Plasma half-life of drugs, steady state concentration, its clinical importance and factors affecting it.

Presented By Dinesh Kumar Sharma

Plasma Half Life of Drug

Half-life is the time taken for the drug concentration to fall to half its original value

Drug Half-Life

Figure 2.3

Rate of attainment of steady-state concentration of drug in plasma.

If drug has short duration of action, design drug with larger half life

If drug too toxic, design drug with smaller half life

Steady-State Concentration

Steady-state occurs after a drug has been given for approximately five elimination half-lives.

At steady-state the rate of drug administration equals the rate of elimination and plasma concentration time curves found after each dose should be approximately superimposable.

Accumulation to Steady State 100 mg given every half-life

What is Steady State (SS) ? Why is it important ?

Rate in = Rate Out

Reached in 4 – 5 half-lives (linear kinetics)

Important when interpreting drug concentrations in time-dependent manner or assessing clinical response

Therapeutic Drug Monitoring Therapeutic Index

Therapeutic index = toxic dose/effective dose

This is a measure of a drug's safety
A large number = a wide margin of safety
A small number = a small margin of safety

Drug Concentrations may be Useful when there is:

An established relationship between concentration and response or toxicity

- A sensitive and specific assay
- An assay that is relatively easy to perform
- A narrow therapeutic range

A need to enhance response/prevent toxicity

Why Measure Drug Concentrations?

Lack of therapeutic response

Toxic effects evident

Potential for non-compliance

Variability in relationship of dose and concentration

Therapeutic/toxic actions not easily quantified by clinical endpoints

Therapeutic Window

Useful range of concentration over which a drug is therapeutically beneficial. Therapeutic window may vary from patient to patient

Drugs with narrow therapeutic windows require smaller and more frequent doses or a different method of administration

Drugs with slow elimination rates may rapidly accumulate to toxic levels....can choose to give one large initial dose, following only with small doses