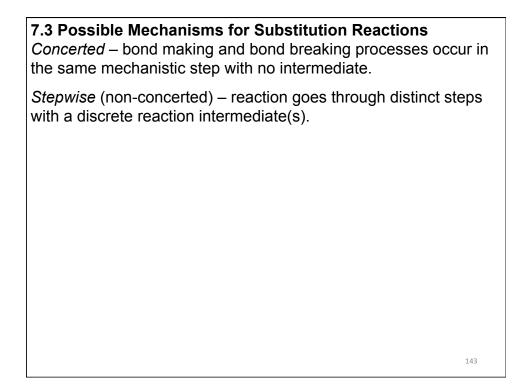
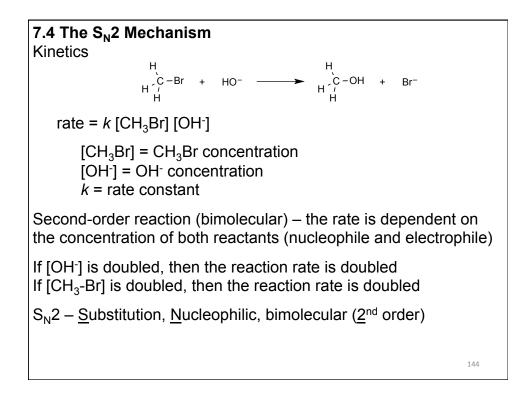
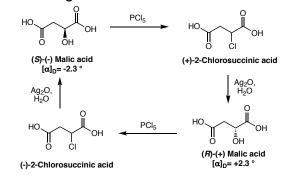

Nucleophilic Substituion – A nucleophile may react with an alkyl halide or equivalent (electrophile) such that the nucleophile will displace the halide (leaving group) and give the substitution product.

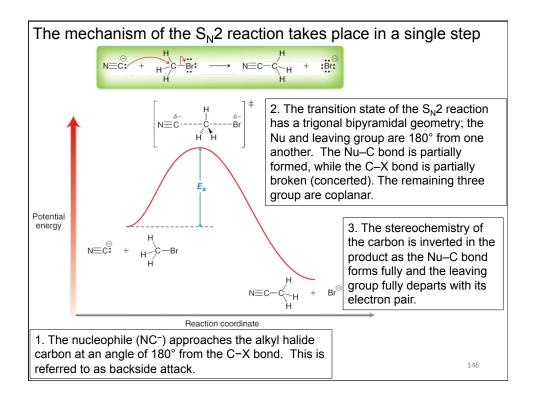

Characteristics of a good leaving group

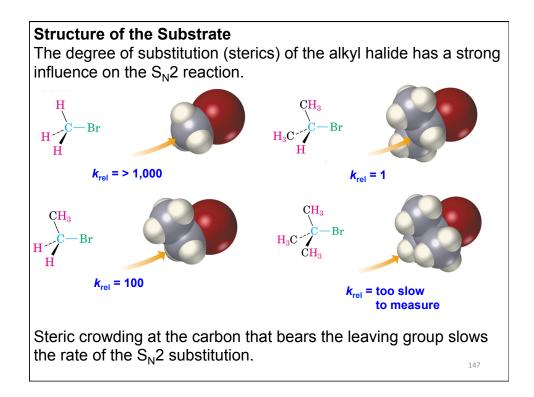

a. Good leaving groups tend to be electronegative, thereby withdrawing electron density from the C–LG bond making C more electrophilic (δ^+).

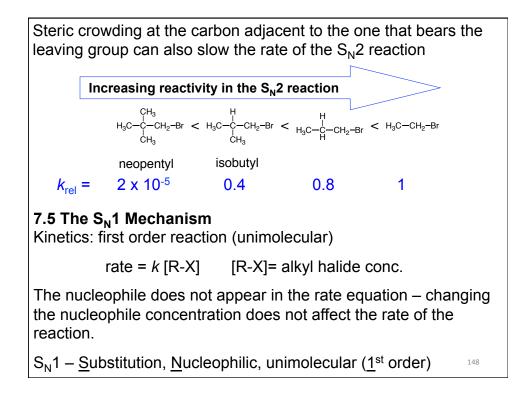

b. Leaving group depart with a pair of electrons and often with a negative charge. Good leaving groups can stabilize a negative charge, and are the conjugate bases of strong acid.

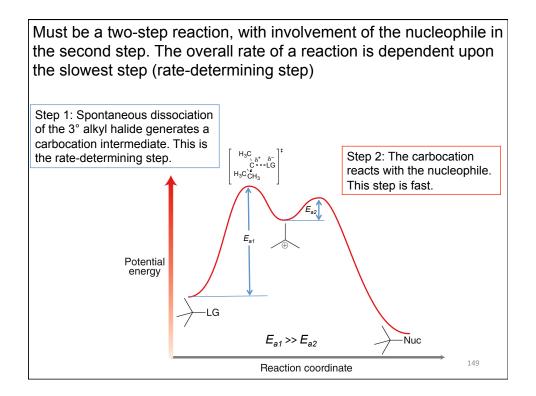
140



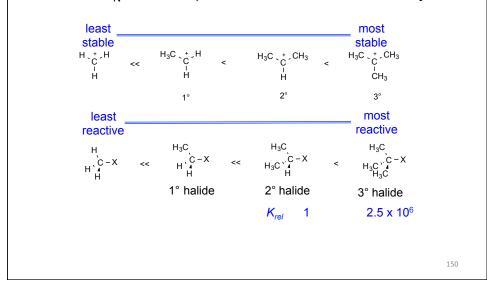


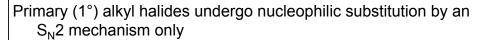



Stereospecificity of $S_N 2$ Reactions – the displacement of a leaving group in an $S_N 2$ reaction has a defined stereochemistry (Walden Inversion). This results from backside attack by the nucleophile and inversion of configuration.

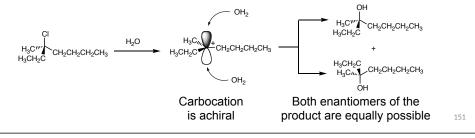


The rate of the S_N^2 reaction is dependent upon the concentration of both reactants (nucleophile and electrophile) and is stereospecific; thus, a transition state for product formation involving both reactants (concerted reaction) explains these observations.

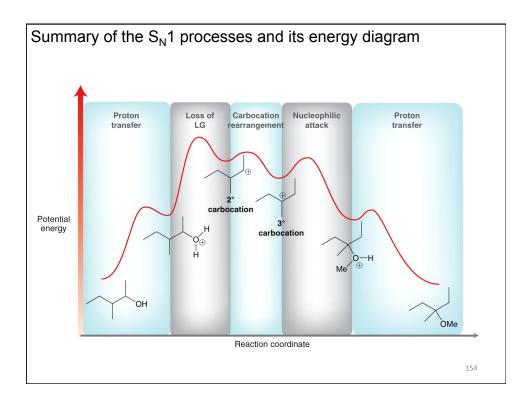


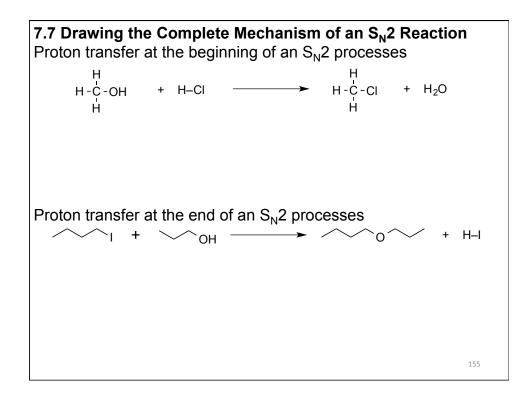


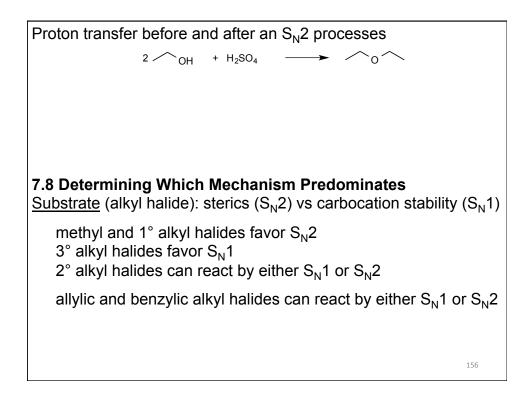
Structure of the Substrate – Formation of the carbocation intermediate is rate-determining. Thus, carbocation stability greatly influences the reactivity. The order of reactivity of the alkyl halide in the S_N 1 reaction parallels the carbocation stability.



Secondary (2°) alkyl halides can undergo nucleophilic substitution by either an $S_N 1$ or $S_N 2$ mechanism


Tertiary (3°) alkyl halides under go nucleophilic substitution by an $S_N 1$ mechanism only


Stereochemistry of $S_N 1$ Reactions – A single enantiomer of a 3° alkyl halide will undergo $S_N 1$ substitution to give a racemic product (both possible stereoisomers at the carbon that bore the halide of the reactant).

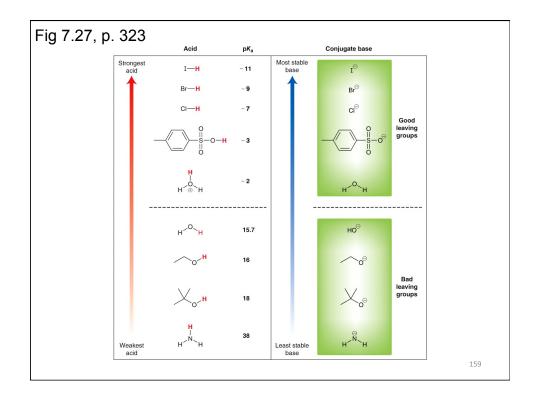


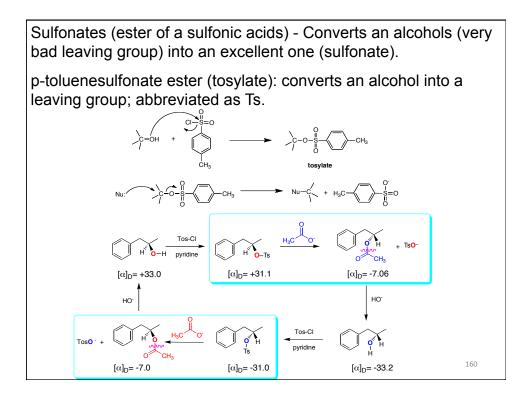
	S _N 1	S _N 2
Mechanism	Two Steps	One Step
	$R-X \rightarrow R^* + X^- \stackrel{Nu:}{\rightarrow} R-Nu$	R–X + Nu: → R–Nu + + X ⁻
Kinetics	1st order (unimolecular)	2nd Order (bimolecular)
	rate= k [R-X] lonization = rate determining step (1st	rate= k [R-X] [Nu:]
	step), 2nd step does not affect the rate	one step reaction
Stereochemistry	Racemization	Inversion
Carbon (<i>sp</i> ³)	Favored by electrophiles that can	Steric hindrance controlled
Electrophile	best stabilize a carbocation. alkyl halide reactivity: 3°> 2°>> 1°	alkyl halide reactivity: CH₃ > 1° > 2° no reaction for 3°
Competing	Elimination (E1)	Elimination (E2) by strongly
Reactions	Carbocation rearrangements	basic nucleophiles

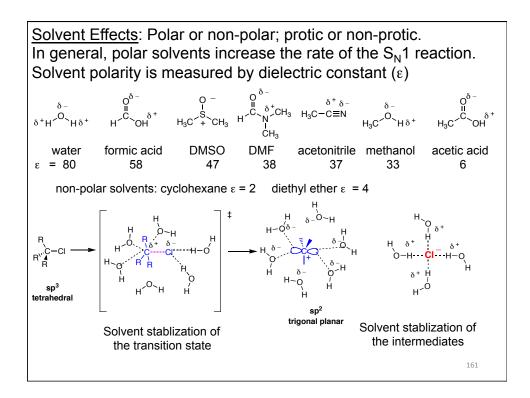
The carbon bearing the halogen (C–X) must be sp³ hybridized alkenyl (vinyl) and aryl halides do not undergo nucleophilc substitution reactions. $\underset{R_{2}}{\overset{R_{3}}{\longrightarrow}} \underset{R_{1}}{\overset{X}{\longrightarrow}} + \text{Nu:} \xrightarrow{X} \underset{R_{2}}{\overset{R_{3}}{\longrightarrow}} \underset{R_{2}}{\overset{R_{1}}{\longrightarrow}} \xrightarrow{X} + \text{Nu:} \xrightarrow{X} \underset{()}{\overset{Nu}{\longrightarrow}} + \text{Nu:} \xrightarrow{X} \underset{()}{\overset{Nu}{\longrightarrow}} \xrightarrow{X} \underset{()}{\overset{Nu}{\overset{Nu}{\longrightarrow}} \xrightarrow{X} \underset{()}{\overset{Nu}{\overset{Nu}{\longrightarrow}} \xrightarrow{X} \underset{()}{\overset{Nu}{\overset{Nu}{\longrightarrow}} \xrightarrow{X} \underset{()}{\overset{Nu}{\overset{Nu}{\overset{Nu}{\longrightarrow}} \xrightarrow{X} \underset{()}{\overset{Nu}{\overset{N$ Nucleophile: Nucleophilicity is the term used to describe the reactivity of a nucleophile. The measure of nucleophilicity is imprecise. The S_N2 reaction favors better nucleophiles anionic nucleophiles Nu: [−] + R-X → Nu-R + X: -Nu: + R-X → Nu-R + neutral nucleophiles X: -Nucleophilicity usually increases going down a column of the periodic chart. (polarizability and solvation) Halides: I - > Br - > CI - > F -RS - > RO -157

Anionic nucleophiles are usually more reactive than neutral nucleophiles (e.g., $RO^- > ROH$). However, anionic nucleophiles are usually more basic, which can lead to an increasing of competing elimination reactions.

Solvolysis: a nucleophilic substitution in which the nucleophile is the solvent (usually for $S_N 1$ reactions).

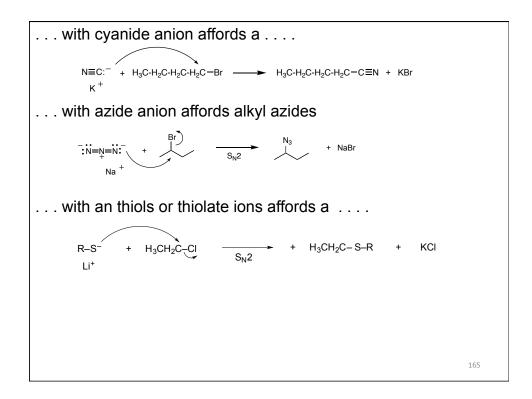

<u>Leaving Group</u>: Good leaving groups are favors for both $S_N 1$ and $S_N 2$ reactions.

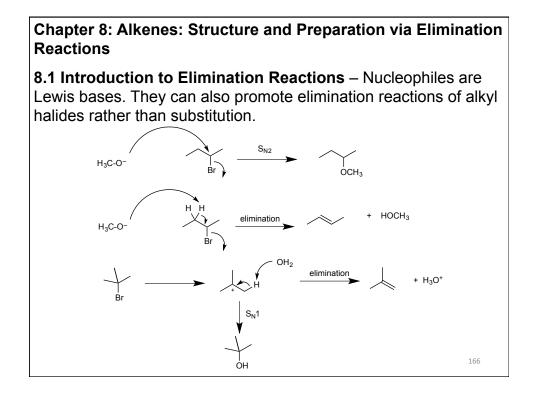

Good leaving groups are the conjugate bases of strong acids. The ability to stabilize neagative charge is often a factor is judging leaving groups. (Fig 7.27)


Sulfonates (conjugate base of sulfonic acids) are excellent leaving groups.

79

158





In general, polar aprotic solvents ir reaction. Aprotic solvents do not h			1.4
$CH_3CH_2CH_2CH_2CH_2Br + N_3^- \longrightarrow$	CH ₃ CH ₂ Cł	H ₂ CH ₂ CH	₂ –N ₃ + Br–
$ \begin{array}{cccc} \text{Solvent:} & \text{CH}_3\text{OH} & \text{H}_2\text{O} \\ \text{relative reactivity:} & 1 & 7 \\ \epsilon &= & 33 & 80 \end{array} $	DMSO 1,300 47		
Polar, aprotic solvents sequester c anion more nucleophilic	ations, wh	lich can i	make the
	Nu		
			162

	S _N 1	S _N 2
Carbon (<i>sp</i> ³) Electrophile	Favored by 3° alkyl halides or sulfonates	Favored by CH₃ and 1° alkyl halide or sulfonates > 2°
	$2^\circ,$ benzylic, or allylic can also react by an $S_N 1$ mechanism	2°, benzylic, or allylic can also reactly an $S_{\rm N}2$ mechanism
Nucleophile	Nature of the nucleophile has no affect on rate. In general, S _N 1 use neutral, weak nucleophiles	Favored by more reactive nucleophiles
		RS ⁻ > NC ⁻ > I ⁻ > RO ⁻ > HO ⁻ > CI ⁻
Leaving Groups	Favored by good leaving groups	-OTs ~ -I > -Br > -Cl > -OH ₂
Solvent Effect	Favored by polar, protic solvents.	Favored by polar, aprotic solvents.
	<i>Solvolysis</i> : polar protic (H-bonding) solvents act as the nucleophile	CH ₃ CN > DMF > DMSO Disfavored by polar protic (H-bonding) solvents
Competing Reactions	Elimination (E1) Carbocation rearrangements	Elimination (E2) by strongly basic nucleophiles

