Sterilization and Disinfection

Definition

- Sterilization means destruction of all microorganisms including spores
- Disinfection means the destruction of vegetative organisms which might cause disease or putrefaction
- Sterilization Methods
- Red heat (Flaming)
- Dry heat (Hot air)
- Moist heat
- Steam under pressure (autoclaving)
- Steam not under pressure (Tyndallization)
- Filtration

Dry Heat

- Instruments inoculating wires and loops are sterilized by in a flame
- Incineration
- Glass spreaders, forceps, scissors to flaming after dipping in alcohol allowing the alcohol to flame
- The sterilizing effect of dry heat is due to oxidation of intracellular components and extreme dehydration
- very high temperature
- glass petridishes, pipettes, flasks and metal objects in hot air oven

- operation or use of hot air oven includes, the heating up period
- the holding period 1 h at 160° C or 2 hours at 140° C
- the cooling down period to be cooled to less than 80° C

Moist Heat

 The sterilizing effect of moist heat is due to coagulation of proteins

• Steam under pressure

- Done by autoclaving at 121°C for 15 min
- suitable for culture media, aqueous solution, treatment of discarded cultures and specimens
- Boiling point of water increases with increasing pressure of steam

Steam pressure (psi) Temperature

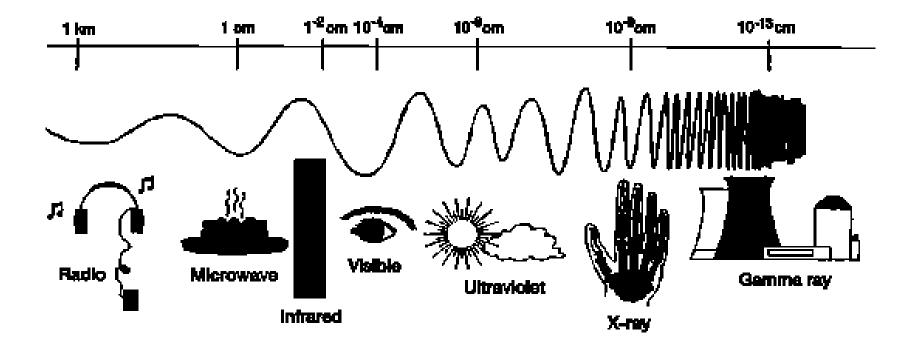
0	100° C
5	109º C
10	115º C
15	121°C

Laboratory autoclaves

- Pressure cooker type
- Gravity displacement

Steam not under pressure (at 100°C)

- Moist heat at 100°C
- Arnold's steam sterilizer
- Tyndallization is performed
- at 100°C for 20 30 min for three successive days
- Moist heat below 100°C (Pasteurization)
- Not a sterilization method
- Pasteurization is adopted in preserving milk intended to destroy the vegetative pathogenic organisms
 - Holder method
 - Flash method


Filtration

- Bacteria can be removed from liquids by passing them through filters
- Useful for sterilizing heat labile fluids like vitamins, antibiotics, sera, urea, protein solution etc
- Types of filters
 - Earthernware candle filters eg. Berkefeld filter, Chamberland filter
 - Asbestos pad filters eg. Seitz filters
 - Sintered glass filter
 - Membrane filters
 - made from cellulose acetate or cellulose nitrate
 - membranes of 0.45 µ m or 0.22 µ m are used

Radiation

- Many forms of electromagnetic radiation are harmful to microorganisms
- Gamma rays and x-rays are more energetic than visible light or infra-red waves
- Radiation is the emission and propagation of energy through a space or material medium
- Two types
 - Ionising radiation
 - Non ionising radiation

- X-rays
- γ (gamma) rays
- Destruction of DNA is the most important cause of death of organisms

Ultra – violet (UV) radiation

- UV has maximum bactericidal effect or is lethal at a wave length of 260 nm
- Primary mechanism of UV damage is the formation of thymine dimers in DNA
- Killing is appreciable at 330 nm and below
- Sterilization using radiation is called cold sterilization

Other methods

- Photodynamic sensitization
- presence of certain fluorescent dyes, strong visible light denatures proteins and sterilizes bacteria and viruses

Ultrasonic and Sonic waves

 – ultrasonic range (frequency of 15,000 hz & more) sound waves denature proteins

Freezing

- crystallization of the water results in the formation of tiny pockets of concentrated solution of salts
- damage the bacteria

Chemical sterilization

- Ethylene oxide (EtO)
- Used for sterilization of plasticwares, tubings, etc
- EtO at the concentration of 700 mg / lit for 5 to 8 hours at 38°C or 3 to 4 hours at 54°C
- Excessive aerations is required after the treatment
- Betapropiolactone (BPL), vapour phase of H_2O_2

Disinfection

- Most disinfectants are effective against vegetative bacteria but not spores
- While selecting disinfectants, factors such as their toxicity and harmful effects on the skin, eyes and respiratory tract should be considered
- Desirable properties of a disinfectant
- Effective and capable of rapidly killing microorganisms
- Reasonably stable
- Non-corrosive and non-staining
- Odourless or have an inoffensive odour
- Non toxic and non-irritating to skin and eyes
- Readily soluble in water and readily rinsable
- Cost effective

Commonly used Disinfectants

- Clear phenolics
- Effective against bacteria and fungi, inactive against spores
- 2 5% solutions are recommended
- Hypochlorites
- activity is due to chlorine and is effective against bacteria, spores
- Reasonably clean surfaces 1000 ppm
- Pipette and discard jars 2500 ppm

Aldehydes

- Formaldehyde, glutaraldehyde
- Formalin is diluted to 1:10
- Aldehydes are however toxic and cause eye and skin irritation
- Alcohol and Alcoholic mixtures
- Ethanol and propanol at 70 80% concentrations are effective
- 10% fomalin in 70% alcohol or 2000 ppm of available chlorine in alcohol is effective

• QAC (Quarternary Ammonium Compounds)

 cationic detergents effective against vegetative bacteria, fungi, 1 – 2% dilutions

Iodophores

- Iodines are effective vegetative bacteria, spores, fungi, virus
- at 75 150 ppm iodine

Chemical Disinfectants

Agent	Mode of Action
Halogens	Oxidation of proteins and enzymes
Chlorine and its compounds	Protein inactivation by iodination
lodine and iodophores	
Heavy metals	Enzyme inactivation by coupling to
Mercuric chloride and	sulphydryl groups of proteins
organomercurials	Denaturation of proteins and
Silver nitrate	enzymes
Phenolic compounds	Disruption of cell membrane, inactivation of proteins and enzymes

Alcohols	Solubilization of lipids, denaturation of proteins and inactivation of enzymes
Quarternary Ammonium compounds	Disruption of cell membranes; denaturation of proteins and inactivation of enzymes
Formaldehyde	Strong reducing agent, inactivates enzymes
Elthylene oxide	Inactivates enzymes