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11.1 Introduction

Nanoparticle synthesis can be performed by various methods such as physical, chemical,

and biological approaches. Generally, the physical and chemical methods are considered

the best to get uniform-sized nanoparticles with long-term stability. However, these

approaches are expensive and release toxic/hazardous materials into the environment.

Toxic chemicals used for nanoparticle synthesis in chemical methods make the obtained

nanoparticles less suitable for medical, cosmetic, or food applications. Because several

nanoparticles have been widely utilized in medical products, disease diagnosis, and cos-

metics, improving the biocompatibility of nanoparticles is highly important. For the past

decade, substantial consideration has been given to biosynthesis approaches for the

production of metal nanoparticles such as silver, gold, copper, and platinum [1, 2]. Bio-

synthetic routes of nanoparticle synthesis are considered ecofriendly because the reduced

agents and stabilizing agents used are either bacteria, fungi, yeasts, and plants themselves

or their active components.

For the past decade, several plant species and plant-derived materials have been iden-

tified and used for the green synthesis of various nanoparticles. Several plants contain

many biologically active compounds such as alkaloids, phenols, flavonoids, ascorbic acid,

citric acid, polyphenolic, terpenes, and reductase, which act as reducing agents of metal

salts [3]. Such phytosynthesis approaches are highly promising due to the ability of the

plant materials themselves to act as both reducing and capping agents. Phytonanoparticle

synthesis can happen with both intracellular and extracellular mechanisms. The selected

species of plants growing in metal-rich organic media, metal-rich soil, and metal-rich

hydroponic solution can intracellularly synthesize metallic nanoparticles [4]. This

approach requires a significant effort to culture, monitor, track, and harvest nanoparticles.

Such methods also result in adulteration with plant tissues, other components, plant path-

ogens, and biomolecules. However, the extracellular routes of nanoparticle synthesis

involve the addition of plant extracts (e.g., leaves, roots, shoots, bark, fruits, etc.) to a
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boiling metal salt precursor solution and facilitating the reduction of metal ions. More-

over, the use of specific plant-derived components such as biomacromolecules,

enzymes, flavonoids, antioxidants, and alkaloids instead of the whole plant extract to

achieve a controlled particle formation is a recent advancement of phytosynthesis.

Macromolecules such as redox active proteins can also be used to synthesize metallic

nanoparticles [5]. The phytosynthesis of silver nanoparticles using extracts of plants

such as Cinnamon zeylanicum [6], Geranium [7], Coleus aromaticus [8], Stevia rebaudiana

[9], Aloe vera [10], Ocimum tenuiflorum [11], papaya [12], Cassia angustifolia [13], lemon

[14], Biophytum sensitivum [15], Mimosa pudica [16], and Piper nigrum [1, 17] has already

been reported. The presence of biomacromolecules from such medicinal plants can

improve the functional properties of the synthesized nanomaterials. Similarly, various

plant extracts were used for the synthesis of gold [18, 19], platinum [20], and copper

[21] nanoparticles.

Phytonanoparticles are suggested for several applications in the agriculture, environ-

mental, cosmetics, biomedical, and industrial sectors. In the following sections, multi-

modal applications of phytosynthesized nanoparticles such as silver, gold, copper, etc.,

in several such fields are detailed.
11.2 Applications of phytonanoparticles

Phytonanoparticles have been applied in many fields such as agriculture and medicine as

well as several industrial applications. Owing to the higher bioactivity of phytonanopar-

ticles compared with physiochemical nanoparticles, they are preferred in biomedical and

cosmetic applications. For example, phytonanoparticles showed higher biocompatibility

with endothelial cells, cardiomyoblasts, and Chinese hamster ovary cells (CHO) than

chemically synthesized ones [22]. The multimodal applications of phytonanoparticles

are summarized in Fig. 11.1. Phytosynthesized silver nanoparticles are mostly utilized

in the biomedical sector due to their outstanding antimicrobial activity. Silver, zinc,

and other metal nanoparticles are also used in wound dressings, food packaging, and cath-

eters due to their excellent antimicrobial property. Zinc- and titanium-based nanopar-

ticles are mainly used in cosmetics applications owing to their UV-blocking capacity.

Another important application of phytonanoparticles is the development of sensors for

the recognition of various analytes related to the agriculture, diagnostics, and environ-

mental sectors. Moreover, phytonanoparticles are suggested for use in gene delivery, drug

delivery, and cell labeling, offering potential applications in biology and medicine. Some

of the highly promising applications of metal and metal oxide nanoparticles are yet to be

fully explored such as photothermal therapy, photoimaging, and magnetically induced

drug delivery.



Fig. 11.1 Multimodal applications of phytonanoparticles. Silver nanoparticles are mostly used in
applications such as wound dressing, food packaging, catheters, sensors, gene delivery, cell
labeling, photothermal therapy, photoimaging, and magnetically responsive gene/drug delivery.
Adapted with permission from P. Singh, Y.J. Kim, D. Zhang, D.C. Yang, Biological synthesis of
nanoparticles from plants and microorganisms, Trends Biotechnol. 34 (2016) 588–599.
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11.2.1 Agricultural applications of phytonanoparticles
Phytonanoparticles provide environmentally friendly agricultural applications such as

plant disease management, plant growth promotion, and stress tolerance [23]. Phyto-

synthesized silver nanoparticles have shown promising antifungal activity against the spot

blotch pathogen of wheat, Bipolaris sorokiniana [24]. Additionally, phytosynthesized silver

nanoparticles using Serratia sp. were also found to inhibit the melanin biosynthesis genes

in B. sorokiniana [25]. Several other phytopathogens were found to be sensitive to bio-

nanoparticles, demonstrating their potential in managing several diseases in agricultural

plants [26]. The effect of biosynthesized titanium dioxide (TiO2) nanoparticles on the

growth of Vigna radiata and the enrichment of the rhizospheric microbial population
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is highly promising [27]. Furthermore, the application of biosynthesized magnesium

oxide (MgO) nanoparticles improved the quality and yield of cluster bean plants

(Cyamopsis tetragonoloba). The application of these bionanoparticles resulted in improve-

ments in root-shoot growth and overall chlorophyll pigment in the plants.

Biosynthesized zinc oxide (ZnO) nanoparticles improved the alkaline phosphatase, acid

phosphatase, and phytase activity in the cluster bean rhizosphere [27]. Owing to the anti-

microbial and fertilizer action, phytosynthesized nanoparticles are highly promising for

avoiding pathogenic outbreaks and promoting plant growth [28]. Such studies point out

the potential of various phytonanoparticles in several agricultural applications.

11.2.2 Environmental applications of phytonanoparticles
Contaminating the environment with toxic materials due to human activities is a major

concern. Various approaches and technologies are used to decontaminate polluted soils

and water bodies. Toxic metals such as cadmium, arsenic, lead, barium, chromium, mer-

cury, and nickel form the major metallic contaminants. The major organic contaminants

include petroleum, organic solvents, plastics, pesticides, and herbicides. Although there

are several physical and chemical environmental remediation methods available, they are

not cost-effective, ecofriendly, or safe. Thus, it is important to find novel options that

employ ecofriendly methods to eradicate not only metallic residues, but also organic pol-

lutants, petroleum sludge, and military waste.

11.2.2.1 Removal of heavy metals
Heavy metals such as lead (Pb) are a major issue in soil and water. In this direction, Padina

pavonica and Sargassum acinarium were used as a reductant of FeCl3 to produce Fe3O4

nanoparticles [29]. The obtained Fe3O4 nanoparticles were loaded in calcium alginate

particles and used to remove Pb. The P. pavonica phytosynthesized Fe3O4

nanoparticle-loaded alginate beads possessed superior capacity for removing 91% of

Pb while S. acinarium-based nanoparticles removed 78% after 75 min.

11.2.2.2 Water purification
Ensuring the availability of drinking water is a challenging task for almost all countries

across the world. The search for novel technologies for better water management is

an ever-increasing need. Nanotechnology possesses great potential in water purification

through designing advanced large-scale and household water treatment equipment. Pre-

venting the growth of pathogenic microorganisms by modifying or coating the surfaces

with antimicrobial agents has gained much attention in water filters. Owing to the

enhanced antimicrobial activity, phytosynthesized silver nanoparticles can be used in

the membrane filters of water-filtering machines. This approach is approved by the

World Health Organization (WHO) [4]. In addition to the excellent antibacterial
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efficacy, antimicrobial coatings should show low toxicity and ease of fabrication. Silver

nanoparticle-coated surfaces have been largely used as antimicrobial coatings [4, 30].

11.2.2.3 Wastewater treatment
Wastewater treatment involves the removal of harmful contaminants from wastewater or

sewage, then conversion into an effluent that can be given back to the water cycle with

minimum impact on the environment or direct reuse for household purposes. In addition

to the biomass, organic-inorganic substances and microorganisms form the major con-

taminants in wastewater. Nanoparticles such as silver, titanium dioxide, and ZnO hold

great promise in wastewater treatment. Phytosynthesized nanoparticles are highly prom-

ising due to the potential advantages compared to chemically or physically synthesized

nanoparticles. Silver and gold nanoparticles synthesized using the aqueous extract of bur-

dock root possessed excellent bactericidal property against several bacteria and showed

excellent catalytic activity for the degradation of pollutants in wastewater [31]. The

reductive transformation of nitroaromatic compounds is a major process in wastewater

treatment. Owing to the superb catalytic properties, metals such as palladium (Pd) can

be used to remove such compounds. Pantoea sp.-assisted phytosynthesized palladium

nanoparticles can be explored as an effective catalyst for the reduction of nitroaromatics

[32]. Palladium nanoparticles showed superior catalytic activity in the reduction of

nitroaromatic compounds such as 2-nitroaniline, 4-nitrophenol, 4-nitroaniline, and

2,6-dichloro-4-nitroaniline.

11.2.2.4 Dye degradation
Environmental pollution due to textile dyes is a serious issue for soil and water bodies.

Textile wastes are extremely colored, and their dumping in water resources results in

unbearable damage to the ecosystem by affecting solar light penetration, which may

reduce photosynthesis in aquatic plants and affect all levels of aquatic life. Further, the

large solubility of dyes also contaminates both the ground and surface water. Phyto-

synthesized silver and gold nanoparticles were able to degrade different types of dyes.

Organic pollutants such as of methyl orange, 4-nitrophenol, and rhodamine B were

degraded by silver and gold nanoparticles with pseudo-first-order rate constants [31].

Silver nanoparticles generated using the aqueous flower extract of Ipomoea digitata showed

promising catalytic reduction of methylene blue in the presence of NaBH4. It followed

pseudo-first-order kinetics with a rate constant of 0.1714 min�1 [33]. Silver nanoparticles

synthesized usingConvolvulus arvensis extract were exploited as a catalyst for the reduction

of azo dyes in the presence of NaBH4 with promising results [34]. The silver nanopar-

ticles synthesized using dandelion extract showed good catalytic degradation activity for

rhodamine B and methyl orange in the presence of NaBH4 [35]. Dandelion-based silver

nanoparticles showed superior dye degradation for rhodamine and methyl orange with
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rate constants of 0.1038 and 0.0393 s�1, respectively. Studies also showed that phytona-

noparticles obtained by the reduction of silver nitrate using flavonoids obtained from Psi-

dium guajava leaves possessed excellent dye degradation potential. They could effectively

degrade organic dyes such as Coomassie Brilliant Blue and methyl orange under solar or

UV irradiation (Fig. 11.2) [36]. In another investigation, silver nanoparticles were devel-

oped using the fruit extract of Prosopis farcta and used for degrading methylene blue in the

presence of visible light [37]. The results revealed a considerable color degradation of

70.20% within the first 30 min. Eriobotrya japonica leaf extract phytosynthesized silver

nanoparticles also showed rapid catalytic degradation of reactive dyes. Bimetallic sil-

ver/ZnO nanoparticles were synthesized using the extracts of the oak fruit hull [38].

ZnO NPs and Ag/ZnO NPs were then used to degrade basic violet 3 in aqueous solu-

tion. Ag/ZnO hybrid nanoparticles showed faster dye degradation (30 min) compared to

ZnO nanoparticles (90 min). Phytosynthesized gold nanoparticles using marine
Fig. 11.2 Wastewater treatment potential of Psidium guajava-mediated synthesized silver nanoparticles.
Reproduced with permission from L. Wang, F. Lu, Y. Liu, Y. Wu, Z. Wu, Photocatalytic degradation of organic
dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium
guajava L. leaves, J. Mol. Liq. 263 (2018) 187–192.
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macroalgae Padina tetrastromatica and their application for dye degradation indicated that

the biosynthesized gold nanoparticles can degrade Congo red and eosin yellow in the

presence of sodium borohydride with pseudo-first-order kinetics [39].

Similarly, phytosynthesized copper oxide (CuONPs) nanoparticles using Ruellia

tuberosa (R. tuberosa) aqueous extract also possessed good dye degradation capacity

[40]. CuONPs embedded on cotton fabrics showed photocatalytic reduction of crystal

violet. In another study, manganese dioxide (MnO2), copper oxide (CuO), and silver

nanoparticles were developed using Kalopanax pictus plant extract and the dye degrada-

tion potential was evaluated [41]. The Congo red degradation potential of the MnO2

nanoparticles was higher than that of the silver and CuO nanoparticles. All the nanopar-

ticles showed a relatively similar degradation capacity against Safranin, indicating the

potential of K. pictus-synthesized nanoparticles for the degradation of dyes. Tin oxide

(SnO2) nanoparticles synthesized using guava (P. guajava) leaf extract showed promising

photocatalytic activity, as evident from the degradation of reactive yellow 186 dye under

sunlight [42]. The effective degradation of 90% dye was achieved within 180 min at a rate

constant of 0.00476 min�1. Zinc sulfide phytonanoparticles (ZnS) have been successfully

produced using various methanol plant extracts [43]. The photocatalytic degradation of

methylene blue dye (MBD) and methyl orange dye (MOD) in the presence of synthe-

sized ZnS nanoparticles was also tested under UV exposure. ZnS nanoparticles synthe-

sized using Syzygium aromaticum methanol extracts showed higher dye degradation

compared to other ZnS nanoparticles.

Phytosynthesized iron nanoparticles (INPs) using Lagerstroemia speciosa also possessed

dye degradation properties [44]. The phytonanoparticles were used for the degradation of

organic dyes such as brilliant blue, methyl orange, methylene blue, allura red, and green

along with hydrogen peroxide under solar light. Decolorization of all the tested dyes pre-

sented first-order-rate kinetics with a rate constant in the range of 13.1 � 10�3 to

17.7 � 10�3 min�1. Similarly, Iron oxide nanoparticles (IONPs) were synthesized using

the aqueous leaf extract of Daphne mezereum [45]. These phytonanoparticles were tested

for dye-removal activities. The decoloration efficiency was about 81% after 6 h.Trigonella

foenum-graecum synthesized zero-valent iron nanoparticles (Fe0) (ZV-Fe NPs) could

effectively degrade methyl orange dye under UV light [46]. This reaction followed

pseudo-first-order kinetics, and the rate constant kapp was found to be 0.025 min�1. Phy-

tosynthesized hematite nanoparticles using the leaf broth of the P. guajava plant could

effectively catalyze the degradation of the dyes such as methyl red, methyl orange, eosin

yellowish, and methylene blue [47]. Bimetallic iron-silver core-shell nanoparticles,

(FeO/AgNPs) iron-gold core-shell nanoparticles (FeO/AuNPs), and iron nanoparticles

(FeONPs) were synthesized using pomegranate fruit (PEP) peel extract [48]. Core-shell

nanoparticles showed the highest aniline blue (AB) dye degradation at 70°C and pH 10.

Moreover, gold nanoparticles, supported on Fe3O4@polyaniline as a magnetic nanoca-

talyst, showed the reduction of methyl orange (MO) and methylene blue (MB) from
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aqueous solutions [49]. Here, gold nanoparticles were synthesized using the extract of

Allium Sp. The degradation reaction of azo dyes with NaBH4 in the presence of the

phytonanoparticle-based catalyst was several-fold faster than degradation without the

nanocatalyst. Calcium hydroxide nanoparticles (Ca(OH)2-NPs) were synthesized from

calcium oxide using the Andrographis echioides leaf extract [50]. Ca(OH)2-NPs showed

excellent methylene blue dye degradation efficiency under UV, visible, and sunlight

(98.96%, 97.52%, and 96.38%, respectively).

Phytosynthesized metal, metal oxide, or metal hydroxide nanoparticles act as prom-

ising materials for dye degradation, which will substantially contribute to environmental

protection.

11.2.2.5 As a mosquito larvicidal agents
Several diseases such as dengue fever are transmitted through viral vectors such as mos-

quitos. Killing mosquito larvae in standing water is the best strategy to reduce mosquito-

mediated disease outbreaks. Commonly used larvicides include organophosphorate

Temephos, which may cause adverse effects such as headaches, loss of memory, and

irritability. Silver nanoparticles showed larvicidal properties against the larvae of several

species of mosquitoes. Silver nanoparticles synthesized using the leaf extract ofRhizophora

mucronata showed larvicidal activities against the larvae of Aedes aegypti (A. aegypti) and

Culex quinquefasciatus (C. quinquefasciatus) [51]. Larvicidal activities such as LC50 and

LC90 values were measured. The LC50 values were 0.585 and 0.891 mg/L for

A. aegypti and C. quinquefasciatus larvae, respectively. Moreover, the LC90 values were

2.615 and 6.291 mg/L for A. aegypti and C. Quinquefasciatus, respectively.

Similarly, silver nanoparticles synthesized usingCentroceras clavulatum algal extract [52]

showed that the LC50 values of C. clavulatum extract against A. aegypti larvae and pupae

were 269.361–387.637 ppm, and 446.262 ppm (pupa), respectively. The LC50 values of

C. clavulatum-synthesized AgNP were 21.460 to 29.155 ppm (larva), and 33.877 ppm

(pupa), respectively. Silver nanoparticles were produced using Moringa oleifera seed

extract and tested for larvicidal activity against A. aegypti [53]. Silver nanoparticles were

very effective against A. aegypti, with LC50 values ranging from 10.24 to 21.17 ppm.

Overall, green-synthesized nanomaterials can be used as promising mosquito larvi-

cidal agents to fight viral diseases such as dengue fever.

11.2.3 Cosmetic applications
Cosmetics products have been generally defined as “articles intended to be applied to the

human body by being rubbed, poured, sprinkled, or sprayed for cleansing, promoting

attractiveness, beautifying, or altering the appearance” [53a]. Cosmeceuticals are cos-

metic products having some specific therapeutic effects. In the cosmeceutical industry,

nanotechnology has huge potential because the nanoparticles can easily reach the targeted

tissue by passing the skin. Nanoparticles are commonly used in cosmetics industry for
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improving the properties of different products and formulations. Nanomaterials can also

provide improved sensory characteristics and stability to cosmetic products. Zinc oxide

and titanium dioxide nanoparticles not only give a better feel and spreading capacity to

the cosmetic formulation, but they also give better protection from harmful UV

radiation.

Skin penetration studies using a silver nanoparticle gel formulation in rats indicated

that they are safe for topical application [54]. Certain nanoformulated creams for sensitive

teeth contain calcium phosphate nanoparticles that generate a thin layer of apatite such as

natural tooth enamel and reduce pain. Gold and silver nanoparticles are used in body

creams and lotions to give the skin a fresher appearance. Silver nanoparticles are used

in deodorants, toothpastes, soaps, lip products, wet wipes, and face creams.

Antimicrobial cream formulations can be developed by incorporating phytosynthe-

sized silver nanoparticles [55]. Withania somnifera extract-mediated synthesized silver

nanoparticles were incorporated into a cream base and tested for their antimicrobial activ-

ity against human pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus

aureus, Proteus vulgaris, and Candida albicans. Results showed that silver nanoparticle-

loaded creams hold superior inhibitory potential against these microbes. Similarly, silver

nanoparticles synthesized using Solanum trilobatum Linn extract with antibacterial prop-

erties against multiple bacteria and fungi can be used as an active ingredient in shampoos

[56]. The phytonanoparticle-loaded shampoo possessed antidandruff activity against fun-

gal pathogens such as Pityrosporum folliculitis and Pityrosporum ovale.

Soaps loaded with nanoparticles show fungicidal and bactericidal properties and can

be useful in treating sun-damaged skin as well as acne. Silver nanoparticles synthesized

using Coleus vettiveroids aqueous leaf extract were impregnated in coconut oil-based

saponified soap [57]. The soap impregnated with silver nanoparticles exhibited antibac-

terial activity against both Gram-negative and Gram-positive bacteria. Hand wash con-

taining 15 mg per liter of silver nanoparticles was effective against pathogens [58]. The

incorporation of silver nanoparticles in dentifrices effectively destroyed pathogenic yeasts

found in the mouth such as C. albicans and Candida glabrata [59].

There is a good chance of microbial contamination of cosmetics when the user opens

and closes the cosmetic containers or bottles during daily use. Thus, the incorporation of

preservatives is necessary to prevent microbial contamination in cosmetic products.

Parabens and phenoxyethanol are generally used in cosmetic products for antimicrobial

properties; however, they may temporarily irritate the skin and increase the skin’s UV

sensitivity [60]. Due to the antibacterial activity of silver nanoparticles, they can be used

as safe alternatives for these preservatives in cosmetics. Thus, phytosynthesized silver

nanoparticles can be incorporated into shampoos and toothpastes as preservatives.

Although only limited information is available regarding the cosmetic application of

phytosynthesized nanoparticles, they have enormous potential as active ingredients in

cosmetic products.
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11.2.4 Biomedical applications of phytonanoparticles
Various types of nanoparticles are extensively used in several biomedical applications,

including image contrast agents, antibacterial dressings, cancer treatment, and biosensors.

Therefore, ecofriendly and biofriendly nanoparticles synthesized using plants and plant

derivatives can find several applications in medical and biomedical products [60a].

11.2.4.1 As antimicrobial agents
Phytosynthesized nanoparticles can be used in several biomedical products such as wound

dressings, biomaterial implants, catheters, stents, and blood bags due to their antimicro-

bial properties. Phytonanoparticles possess improved antimicrobial property over their

bare counterparts due to the presence of phytochemicals. The phytochemicals present

in the plants are responsible for improvements in the inherent antimicrobial activity

of silver nanoparticles [1].

Phytosynthesized silver nanoparticles can induce membrane damage in Candida sp.

and damage in fungal intercellular components [30]. Garcinia mangostana leaf extract-

based silver phytonanoparticles were found to be very effective against various drug-

resistant pathogens [61]. Artemisia nilagirica (Asteraceae)-mediated synthesized silver

nanoparticles also showed susceptibility against several microorganisms [62]. Silver nano-

particles synthesized using marine seaweed Sargassum wightii were effective against

S. aureus, K. pneumoniae, and S. typhi [63]. Silver nanoparticles synthesized using other

plants such as Tulsi (Ocimum sanctum) leaf extract [64], Origanum vulgare (Oregano)

[65], Coptidis rhizome [66], Carissa carandas (Karonda) berry water extract [67], and Sal-

icornia bigelovii [68], showed efficient antibacterial activity against different pathogenic and

nonpathogenic bacteria on par with generic antibiotics. Copper oxide nanoparticles

synthesized using brown alga (Bifurcaria bifurcata) with dimensions of 5–45 nm exhibited

high antibacterial activity against two different strains of bacteria Enterobacter aerogenes

(Gram-negative) and S. aureus (Gram-positive) [69].

Fungal infections are one of the major causes of several infectious diseases. One of

the most common pathogens responsible for fungal infections is the Candida species

[70]. It can result in a nosocomial infection with an associated mortality rate of up

to 40% [71]. Silver nanoparticles show antifungal activity against several fungal species,

including candida [72]. Recently, studies showed that Tulsi (O. sanctum)-mediated

AgNPs exhibited antifungal activity against an opportunistic human fungal pathogen

[73]. Silver nanoparticles synthesized using extracts of Shoreatum buggaia, Boswellia

ovalifoliolata, and Svensonia hyderobadensis showed antifungal activity against A. niger,

A. flavus,Curvularia sp., Fusarium sp., andRhizopus sp. [74]. Among these, nanoparticles

synthesized from Svensonia hyderobadensis showed higher activity as compared to

AgNPs synthesized using two other plants. However, the exact mechanism of antifun-

gal activity of silver nanoparticles has not been reported. One possible mechanism

might be the destruction of the membrane integrity of fungi and the inhibition of

the budding process in yeasts.
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Silver nanoparticles possess inhibitory effects on several pathogens, including viruses,

and offer an excellent opportunity to formulate novel antiviral agents. Phytosynthesized

nanoparticles can act as potent broad-spectrum antiviral agents against several pathogenic

viruses [75]. Metal nanoparticles can be effective antiviral agents against HIV-1, hepatitis

B virus, respiratory syncytial virus, herpes simplex virus type 1, monkeypox virus, influ-

enza virus, and Tacaribe virus [76]. Biometallic nanoparticles are strong antiviral agents

and inhibit viral entry into the host system [77]. Phytosynthesized silver nanoparticles

using Phyllanthus niruri, Andrographis paniculata, and Tinospora cordifolia were tested for

their antiviral activity against chikungunya virus [78]. An in vitro antiviral test demon-

strated that nanoparticles synthesized fromA. paniculatawere the most effective, followed

by T. cordifolia and P. niruri ones. The viability of cells infected with chikungunya virus

increased three- to four-fold upon treatment withA. paniculata-based nanoparticles. Sim-

ilarly, silver nanoparticles were synthesized using the extract of the alga C. clavulatum and

tested against the dengue fever virus [52]. Cellular internalization assays demonstrated

that untreated infected cells showed a high intensity of fluorescence emission, which

denotes a high level of viral internalization. However, AgNP-treated infected cells

possessed low levels of fluorescence, indicating a low viral load. In another study, silver

nanoparticles generated usingM. oleifera seed extract were also tested against the dengue

serotype DEN-2 [53]. AgNP showed in vitro antiviral activity against DEN-2 infecting

vero cells. After 6 h of treatment, the DEN-2 yield was 5.8 log 10 PFU/ml in the control

while it was 1.4 log 10 PFU/mL posttreatment with AgNP (20 μL/mL), which

highlights the strong potential of green-synthesized AgNPs to control dengue fever. Bio-

nanoparticles also showed size-dependent interaction with herpes simplex virus types 1

and 2 and with human parainfluenza virus type 3 [79]. Tannic acid (TA-AgNPs)-

modified silver nanoparticles showed good antiviral activity against genital herpes infec-

tion [80]. Mice treated intravaginally with TA-AgNPs showed a low virus load in the

vaginal tissues quickly after treatment. Moreover, vaginal tissues treated with

TA-AgNPs exhibited a considerable increase in the number of activated B cells, IFN-

gamma + CD8+ T-cells, and plasma cells. The spleens of treated mice possessed a higher

number of effector-memory CD8+ T cells and IFN-gamma + NK cells in comparison to

the placebo control group.

The results of several studies indicated that using phytonanoparticles such as nanosil-

ver as antiviral agents is a viable approach that delivers alternative therapeutic possibilities

against devastating viral diseases. Overall, the plant-mediated synthesis of metal or

metal oxide nanoparticles can be employed to develop newer, safer, and cheaper ther-

apeutic agents to fight several viral pathogens, with no considerable cytotoxicity on

mammalian cells.

11.2.4.2 As wound healing agents
An unprotected wound is highly susceptible to microbial invasion, colonization, and

pathogenesis. In order to prevent wound infections, a suitable wound dressing material
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with a bacterial barrier property, an antibacterial property, and the ability promote

wound healing should be used [81]. Despite the lack of thorough validation of the activ-

ity, many commercial antimicrobial wound dressings are indicated for the management

of various types of wounds, such as burns, chronic ulcers, and diabetic foot ulcers [82].

Several such wound dressings loaded with nanoparticles are able to reduce the healing

time and inhibit bacterial growth to a higher extent than standard silver sulfadiazine,

without harmful effects on the treated patients [83, 84].

Several biopolymers such as polycaprolactone (PCL) [85–87], polylactic acid (PLA)

[88], polyvinyl alcohol (PVA) [16, 89], chitosan [90], gelatin [91], etc., are widely used

wound-dressing applications. Electrospinning is a robust technique for the development

of porous membranes for wound-dressing applications with microbial barrier properties

[92, 93]. P. nigrum (black pepper) leaf extract-mediated biosynthesized silver nanoparti-

cles were incorporated in electrospun PCLmembranes to provide antibacterial properties

[17]. Fig. 11.3A shows the morphological features of the PCL/silver nanocomposite

membranes. In the case of PCL/silver nanocomposite membranes, there was a consid-

erable reduction in the fiber diameter as the nanoparticle concentration increased in the

composite. From the stress strain curves of the membranes, there was a clear improve-

ment in the tensile strength of the membranes with increasing nanoparticle loading (Fig.

11.3B). The developed membranes containing phytonanoparticles exhibited antibacter-

ial activity against S. aureus and E. coli in a concentration-dependent way (Fig. 11.3C).

Phytosynthesized copper oxide nanoparticles using brown alga (B. bifurcata) with

5–45 nm size showed excellent antibacterial property against two different strains of bac-

teria, E. aerogenes (Gram-negative) and S. aureus (Gram-positive) [69]. Silver nanoparti-

cles synthesized using B. sensitivum were incorporated in nano-micro dual-porous

calcium pectinate scaffolds to generate antibacterial wound dressings [15]. Developed

wound dressings possessed excellent exudate uptake capacity and antibacterial property,

and were also biocompatible with human cells. In addition, these membranes with good

antibacterial properties can effectively fight off invading pathogens. Electrospun PVA

membranes containing phytosynthesized silver nanoparticles were suggested for

wound-healing applications [16]. The extract of M. pudica was used for the synthesis

of biosilver nanoparticles. Nanoparticle-loaded PVA membranes possessed excellent

exudate uptake capacity, blood compatibility, antibacterial activity, mechanical strength,

and cytocompatibility. At optimum concentrations, the presence of biosilver nanoparti-

cles enhanced wound healing in an in vitro wound contraction model.

Silver nanoparticles synthesized using Aspergillus niger were able to improve wound

healing by inhibiting pathogenic bacteria and modulating the wound healing-associated

cytokines [94]. Biosilver nanoparticle treatment reduced the time required for the differ-

entiation of fibroblasts into myofibroblasts and had a shorter time for the inflammatory

process compared with that observed with conventional wound dressings.



Fig. 11.3 Phytosynthesized silver nanoparticle-loaded wound dressings. The SEM morphology of PCL
dressings loaded with various amounts of silver nanoparticles (A). Stress-strain curves of PCL
membranes loaded with different amounts of silver nanoparticles showing the variation in
mechanical properties (B). Antibacterial testing of the neat PCL membranes (a), PCL/silver
nanocomposite membranes containing 0.05% w/w (b), 0.2% w/w (c), 0.5% w/w (d), and 1% w/w
(e) silver nanoparticles. Reproduced with permission from R. Augustine, N. Kalarikkal, S. Thomas,
Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial
wound dressings, Appl. Nanosci. (Switzerland) 6 (2016) 337–344.
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11.2.4.3 In cancer treatment
Several types of nanomaterials are extensively used in cancer therapy [95]. Studies have

demonstrated that nanoparticles can activate proapoptotic pathways mediated by the

generation of reactive oxygen species (ROS) [96]. Silver nanoparticles generated using

the plant extract of O. vulgare (Oregano) exhibited concentration-dependent inhibitory

activity against the lung cancer cell line, A549 (LD50¼100 μg/mL) [65]. A relatively low

concentration of gold nanoparticles was able to show apoptosis in malignant cells [97].

Plant-derived nanoparticles can revolutionize cancer treatment without interfering with

the viability of normal cells. Green-synthesized silver nanoparticles usingMorinda citrifolia

exhibited a higher cytotoxic effect in HeLa cell lines compared to other chemotherapeu-

tic drugs [98]. Biosynthesized silver nanoparticles by the yeastCryptococcus laurentii exhib-

ited excellent antitumor response in breast cancer cell lines such asMCF7 and T47D [99].

Silver nanoparticles synthesized from the extract of Ganoderma neo-japonicum mycelia

showed good cyototoxicity against breast cancer cells [100]. Low concentrations of silver

nanoparticles (1–10 μg/mL) successfully inhibited breast cancer cell proliferation and

induced membrane leakage. Silver nanoparticles synthesized using Syzygium cumini fruit

extract showed antioxidant and anticancer activity against Dalton lymphoma cell lines

under in vitro conditions [101]. About 100 μg/mL nanoparticle content resulted in

the 50% viability of Dalton lymphoma cells. Salvadora persica extract was utilized for

the synthesis of zinc oxide nanoparticles (ZnO-NPs) under ambient conditions [102].

Phytosynthesized nanoparticles could reduce the viability of the HT-29 cancer cell line

in a concentration-dependent manner. Composite hydrogels consisting of chitosan,

alginate, and biosynthesized silver nanoparticles showed good anticancer effect on the

breast cancer cell line MDA-MB-231 [103]. The IC50 value of chitosan-alginate-AgNPs

on MDA-MB-231 was 4.6 mg.

11.2.4.4 In biosensing, cell labeling, tracking, and imaging
Metal nanoparticles with plasmonic properties such as silver and gold greatly depend on

the shape, size, and dielectric medium that surrounds it [104]. The applicability of such

particles in biosensing is of great interest to researchers and industry [105]. The sensing of

biomolecules relies on their binding on the surface of metal nanoparticles and subsequent

changes in the plasmonic properties of the nanoparticles. The adherence of biomolecules

on the surface of nanoparticles increases the refractive index and results in shifting the

extinction spectrum. Differently shaped silver nanoparticles are incorporated in biosen-

sors to detect different biomolecules and sense their diverse range of interactions.

Phytosynthesized nanoparticles have great potential in biosensing applications.

Optical imaging is a promising imaging technique with huge potential for improving

disease diagnosis and treatment. Themost commonly used optical imaging techniques for

biomedical applications include bioluminescence imaging, fluorescence imaging, optical

coherence tomography, Raman imaging, and photoacustic imaging [106, 107]. Optical

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chitosan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/alginate
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imaging uses nonionizing radiation as the primary imaging illumination source to char-

acterize local anatomy down to the cellular and molecular levels. Thus, optical imaging

technologies are becoming important tools to image functional, structural, and molecular

information of cells and tissues. One of the major limitations of in vivo optical imaging is

limited tissue penetration [108, 109] However, this issue can be at least partially addressed

by the use of near-infrared (NIR) optical imaging, due to a reduction in scattering and

minimal absorption within the NIR region [110]. Small organic fluorescent dyes used in

optical imaging have drawbacks such as a low fluorescence quantum yield, photobleach-

ing, a very fast body clearance, and the lack of precise targeting properties. All such critical

drawbacks can be overcome using nanostructured probes. A possible drawback of

nanomaterial-based fluorescent probes is related to their composition because they

typically contain toxic heavy metals such as cadmium. In this context, low toxic metal

nanoparticles such as gold and silver together with silica are now receiving increasing

attention as fluorescent probes [111]. As silver nanoparticles are photostable, they can

used as biological probes to continuously monitor dynamic events for an extended period

of time. The functionalization of biomolecules on the surface of AgNPs can increase the

specificity for the cell membrane. Phytonanoparticles have a large scope in this area as

they lend themselves to act as multifunctional constructs.

Magnetite/gold (Fe3O4/Au) hybrid nanoparticles were synthesized from a single iron

precursor (ferric chloride) through a green chemistry route using grape seed proantho-

cyanidin as the reducing agent [112]. Structural and physicochemical characterization

showed that the synthesized nanohybrids were crystalline with a spherical morphology

and �35 nm size. Magnetization and magnetic resonance imaging studies revealed that

the Fe3O4 component possessed superparamagnetism with dark T2 contrast and high

relaxivity (124.2�3.02 mM�1 s�1). Phantom computed tomographic imaging demon-

strated good X-ray contrast, which can be attributed to the presence of the nanogold

component in the hybrid. The cellular uptake of the nanomaterial was visualized using

confocal microscopy and Prussian blue staining. The absorption of the nanohybrids was

visualized in the intracytoplasmic region of the cell, which is desirable for efficient

imaging of cells.
11.2.5 Drug or gene delivery applications
Several types of nanoparticles have been identified and utilized as carriers for drug deliv-

ery applications [113, 114]. New drug delivery systems based on nanotechnology have

been applied in the treatment of human diseases such as cancer, diabetes, and microbial

infections as well as in gene therapy [115]. The benefits of these treatments are that the

drug is targeted to the diseased cells, and the safety profile is enhanced by the reduced

toxic side effects to normal cells. The major advantage of nanodrug delivery systems is

that nanoparticles can be conjugated with different types of drugs to deliver them to
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the target site by various methods. Metallic nanoparticles such as those based on gold are

suitable for the preparation of drug delivery systems because of their cytocompatibility

and immunocompatibility. As is obvious, nanoparticles produced by green approaches

are safer for drug deliver applications than chemically synthesized ones. Although chem-

ically synthesized gold nanoparticles have been extensively studied for their potential

applications in drug delivery, only a few studies used the phytosynthesized gold nanopar-

ticles for drug delivery applications. Gold nanoparticles conjugated with vancomycin

were synthesized by Trichoderma viride and found to effectively suppress the growth of

vancomycin-resistant S. aureus at a low concentration of 8 μg/mL [116]. The delivery

of anticancer drugs to cancer cells using biosynthesized gold and silver nanoparticles

(b-AuNP and b-AgNP) is also possible. Butea monosperma leaf extract was used for nano-

particle synthesis. Nanoparticle-based drug delivery systems conjugated with doxorubi-

cin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] showed significant inhibition of

cancer cell proliferation compared to the free drug [117]. P. pterocarpum-mediated

green-synthesized AuNPs were used as an effective drug delivery system for the delivery

of DOX. A schematic representation of the study is shown in Fig. 11.4. Furthermore,

in vitro and in vivo anticancer studies of DOX-loaded drug delivery systems were

performed on A549 and B16F10 cancer cells and melanoma tumor mouse models,

respectively. The internalization and release of free DOX were slow compared to the

nanoconjugated form while biosynthesized AuNP-PP-DOX conjugates showed better

tumor suppression ability than free DOX.
11.2.6 Industrial and technological applications
The development and electrochemical application of biologically synthesized nanoma-

terials have become important areas of research. Barbated Skullcup herb (a dried whole

plant of Scutellaria barbata D. Don) was used for the synthesis of gold nanoparticles

[118]. These phytonanoparticles were coated over a glassy carbon electrode (GCE) to

improve the electronic transmission rate between the p-nitrophenol and the electrode.

Metal oxide nanoparticles such as TiO2 are good alternative anode materials for

lithium-ion battery applications due to their high structural stability and safety during

the charge/discharge cycles. Cobalt doping can improve the intrinsic conductivity of

TiO2 anode materials. Bengal gram bean extract-mediated synthesis of Co-doped

TiO2 nanoparticles and their application as anode materials is reported [119]. The

Co-doped TiO2 shows a higher and stable coulombic efficiency up to 100 GCD cycles,

indicating good reversibility.

Silver nanoparticles can be used as colorimetric optical sensors for the detection of

metals and gases. For example, Durenta erecta (D. erecta)-mediated biosynthesized silver

nanoparticles can be used for the fabrication of such sensors to detect chromium ions
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Fig. 11.4 Schematic representation of a drug delivery system based on biogenic gold nanoparticles
synthesized via Peltophorum pterocarpum leaf extract and its in vitro and in vivo anticancer potential.
Reproduced with permission from M. Ovais, A. Raza, S. Naz, N.U. Islam, A.T. Khalil, S. Ali, M.A. Khan, Z.K.
Shinwari, Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their
applications in cancer theranostics, Appl. Microbiol. Biotechnol. 101 (2017) 3551–3565.
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(Cr6+) and ammonia [120]. A fast response time and a lower detection limit up to

0.1 ppm of phytonanoparticles are very useful for the colorimetric detection of Cr6+

and ammonia. In situ reduction and immobilization of palladium (Pd) nanoparticles

on the surface of graphene oxide with Artemisia abrotanum extract improved the cata-

lytic performance [121]. Pd (0) nanoparticles were completely spread on the surface

of GO.

Nanoparticles play a major role in the development of packaging materials with anti-

microbial and antifouling properties. Silver nanoparticles synthesized using the leaf

extract of the plant Protium serratum were suggested for food packaging and preservation

applications due to their potential to combat various foodborne pathogenic bacteria such

as E. coli (IC50¼84.28�0.36 μg/mL), P. aeruginosa (IC50 ¼ 74.26�0.14 μg/mL), and

Bacillus subtilis (IC50¼94.43�0.4236 μg/mL) [122].
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Although there is not a lot of information available regarding the industrial application

of phytosynthesized nanoparticles, phytonanoparticles can also be used for any applica-

tion where chemically or physically synthesized nanoparticles are generally used.
11.3 Conclusion

The phytosynthesis of nanoparticles is an efficient and ecofriendly method for the syn-

thesis of various nanoparticles of varying compositions. Biochemicals present in the plant

extract can act as both reducing and stabilizing agents during the formation of phytona-

noparticles. The major benefits of phytonanoparticles are their biocompatibility and bio-

activity due to the presence of plant-derived biomolecules. Owing to the superior

properties and ecofriendly synthesis route, phytonanoparticles have a lot of potential

in various fields such as agriculture, cosmetics, bioremediation, and biomedical applica-

tions. An important challenge in nanotechnology is to tailor the electronic, electrical, and

optical properties of nanoparticles by controlling the size and shape. The effective utili-

zation of phytosynthesized nanoparticles with various chemical compositions, sizes/

shapes, and surface properties can be a novel, ecofriendly, and economically viable

approach that can lessen toxic chemicals in the traditional practice.
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R. Zbo�ril, L. Kvı́tek, Antifungal activity of silver nanoparticles against Candida spp, Biomaterials
30 (2009) 6333–6340.

[73] Y. Rout, Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their
antibacterial and antifungal activities, J. Microbiol. Antimicrob. 4 (2012) 103–109.

[74] N. Savithramma, R.M. Linga, K. Rukmini, D.P. Suvarnalatha, Antimicrobial activity of silver nano-
particles synthesized by using medicinal plants, Int. J. ChemTech Res. 3 (2011) 1394–1402.
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