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ABSTRACT
Transfection is a modern and powerful method used to insert foreign nucleic acids
into eukaryotic cells. The ability to modify host cells’ genetic content enables the
broad application of this process in studying normal cellular processes, disease
molecular mechanism and gene therapeutic effect. In this review, we summarized
and compared the findings from various reported literature on the characteristics,
strengths, and limitations of various transfection methods, type of transfected nucleic
acids, transfection controls and approaches to assess transfection efficiency. With
the vast choices of approaches available, we hope that this review will help
researchers, especially those new to the field, in their decision making over the
transfection protocol or strategy appropriate for their experimental aims.
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INTRODUCTION
Transfection is a process by which foreign nucleic acids are delivered into a eukaryotic cell
to modify the host cell’s genetic makeup (Kim& Eberwine, 2010; Chow et al., 2016). For the
past 30 years, transfection has gained increasing popularity due to its wide application
for studying cellular processes and molecular mechanisms of diseases (Arnold et al.,
2006; Ishida & Selaru, 2012; Chow et al., 2016). Understanding the molecular pathway of
disease allows the discovery of specific biomarkers that may be applied to diagnose and
prognose diseases (Ye et al., 2017; Roser et al., 2018). Besides, transfection can be employed
as one of the strategies in gene therapy to treat incurable, inherited genetic diseases
(Yao et al., 2008; Yamano, Dai & Moursi, 2010; Tomizawa et al., 2013). Today, the
advancement in life-sciences technology allows different types of nucleic acids to be
transfected into mammalian cells, and these include Deoxyribonucleic acids (DNAs),
Ribonucleic acids (RNAs) as well as small, non-coding RNAs such as siRNA, shRNA and
miRNA (Borawski et al., 2007; Yamano, Dai &Moursi, 2010; Sork et al., 2016; Shi et al., 2018).

Generally, transfection can be classified into two types, namely stable and transient
transfection (Kim & Eberwine, 2010; Stepanenko & Heng, 2017). Stable transfection refers
to sustaining long-term expression of a transgene by integrating foreign DNA into the
host nuclear genome or maintaining an episomal vector in the host nucleus as an
extra-chromosomal element (Lufino, Edser & Wade-Martins, 2008). The transgene may
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then be constitutively expressed even with the replication of cells (Recillas-Targa, 2006;
Kim & Eberwine, 2010).

In contrast, transient transfection does not require integrating nucleic acids into the
host cell genome (Riedl et al., 2018). Nucleic acids may be transfected in the form of a
plasmid (Nejepinska et al., 2012) or as oligonucleotides (Igoucheva, Alexeev & Yoon, 2006).
Therefore, transgene expression will eventually be lost as host cells replicate (Recillas-Targa,
2006; Kim & Eberwine, 2010). Transient transfection is usually applied in short-term
studies to investigate the effects of knock-in/-down of a particular gene (Kim & Eberwine,
2010). In contrast, stable transfection is useful in long-term genetic and pharmacology
studies in which large-scale protein production is needed (Elgundi et al., 2017).

A vector construct that carries the specific nucleic acids to be transfected can be further
divided into either viral or plasmid vector. Viruses and plasmids facilitate the expression of
a foreign transgene via the presence of a suitable eukaryotic promoter (Colosimo et al.,
2000). A viral vector may trigger an immunogenic response in the host cell while a
non-viral vector is comparatively less immunogenic (Hardee et al., 2017). A delivery
mechanism is needed to facilitate the transfer of targeted nucleic acids or vector construct
into the host cell (Kim & Eberwine, 2010). Some of these entail physical methods
while others involve the use of a delivery vehicle, which may be lipid-based (Balazs &
Godbey, 2011) or non-lipid based (Jin et al., 2014), to help enhance the contact between
vector-vehicle complex with the host cell membrane, thereby facilitating the entrance of
the complex into cells (Balazs & Godbey, 2011).

Designing and initiating a transfection assay can be challenging, especially with the
vast variety of transfection approaches or strategies to choose from Gharaati-Far et al.
(2018), Shi et al. (2018) and Tan et al. (2019). Thus, we aimed to provide a systematic
comparison between different strategies, targets, controls, reagents and validation involved
in transfection to provide an overview for beginners in this field. This review included
an overview of different transfection methods (viral vs. non-viral approaches) and the
common types of transfected nucleic acids (DNA, RNA and small RNAs). Other
important aspects such as the type and importance of controls, choice of methods for
assessing transfection efficiency, and potential factors influencing efficiency were also
discussed.

SURVEY METHODOLOGY
A systematic literature search based on PRISMA guidelines (Moher et al., 2009) was
established to identify relevant published studies or protocols that fit into this review’s
scope (Fig. 1). Databases that were employed for the literature search included Scopus,
Google Scholar, and PubMed. The keywords being used during the search included
“transfection”, “co-transfection”, “chemicals”, “reagents”, “DNA”, “siRNA”, “shRNA”,
“miRNA”, “plasmid”, “oligonucleotides”, “efficiency”, “safety”, “cytotoxicity”, “controls”
and other related key terms. An initial search returned about 5,000 articles, published
protocols, or handbooks from various databases that reported the descriptions or
comparisons between different transfection methods, types of transfected nucleic acids,
transfection control, transfection efficiency assessment methods and transfection reagents.
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Two independent reviewers performed article screening and the selection to avoid selective
bias. About 500 articles were retained after the first screening to remove duplicated sources
or articles that appeared in more than one database. Inclusion criteria of the literature
selection include English articles published in the past 30 years and articles or sources that
reported the description or comparison of the different transfection methods/protocols/
strategies/procedures. About 100 written sources that did not fit the inclusion criteria were
removed, and these included letters to the editor, conference paper, and articles with
inaccessible full-texts. Around 150 relevant and related published literature or handbooks
were selected in the final stage to compare different transfection protocols, types of
transfected nucleic acids, transfection controls, methods to assess transfection efficiencies,
and transfection reagents in terms of their strengths, effectiveness, safety level and
limitations.

TRANSFECTION APPROACHES
Transfection methods can be generally divided into viral, non-viral, or a combination of
both (hybrid) (Fig. 2).

Figure 1 The workflow of literature selection using PRISMA flow strategy. Keywords used during the
literature search included “transfection”, “co-transfection”, “chemicals”, “reagents”, “DNA”, “siRNA”,
“shRNA”, “miRNA”, “plasmid”, “oligonucleotides”, “efficiency”, “safety”, “cytotoxicity” and “controls”.
Inclusion criteria of the literature selection comprised of English written articles or sources which were
reported in the past 30 years since 1990 and articles which reported the description or comparison
between different transfection protocols, types of transfected nucleic acids, transfection controls, methods
to assess transfection efficiencies and transfection reagents in terms of their strengths, effectiveness, safety
level and/or limitations. About 150 written sources were used in the qualitative analysis of this technical
review. Full-size DOI: 10.7717/peerj.11165/fig-1
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Viral transfection
Viral-based transfection, or more specifically known as transduction, involves using a viral
vector to carry a specific nucleic acid sequence into a host cell. Retroviruses, such as
lentiviruses are often used for stable transfection (Pfeifer & Verma, 2001; Kim & Eberwine,
2010; Fakhiri et al., 2019). In contrast, adenovirus, adeno-associated virus (AAV) and
herpes virus are viral vectors which do not guarantee stable transfection (Lee et al., 2017).
As compared to non-viral transfection, viral transduction is widely recognized as a highly
effective method to transfect difficult-to-transfect cells such as primary cells (Mali,
2013; Wang, Shang & Li, 2015). Generally, retroviruses can only be used to transfect
dividing cells while adenoviruses, AAVs and herpes viruses can be used to transfect both
dividing and non-dividing cells (Lee et al., 2017). However, viral transduction is associated
with higher cytotoxicity and may pose a risk for viral infection (Kim & Eberwine, 2010;
Mali, 2013).

A viral vector usually contains a viral envelope that surrounds and protects the virus.
Surface proteins may be present on the surface of certain types of viruses, such as
adenovirus, to facilitate contact and communication with the host cell (Maginnis, 2018).
Viral genetic materials are enclosed in a capsid, which will be unpacked upon entering
the host cell. Unlike the genomes of adenoviruses, AAVs and herpes viruses which are
maintained episomally (Hardee et al., 2017; Lee et al., 2017), a retroviral genome is
integrated into the host genome (Lee et al., 2017). Generally, adenoviruses and herpes
viruses carry double-stranded DNAs, AAVs carry single-stranded DNAs, while
retroviruses carry RNAs (Lee et al., 2017). Integrase is a type of enzyme produced by
viruses such as retroviruses that facilitate the integration of foreign genetic materials into
the host genome (Hindmarsh & Leis, 1999; Tzlil et al., 2003). In retroviruses, RNAs will be
reverse transcribed into a double-stranded viral DNA before being integrated into the

Figure 2 Different transfection protocols that can be divided into viral-based, non-viral based or
combination of both (hybrid). Full-size DOI: 10.7717/peerj.11165/fig-2
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host cell genome for replication and expression (Hindmarsh & Leis, 1999). Even in
non-retroviruses that lack integrase, such as the adenoviruses, integrase may be expressed
through genetic engineering technique (Mogler & Kamrud, 2015).

Retroviruses that stably express transgene exhibit lower potential in triggering
inflammation than adenoviruses and herpes viruses that usually produce transient
transgene expression but inflammation in the host cell (Lee et al., 2017). However, using
retroviruses for transfection is associated with a high risk of insertional mutagenesis
and gene disruption (Hardee et al., 2017). In contrast, viruses that do not induce
stable genome integration have a lower but existent risk of triggering mutagenesis
(Fernández-frías, Pérez-luz & Díaz-nido, 2020).

Compared to adenoviruses, AAVs exert lower immunogenicity and pathogenicity
in human, which makes them a safer virus for gene therapy (Nayerossadat, Maedeh &
Ali, 2012). However, the small packaging capacity (<5 kb) of AAVs limits their
applications to deliver large-sized therapeutic genes (Lee et al., 2017). On the other
hand, adenoviruses have higher packaging capacities than AAVs and were reported to be
able to transduce most cell types (Lee et al., 2017). Among the several commonly used
viruses for transduction, herpes viruses are found to have the largest packaging capacity
(~150 kb) (Lee et al., 2017; Fernández-frías, Pérez-luz & Díaz-nido, 2020). Besides, herpes
virus is said to have strong tropism for neuronal cells and thus, herpes virus has great
potential to be employed to deliver specific nucleic acid in treating diseases of the nervous
system (Lee et al., 2017).

Non-viral transfection
Physical/mechanical transfection
Non-viral based transfection approach can be further classified into a physical/mechanical
method and chemical method. Commonly used physical/mechanical transfection method
includes electroporation, sonoporation, magnetofection, gene microinjection and laser
irradiation (Du et al., 2018; Hamann, Nguyen & Pannier, 2019; Meng et al., 2019).
Electroporation is a commonly used physical transfection method that uses electrical
voltage to transiently increase the cell membrane permeability to allow the entry of the
foreign nucleic acid (Prasanna & Panda, 1997). This method is commonly employed to
transfect difficult-to-transfect cells such as primary cells, stem cells and B cell lines (Jordan
et al., 2008; Stroh et al., 2010; Liew et al., 2013; Canoy et al., 2020). However, the use
of high voltage may cause cell necrosis, apoptosis, and permanent cell damage (Piñero
et al., 1997; Kim & Eberwine, 2010; Mali, 2013). Ultrasound-assisted transfection or
sonoporation involves the use of microbubbles technique to create holes on the cell
membrane to ease the transfer of genetic materials (Meng et al., 2019), while laser
irradiation-assisted transfection uses a laser beam to create small holes on the plasma
membrane to allow entry of foreign genetic substances (Pylaev et al., 2019). Like
electroporation, both sonoporation and laser-assisted transfection also pose risks of
damaging the cell membrane and irreversible cell death (Kim & Eberwine, 2010; Mali,
2013). Comparatively, magnet-assisted transfection, or magnetofection that uses magnetic
force to aid in the transfer of foreign genetic materials, appears to be less destructive to the
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host cell despite its low efficiency (Wang, Shang & Li, 2015). Gene microinjection, on
the other hand, involves the use of a specific needle to puncture the cell to inject the
desired nucleic acids into the nucleus of the host cell (Chow et al., 2016). However, this
technique necessitates specially trained personnel or robotic system that can perform the
procedure with high precision to prevent cell damage (Kim & Eberwine, 2010; Chow et al.,
2016) and is thereby of great value in clinical applications such as gene therapy (Nikol et al.,
1999). Compared to physical or mechanical transfection methods, chemical transfection
involves using specially designed chemicals or compounds to aid in transferring the foreign
nuclei acid into the host cells (Hamann, Nguyen & Pannier, 2019; Tan et al., 2019).

Chemical transfection

Chemical transfection can be categorized into liposomal-based or non-liposomal-based
(Kim & Eberwine, 2010). Examples of the commercially available chemical transfection
reagents are summarized in Fig. 3. Liposomal-based transfection reagent is a chemical that
enables the formation of positively charged lipid aggregates that could merge smoothly
with the phospholipid bilayer of the host cell to allow the entry of the foreign genetic
materials with minimal resistance (Kim & Eberwine, 2010; Mali, 2013).

On the other hand, non-liposomal transfection reagents can be further divided into
several classes, including calcium phosphate, dendrimers, polymers, nanoparticles and
non-liposomal lipids (Kim & Eberwine, 2010; Mali, 2013; Valetti et al., 2013). Calcium
phosphate is one of the cheapest chemicals used in transfection that involves binding the
positively charged calcium ions (Ca2+) with the negatively charged nucleic acids to
form a precipitate before being taken up by host cell (Guo et al., 2017). However, the
success rate of calcium phosphate transfection is comparatively low and requires prior
optimization to achieve high transfection efficiency (Guo et al., 2017). Dendrimers are
3-dimensional, highly branched organic macromolecules that could form complexes with
nucleic acids claimed to be superior to calcium phosphate as an alternative non-liposomal
transfection reagent (Dufès, Uchegbu & Schätzlein, 2005). However, transfection efficiency
using dendrimers is still lower than viral vectors and liposomal reagents (Dufès, Uchegbu &
Schätzlein, 2005; Borawski et al., 2007). Cationic polymers could also form complexes with the
negatively charged nucleic acids, which aid in the uptake of the genetic materials by cells
through endocytosis (Kim & Eberwine, 2010; Mali, 2013). Compared to viral vectors and
lipofection, cationic polymers produce less cytotoxicity but are also compromised with lower
efficiency (Kim & Eberwine, 2010; Mali, 2013). Recently, nanoparticles are emerging as an
alternative option in non-liposomal transfection due to their small size, which enhances the
entry of nucleic acids into the host cell (Sandhu et al., 2002). Nanoparticles were reported
to cause little cytotoxicity to the transfected cells, but more studies may be necessary to
carefully assess its efficiency and long-term safety in clinical applications (Al-Dosari & Gao,
2009). Non-liposomal lipid-based nanocarrier is a type of lipid-formulated nanocarrier that
allows fast and effective delivery of nucleic acids into eukaryotic cells (Valetti et al., 2013).
Compared to liposomal lipid nanocarriers, this nanocarrier was claimed to be safer, but its
preparation is tedious and expensive (Valetti et al., 2013; Meisel & Gokel, 2016).
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Hybrid of viral and non-viral transfection methods

The combination of viral and non-viral transfection method is known as a hybrid
approach, and the use of such a combined method was reported to produce higher
transfection efficiency compared to other transfection methods such as using polyplexes
alone (Pinnapireddy et al., 2019). However, a hybrid method appears to be more laborious
and costly due to the need for the artificial synthesis of the unique viral-like vectors
linked with other chemicals such as glucose (Pinnapireddy et al., 2019) and lipids
(Keswani, Pozdol & Pack, 2013). Nevertheless, the hybrid-based transfection approach was

Figure 3 Summary of the commonly used chemical transfection reagents. Transfection reagents can
be generally divided into liposomal or high-lipid based and non-liposomal based reagents.
Non-liposomal reagents can be mixed protein-lipid reagents, non-liposomal lipids or non-protein non-
lipid reagents like dendrimer. The details of the Invitrogen and ThermoFisher Scientific products can be
found at: https://www.thermofisher.com/my/en/home.html. Information on the Qiagen related trans-
fection products can be found at: https://www.qiagen.com/us/. Information on the Promega related
reagents can be found at: https://worldwide.promega.com/. For Polyplus related transfection reagents, the
information can be retrieved at: https://www.polyplus-transfection.com/. For Sigma–Aldrich or Merck or
Roche related reagents, the information can be found at: https://www.sigmaaldrich.com/united-states.
html. Information on the Thomas Scientific related chemicals can be retrieved at: https://www.
thomassci.com/. Details on the Mirus Bio products can be referred at: https://www.mirusbio.com/.
For GeneCopoeia products, further information can be found at: https://www.genecopoeia.com/.
Information on ClonTech products can be found at: https://www.takarabio.com/. Details on System
Biosciences chemicals can be found at: http://www.excellbio.com/. Information on the products by
Strategene can be found at: https://www.agilent.com/. Details of the Fermentas International Inc. can be
found at: http://fermentas.lookchem.com/. Full-size DOI: 10.7717/peerj.11165/fig-3
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also proven to be safe and able to produce stable human cell lines that constantly expressed
the proteins of interest (Keswani, Pozdol & Pack, 2013; Pinnapireddy et al., 2019).

TYPE OF TRANSFECTED NUCLEIC ACIDS
Deoxyribonucleic acids
In transfection, DNAs are normally transported into a host cell via a viral or non-viral
vector such as plasmid (Balak et al., 2019; Pang et al., 2019). The plasmid’s basic structure
includes a promoter, origin of replication, multiple cloning site, gene of interest, and
selection marker (Nora et al., 2018). The origin of replication is needed for plasmid
replication, while the multiple cloning site contains unique restriction enzyme cut sites for
insertion of foreign genes (Nora et al., 2018). The presence of appropriate eukaryotic
promoters such as CMV or EF-1a allows the expression of a foreign gene in the host
cell (Wang et al., 2017b). Plasmid DNA may be transfected in the form of linear and
supercoiled DNA (Mitchenall et al., 2018). Transfection using supercoiled plasmid DNA
will generally produce higher efficiency as compared to linear DNA, which is more
susceptible to degradation by exonucleases (Von Groll et al., 2006). Linearized DNA,
however, is more recombinogenic and can thus be more readily integrated into the host
genome to achieve stable transfection (Von Groll et al., 2006; Hardee et al., 2017).

The use of a plasmid vector does not guarantee constitutive transgene expression nor
stable foreign DNA integration into the host genome (Delrue et al., 2018). In other words,
as cells divide, a foreign gene will not be constitutively expressed and eventually lost if
it has not been integrated into the host cell’s genome (Mali, 2013). Therefore, using an
appropriate selection marker such as an antibiotic resistance gene or fluorescence protein
co-expressed with the transgene is necessary to select and maintain stably transfected cells
in culture (Kaufman et al., 2008). Like plasmid vector transfection, the introduction
of a selection marker gene into a viral vector is also useful for selecting stably transduced
cells (Tomás et al., 2018).

In comparison to viral DNA transfection, plasmid-based DNA transfection is less
immunogenic without the risk of viral integration into the host cell genome (Mali, 2013).
However, the transfection efficiency and protein production of plasmid-based DNA
transfection is comparatively lower (Oh & Kessler, 2018).

RNA and messenger RNA
Similar to DNA transfection, RNA may be introduced into eukaryotic cells via RNA-based
viral or non-viral vectors (Mogler & Kamrud, 2015; Oh & Kessler, 2018; Ylosmaki et al.,
2019). In comparison to transfection involving DNAs, RNA transfection might produce
higher transfection efficiency as the latter does not require transit across the nuclear
membrane (Zou et al., 2010). Without the need for genome integration, transcription, and
post-transcriptional processing, RNA transfection may also accelerate the desired protein
(Oh & Kessler, 2018; Ylosmaki et al., 2019). The use of messenger RNA (mRNA)-based
vectors may also prevent complications due to integration into the host genome,
thereby allowing specific, desired proteins to be expressed (Mogler & Kamrud, 2015; Oh &
Kessler, 2018). However, protein expression is transient following RNA transfection,
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and RNAs are comparatively less stable than DNAs, making them more prone to
degradation when transported intracellularly (Mogler & Kamrud, 2015; Nowakowski et al.,
2017; Oh & Kessler, 2018).

Common and special oligonucleotides (small ribonucleic acids)
Small RNAs are RNA molecules of 18–200 base pairs (bp) in length and possess the ability
to regulate post-transcriptional gene regulation and RNA modification (Watson, Belli &
Di Pietro, 2019). Examples of small RNAs include microRNAs (miRNAs), small interfering
RNAs (siRNAs), short hairpin RNAs and piwi-interacting RNA (piRNA) (Watson, Belli &
Di Pietro, 2019).

microRNAs and piRNAs are both endogenous and single-stranded small RNAs.
miRNAs (18–25 bp) are involved in post-transcriptional regulation of downstreammRNAs
by inhibiting the targeted mRNA or interfering with its translation initiation (Wilczynska &
Bushell, 2015). On the other hand, piRNAs (24–30 bp) take part in transposon silencing
and post-transcriptional regulation (Chuma & Nakano, 2013). Similar to miRNAs and
piRNAs, siRNAs also play a role in regulating post-transcriptional gene expression
(Allison &Milner, 2014). siRNAs are normally 20–24 bp in length, which may be expressed
as endogenous or exogenous double-stranded small RNAs (Allison & Milner, 2014).
shRNA is a type of endogenous, double-stranded small RNA with a hairpin loop (Mcintyre
et al., 2011). shRNA may bind to the complementary sequence on an mRNA to degrade it
(Mcintyre et al., 2011).

One should determine its experimental need before deciding on the appropriate small
RNA molecule for transfection-related functional assay. For instance, siRNA is highly
specific to only one target, whereas miRNA has the potential to regulate multiple
downstream targets (Lam et al., 2015).

Today, various types of short-length oligonucleotides (Table 1) may be artificially
synthesized to imitate the small RNA molecules for functional studies of the knock-in/-
down/-out effects of these small RNAmolecules. The commonly used oligonucleotides can
be grouped into either mimic or antagonist (Bell & Micklefield, 2009). A mimic is a
small RNA-based oligonucleotide (may be piRNA, miRNA, or siRNA) that has a structure
which enables it to bind to a targeted mRNA to inhibit its function, resulting in translational
repression of a specific gene (Fu, Jacobs & Zhu, 2014; Ahmadzada, Reid & McKenzie,
2018; Edvard Smith & Zain, 2019). In contrast, an antagonist is an oligonucleotide that will
bind to the complementary small RNA strand such as miRNA to antagonize its activity,
thereby increasing the targeted gene expression (Edvard Smith & Zain, 2019; Fu, Chen &
Huang, 2019).

With the advancement in the oligonucleotide biosynthesis industry, different types of
modified oligonucleotides were also introduced into the market to increase the efficiency of
transfecting small RNA oligonucleotides. One of them is the agomirs and antagomirs that
are chemically modified to improve their binding affinities to target and block exonuclease
activities (Merhautova, Demlova & Slaby, 2016;Hu et al., 2017). An agomir is an artificially
modified double-stranded miRNA mimic designed to exert higher target repression
activity than conventional miRNA mimics (Krützfeldt et al., 2005; Fu, Chen & Huang,
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2019). On the other hand, antagomir is a specially designed single-stranded miRNA analog
that aims to inhibit a specific miRNA (Krützfeldt et al., 2005; Fu, Chen & Huang, 2019).
Both agomir and antagomir were claimed to be more stable, effective, specific, and

Table 1 List of commonly used oligonucleotides in the small RNA transient transfection work.

Common small RNA oligonucleotides Agomir/antagomir Locked nuclei acid (LNA) oligonucleotide

Product
examples
(Origin)

(1) Qiagen (Valencia, CA)
(2) ThermoFisher Scientific (Ambion)
(Waltham, Massachusetts, USA)
(3) IDT (Coralville, IA)
(4) GeneCopoeia (Rockville, USA)
(5) Dharmacon (Cambridge, UK)
(6) GenePharma (Shanghai, China)

(1) GenePharma (Shanghai, China)
(2) RiboBio (GuangZhou, China)
(3) Creative Biogene (NY, USA)

(1) Exiqon (Vedback, Denmark)
(2) IDT (Coralville, IA)
(3) Sigma–Aldrich (Saint Louis, MO, USA)

General
structure

Some may have 2’-OMe
modification

Antagomir & antisense strand of agomir (both with 2’-OMe
modification) (www.genepharma.com);
At 5’ end: 2 thiols modification
At 3’ end: 4 thiols modification and cholesterol modification

( ).

LNA is “locked” in accordance to the Watson-
Crick binding to increase its stability 
www.qiagen.com

Number
of strands

May be single or double-stranded
(duplex)

Agomir: double-stranded
Antagomir: single-stranded

Mimic: triple-stranded (One guide
strand and two passenger strands)
Antagonist: single-stranded

Strengths (1) Commonly available and cheaper
(2) Easy to be introduced into host
cells

(1) Stable structure and effective in
action
(2) Higher affinity towards cell
membrane,
(3) Longer interfering effect which
may last up to 6 weeks

(1) Effective and stable structure
(2) May or may not require a
transfection reagent

Efficiency
comparison

Superior than normal mimics/
inhibitors

LNA oligonucleotides > common
oligonucleotides Mixture of LNA
+OMe oligonucleotides > common
oligonucleotides

References (Cheng et al., 2005; Bell &
Micklefield, 2009; Jensen, Anderson
& Glass, 2014; Jin et al., 2015)

(Krützfeldt et al., 2005; Chen et al.,
2015; Merhautova, Demlova &
Slaby, 2016; Hu et al., 2017)

(Tolstrup et al., 2003; Chan, Krichevsky
& Kosik, 2005; Fabani & Gait, 2008;
RNA Functional Analysis Handbook,
2016; Qiagen miRCURY LNA
Mimics & Inhibitors & Target Site
Blockers Handbook, 2017; Piao et al.,
2018)
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have higher binding affinity to the host cell membrane than the normal mimics or
antagonists (Krützfeldt et al., 2005; Chen et al., 2015; Hu et al., 2017).

Locked nucleic acids (LNA) is another type of modified oligonucleotide that possesses
an extra methylene bridge in at least one of its nucleotides to enhance the stability of its
ribose ring structure (Grünweller & Hartmann, 2007). Its locked ribose structure makes
LNA shorter than the commonly used oligonucleotides, thereby enabling it to show
higher efficiency, stability, and binding affinity than traditional oligonucleotides (Tolstrup
et al., 2003; Chan, Krichevsky & Kosik, 2005; Fabani & Gait, 2008; Qiagen miRCURY
LNA Mimics & Inhibitors & Target Site Blockers Handbook, 2017). The application of
LNA-based oligonucleotides has been reported in various biochemical or functional assays
that involved the deliveries of small RNA molecules such as siRNA (Elmén et al., 2005),
miRNA (Roberts et al., 2006) and piRNA (Lee et al., 2011). Some LNA-based transfection
requires no transfection reagent (Hillebrand et al., 2019), which could minimize secondary
effects from the reagents during transfection.

Combination of different transfected nucleic acids or co-transfection
Co-transfection is a process in which more than one type of nucleic acid is being
introduced into the eukaryotic cell (Fig. 4) (Hannig & Jany, 2013; Li et al., 2014; Russell,
Stefanovic & Tscharke, 2015). Some examples of the combinations include multiple
plasmid DNAs (Karda et al., 2019; Bauler et al., 2020), siRNA and plasmid DNA (Kwak,
Han & Ahn, 2019; Setten, Rossi & Han, 2019), and multiple miRNAs into the same cell (Seo
et al., 2015; Tsukita et al., 2017).

Generally, multiple plasmid DNA co-transfection aims to introduce more than one type
of foreign genes into the host cells. One of its applications is to produce synthetic viral
or hybrid vectors that consist of several plasmid DNA components (Karda et al., 2019;
Bauler et al., 2020). An example is the generation of a lentivirus from several plasmid
vectors such as transfer, envelope, and packaging vectors in HEK293 cell line (Merten,
Hebben & Bovolenta, 2016). Besides, co-transfection of multiple plasmid DNAs can also be
applied in protein–protein interaction (PPI) studies to investigate the relationships
between one protein to another (Deriziotis et al., 2014; Vyncke et al., 2019). PPIs can be
assessed using physical measurement based on energy transfer from one donor protein to a
recipient protein (Deriziotis et al., 2014) or via chemical measurement in which the
interactive activity between an expressed protein with another protein can be detected via
an appropriate reporting system upon stimulation (Vyncke et al., 2019). The latter
luciferase-based method is known as bioluminescence resonance energy transfer (BRET),
and it serves as an alternative method to fluorescence resonance energy transfer in
studying PPIs (Khamlichi et al., 2019). Co-transfection of multiple plasmids can also be
applied in transfection which involves the delivery of plasmids that encode Cas9 protein
and guide RNA to the host cell for genome editing using the CRISPR/Cas9 genome
engineering system (Gam et al., 2019). Apart from using multiple plasmids, a bicistronic
vector, a vector capable of expressing two different genes joined using an internal ribosome
entry site with only one promoter, is another way to deliver different genes to a host
cell (Li & Wang, 2012).
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Co-transfection of small RNA and plasmid DNA can be used to assess transfection
efficiency (Horibe et al., 2014). This is feasible by introducing a plasmid containing a
luciferase reporter gene in which its 3′ UTR can be recognized by a specific small RNA
such as miRNA, which then allows binding by the small RNA to inhibit luciferase
expression (Repele & Manu, 2019). On the other hand, co-transfection of small RNA and
plasmid DNA is also essential in RNA interference (RNAi) study to determine the
regulatory effects of a specific small RNA such as siRNA on the specific gene expression in
a host cell (Keller et al., 2018; Ervin et al., 2019). Small, non-coding RNAs such as
siRNAs are well known for their epigenetic regulation capabilities or, more specifically,
regulation of specific gene expression post-transcriptionally (Zhao & Zhang, 2018). siRNA
mimics and a plasmid DNA carrying the specific gene linked to a luciferase reporting
system can be simultaneously co-transfected into a target cell (Salim, Islam & Desaulniers,
2020). Successful knockdown of specific gene expression by the siRNA mimic will lead to a
measurable decrease in luciferase activity (Peralta-Zaragoza et al., 2016; Shyamasundar,
Lim & Bay, 2016).

Co-transfection may also involve different small molecules such as miRNAs, which is
useful in studying the effects of small RNAs on the targeted host cells (Tsukita et al., 2017).
For instance, if the introduction of a miRNA mimic can affect the expression of a
specific downstream gene in a particular cell type, it is then expected that simultaneous
transfection of its inhibitor sequence into the same cell would reduce the post-transcriptional
regulatory effect exerted by the miRNA mimics sequence alone (Seo et al., 2015).

As compared to transfection of a single nucleic acid type, co-transfection, which
involves the transfer of multiple nucleic acids into the same cell, is generally more

Figure 4 Applications of co-transfection in biotechnology and life sciences research. (A) Multiple
plasmids co-transfection is useful in generating a hybrid vector and is for protein–protein interaction
studies. (B) Multiple small RNAs co-transfection is popular in RNA interference and functional assay
study to evaluate the regulatory effects of the small RNA on the expression of the downstream target. (C)
Co-transfecting a small RNA molecule and a plasmid DNA that carries a reporter system can be used to
assess small RNA transfection efficiency or to determine the regulatory effects of the small RNA on a
specific gene. Full-size DOI: 10.7717/peerj.11165/fig-4
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challenging as not all nucleic acids types can be effectively transferred, and this may
depend on the transfection method and cell type involved (Kretzmann et al., 2018).

TRANSFECTION CONTROLS
The use of control in a transfection experiment is vital for determining the effect and
efficiency of transfection reagents and nucleic acids used (Godbey, Zhang & Chang, 2008;
Yang, Qiu & Xu, 2011; Jin et al., 2015; Ayub, Ling & Cun, 2016).

Generally, both plasmid transfection and oligonucleotide transfection experiments
require a positive control, a negative control, an un-transfected control, and a mock
transfection control (Yang, Qiu & Xu, 2011; Jin et al., 2015; Ayub, Ling & Cun, 2016;
Stepanenko & Heng, 2017; Gharaati-Far et al., 2018). A positive control is a DNA or RNA
that had previously been proven to cause known effects to the transfection experiment,
such as affecting the expression of a specific downstream genetic target (Ayub, Ling & Cun,
2016). A positive control is needed during the initial stage of a transfection work to
establish an optimized transfection protocol, and afterward, the positive control can act as
a reference to be compared to the experimental group. On the other hand, a negative
control is used to confirm if an intended gene expression change in the host cell is
attributable to the transfection instead of other causes. In plasmid DNA transfection, a
negative control can be a reaction that lacks the DNA, the transfection delivery vehicle, or
absence of both with only the host cell (Liang, Knight & Jolly, 2013). In small RNA
transfection, a negative control contains a non-homology sequence, which is usually a
scrambled sequence that shares the same nucleotide length and composition as the target
sequence but not homologous to any known mammalian gene (Yang, Qiu & Xu, 2011;
Ayub, Ling & Cun, 2016).

An un-transfected control involves the culture of cells without transfection reagents and
nucleic acids, which act as a control for basal information about the host cell, including
viability, phenotype, and more importantly, the baseline expression level of target gene
without the impact from transfection (Godbey, Zhang & Chang, 2008; Gharaati-Far et al.,
2018). Mock transfection refers to transfection without the genetic target or nucleic acids,
which allows the assessment of effects resulting from transfection reagents such as
background auto-fluorescence noise (Hunt et al., 2010; Gharaati-Far et al., 2018).
In plasmid transfection experiments, the use of an empty plasmid control, which contains
only the vector backbone with the exclusion of the transgene, is recommended as the mock
transfection control (Jin et al., 2015; Kamens, 2015).

ASSESSING TRANSFECTION EFFICIENCY
Assessing the efficiency of transfection is vital, especially in functional studies which
require high transfection efficiencies to warrant post-transcriptional regulation of specific
downstream targets (Weilin et al., 2004;Marjanovič et al., 2014; Peng et al., 2017). A variety
of strategies may be chosen to assess transfection efficiency, where each of these is
associated with different pros and cons (Table 2).

Real-time polymerase chain reaction (qPCR) is a quantitative approach for assessing
transfection efficiency via direct measurement of the expression level of specific foreign
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nucleic acids in the cell or other intracellular nucleic acids that could be affected by
exogenous nucleic acids such as miRNAs (Godbey, Zhang & Chang, 2008; Jiwaji et al.,
2010; Thomson et al., 2013). In the case of transient transfection, qPCR should be
performed after each transfection to ensure good transfection efficiency before proceeding
to downstream experiments (Thomson et al., 2013).

Co-transfection with plasmid reporter system is another strategy that can be used to
assess transfection efficiency by expressing specific reporter proteins such as luciferase
or β-galactosidase (Nasim & Trembath, 2005; Jiwaji et al., 2010; Yamano, Dai &
Moursi, 2010; Horibe et al., 2014). Taking luciferase reporter system in small RNA

Table 2 Comparison of the different methods for the assessment of transfection efficiency.

Fluorescence
microscopy

Real time PCR
(qPCR)

Plasmid reporting
system

Flow cytometry Others, eg: western blot &
Immunofluorescent
staining

Descriptions Use of fluorescently
tagged molecules to
confirm transfection
has taken place

Directly measures the
expression level of
nuclei acids post-
transfection

Indirectly measures
transfection
efficiency via a
luminescence
measurement or
β-galactosidase
level

Quantify the number
of fluorescently
labelled transfected
cells

Indirectly monitor the
transfection efficiency
via detection or
quantification of
downstream targeted
protein expression

Quantitative
or qualitative
findings

Qualitative or semi-
and quantitative

Quantitative Quantitative using
luminescence
reporting system

Quantitative Semi-quantitative
(western blot);
Qualitative/
Semi-quantitative
(Fluorescent
microscopy after
immunostaining);
Quantitative (Flow
cytometry after
immunostaining)

Advantages Easy and fast Allows quantification
of the transfection
efficiency

Allows
quantification of
the transfection
efficiency

Allows quantification
of the transfection
efficiency

Allows simultaneous
assessment of the
regulation of
downstream protein
targets

Disadvantages Inability to
distinguish signals
originating from
interior vs exterior
of cells

Expensive and
laborious especially
in transient
transfection where
regular monitoring of
the transfection
efficiency is needed

Reporting system
within plasmids
not offered by all
manufacturers.

Expensive, and
laborious

Expensive, laborious and
time-taking; false
negative results may be
obtained due to
inappropriate sampling
time; non-specific
protein binding

References (Marjanovič et al.,
2014; Mastropietro
et al., 2015; Peng
et al., 2017)

(Godbey, Zhang &
Chang, 2008; Jiwaji
et al., 2010; Thomson
et al., 2013; Werling
et al., 2015)

(Nasim &
Trembath, 2005;
Jiwaji et al. 2010;
Horibe et al., 2014;
Marjanovič et al.,
2014; Yun &
DasGupta, 2014)

(Ho et al., 2006;
Marjanovič et al.,
2014; Homann et al.,
2017)

(Weilin et al., 2004;
Buchwalow et al., 2011;
Granieri et al., 2012;
Liang, Mason & Lam,
2013; Bass et al., 2017;
Peng et al., 2017; Shi
et al., 2018)

Note:
Different approaches for assessing transfection efficiency.

Chong et al. (2021), PeerJ, DOI 10.7717/peerj.11165 14/37

http://dx.doi.org/10.7717/peerj.11165
https://peerj.com/


interference (RNAi) study as an example, successful transfection of miRNA is indicated by
downregulation of luciferase activity, which is due to mRNA degradation as a result of
the binding of miRNA to the 3′-end of the transcribed luciferase mRNA (Aldred, Collins &
Trinklein, 2011).

Fluorescence microscopy is another common, easy and rapid method to assess
transfection efficiency (Marjanovič et al., 2014; Peng et al., 2017). It usually involves
using a vector that carries a fluorescence reporting gene or oligonucleotides tagged with
fluorophores to allow fluorescence detection (Faltin, Zengerle & Vonstetten, 2013).
However, fluorescence microscopy provides only qualitative or semi-quantitative
measurement of transfected efficiency, which can be determined using specialized software
such as ImageJ (Jensen, 2013). In contrast, flow cytometry allows for more precise
quantitation of the cells that express a specific fluorescent gene to assess transfection
efficiency (Ho et al., 2006; Marjanovič et al., 2014; Homann et al., 2017).

Another way of assessing transfection efficiency is via monitoring specific protein
expression post-transfection (Alabdullah et al., 2019; Mori et al., 2020). Introduction of a
transgene into the cell may alter the expression of a protein encoded by the transgene or
other genes in the cell (Kim & Eberwine, 2010). Likewise, transfection of small RNAs
may also regulate the expression of specific downstream genetic targets in the host cell
(Liang, Hart & Crooke, 2013). Immunoblotting and immunofluorescent staining may be
employed to assess changes in the expression of protein post-transfection. The use of
specific antibodies for binding to targeted proteins are vital in both methods, where the
latter requires the use of secondary fluorescently labelled antibodies that bind to the
primary antibodies to detect the protein of interest (Sograte-Idrissi et al., 2020). On the
other hand, in immunoblotting, horseradish peroxidase (HRP)-conjugated secondary
antibodies can be used to bind to the primary antibodies for specific protein detection
(Lin et al., 2016). Immunoblotting allows semi-quantification of protein expression while
immunofluorescence staining allows detection via fluorescent microscopy or quantification
via flow cytometry. The assessment of transfection efficiency via examination of specific
protein expression is more reproducible and straightforward (Zeitelhofer et al., 2007;
Homann et al., 2017). However, the issue of non-specific proteins binding inherent from the
use of antibodies (Liang, Mason & Lam, 2013; Niikura & Kitagawa, 2016) and the likelihood
of obtaining false-negative results, which may be caused by untimely assaying of protein
expression (Brunner et al., 2000) remain as the drawbacks of using these methods.

Factors influencing transfection efficiency
The efficiency of chemical transfection depends greatly on a few factors such as type of
reagents used, the origin and nature of target cells, and an optimum DNA to reagent ratio
chosen (Table S1) (Gharaati-Far et al., 2018; Shi et al., 2018; Wang et al., 2018). In this
section, we will review past research that reported the influence of these factors on various
transfection strategies’ efficiency.

Factors influencing the efficiency of viral transfection
Viral vectors such as lentiviruses are useful in gene therapy due to their ability to carry
large-sized nucleic acid and deliver their targets to both non-dividing and dividing cells
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(Karda et al., 2019). A few factors had been shown to potentially affect efficiencies of
viral transduction, such as target cell types, type of promoter used, the concentration of
vector, and condition of transduction medium used (Table 3) (Ikeda et al., 2002; Denning
et al., 2013).

In an in vitro study that evaluated the use of human immunodeficiency virus (HIV) and
equine infectious anemia virus (EIAV) for gene transduction, varying degrees of
efficiencies were observed between the two viruses on different cell lines from human,
hamster, cat, dog, horse and pig. The transduction efficiency using HIV was generally
better than EIAV on most cell types, while the infectivity of both viruses on rodent cells
was weak (Ikeda et al., 2002). In the same study, the type of promoter was also suggested as
a factor that may influence transduction efficiency whereby HIV containing the internal
promoter EF-1a in replacement of CMV promoter exhibited higher transduction
efficiency on murine and rat cells (Ikeda et al., 2002). Besides, viral concentration was
suggested as another factor influencing efficiency. Among a few other parameters tested in
the evaluation by Haas et al. (2000), namely HIV lentiviral vector construct containing
different accessory proteins, presence/absence of fibronectin fragment and addition of
polycations protamine sulfate into transduction medium on human cord blood and
embryonic kidney cells, only viral titer appeared to be directly associated with viral
transduction efficiency.

On the other hand, the condition of the transfection medium may also affect
transduction efficiency. For instance, the use of fetal bovine serum was shown to yield better
transduction efficiency than bovine calf serum during transduction (Denning et al., 2013).

Table 3 Factors influencing the efficiencies of viral and physical/mechanical transfection methods.

Virus transduction Physical/mechanical transfection methods

Electroporation Laser beam Nucleic acid
injection

Ultrasound-
assisted

Magnet-assisted

Factors affecting
transfection
efficiencies

(1) Virus type/
generation
(2) Cell type
(3) Promoter
present in viral
vector
(4) Presence of
other substances
during transduction

(1) Electroporation
condition (duration
and voltage used)
(2) Number of
electric pulses
(3) Cell type
(4) Electroporation
buffer composition
(5) Size and
concentration of
nucleic acids

(1) Laser condition
(power density and
duration)
(2) Number of laser
pulses
(3) Cell type

(1) Number of
injection repeat
(2) Amount of
injected nucleic
acids
(3) Size, shape and
coating of needle
(4) Cell type

(1) Ultrasound
exposure condition
(2) Number of
pulses
(3) Cell culture
condition
(4) Cell type
(5) Amount of
nucleic acids used

(1) Magnetic
condition
(oscillating or
static conditions)
(2) Modification
of the magnetic
nanoparticles
(3) Number of
pulses
4) Cell type

References (Haas et al., 2000;
Ikeda et al., 2002;
Denning et al.,
2013)

(Potter & Heller,
2003; Molnar
et al., 2004; Yao
et al., 2009;
Hornstein et al.,
2016; Chopra
et al., 2020; Sherba
et al., 2020)

(Stevenson et al.,
2006; Terakawa
et al., 2006; Tsen
et al., 2009)

(Wells et al., 1998;
Dahlhoff et al.,
2012; Mellott,
Forrest &
Detamore, 2013;
Chow et al., 2016)

(Ogawa, Tachibana
& Kondo, 2006;
Kinoshita &
Hynynen, 2007;
Zhou et al., 2012)

(Mykhaylyk et al.,
2007; Fouriki
et al., 2010;
Kardos &
Rabussay, 2012;
Wang et al.,
2014)
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Likewise, polycations such as DEAE-dextran were shown to minimize repulsion forces
between negatively-charged cells and facilitated viral transduction (Denning et al., 2013).

Factors influencing the efficiency of chemical transfection
Type of chemical transfection reagents

The choice of a suitable transfection reagent can depend on several factors, including
the type of transfected nucleic acids and complexity of the transfection (single or
co-transfection) (Attractene Transfection Reagent Handbook, 2008; HiPerFect Transfection
Reagent Handbook, 2010; Kim & Eberwine, 2010; Trans IT-X2� Dynamic Delivery System
Protocol, 2019). Some reagents such as Effectene and TransIT-X2 are specially dedicated
for plasmid DNA transfection (Homann et al., 2017; Ormeño et al., 2020), while some
reagents such as Lipofectamine RNAiMAX are more suited for transfection of small
oligonucleotides (Jensen, Anderson & Glass, 2014; Wang et al., 2018). Several reagents
had also been suggested to be suitable for co-transfection of multiple DNA plasmids,
whereas a distinct group of reagents is catered for mixed DNA/small RNA molecules
co-transfection (Table S1) (Duportet et al., 2014; Kretzmann et al., 2018; Shi et al., 2018;
Wang et al., 2018; Tan et al., 2019).

Type of chemical transfection reagents

Primary and stem cells
Primary mammalian cells are generally less susceptible to transfection than other cell types
due to its finite lifespan and limited expansion capacity (Oh et al., 2007; Yamamoto
et al., 2017; Alabdullah et al., 2019). Non-liposomal-based reagents were shown to be
superior than liposomal reagents in transfecting primary human cells, including PEC
(Young et al., 2002), HASMC and HAEC (Kiefer et al., 2004), primary human myoblast
(Arnold et al., 2006) and AGS (Gharaati-Far et al., 2018). In contrast, liposomal-based
reagents such as Lipofectamine and DharmaFECT families were reported to produce
higher transfection efficiencies than non-liposomal reagents in transfecting other primary
human cells such as the primary umbilical cord vein endothelial cells (HUVEC) (Hunt
et al., 2010) and BM-MSC (Cheung et al., 2018).

In a study that involved transfection of plasmid DNA into HUVEC, the use of
non-liposomal reagents including Effectene and FuGENE 6 produced better transfection
efficiency (34% and 33%) than the liposomal reagent DOTAP (18%) (Young et al., 2002).
In another study that transfected HUVECs with plasmid DNA (Hunt et al., 2010),
liposomal-based reagents, however, demonstrated higher transfection efficiencies (~38%
at 48 h for Lipofectamine LTX and ~23% at 48 h for Lipofectamine 2000) as compared
to non-liposomal reagents such as Effectene and FuGENE 6 or HD (all <20% at 48 h).
Lipofectamine LTX and Lipofectamine 2000 were reported to show similar cytotoxic
effects to HUVEC but the cytotoxic effects of other reagents were not reported.
The efficiencies of liposomal-based vs. non-liposomal-based reagents in transfecting
HUVECs could not be concluded in these studies, mainly due to differences in the range of
reagents used. However, consistent observations that transfection efficiencies remained

Chong et al. (2021), PeerJ, DOI 10.7717/peerj.11165 17/37

http://dx.doi.org/10.7717/peerj.11165/supp-1
http://dx.doi.org/10.7717/peerj.11165
https://peerj.com/


below 40% regardless of the reagents used had undoubtedly implicated primary cells as a
hard-to-transfect cell type.

Human primary stem cells is another well recognized hard-to-transfect cell type, where
poor efficiency and low cell viability remain as the greatest challenge in transfecting
this cell type (Ervin et al., 2019; Tan et al., 2019). In 2015, Wang, Shang & Li (2015)
reported that transfection reagents such as Lipofectamine 2000 and XtremeGENE HP
produced very poor transfection efficiencies (<6%) in human periodontal ligament stem
cell as compared to the positive control lentiviral vector that achieved ~95% of transfection
efficiency. Compared to the magnetic assisted transfection technique employed in the
same study, the latter showed greater transfection efficiency (~11%) with lower toxicity.
In another study that involved human bone marrow mesenchymal stem cell (hBM-MSC),
Lipofectamine LTX was shown to produce the best transfection efficiency (at least
three times higher) than other reagents such as TransIT-2020, Lipofectamine 3000 and
polyethylenimine (PEI) but presented low cell viability (<50%) (Cheung et al., 2018).
Comparatively, a better outcome may be attained by using TransIT-2020 reagent that
was shown to achieve around 30% efficiency, with recovery up to 90% of the cells and
attainment of about 95% of cell stemness (Cheung et al., 2018). Another example of
hard-to-transfect stem cell is induced pluripotent stem cells (iPSCs). In a study
which compared different non-viral methods for transfecting human iPSC-derived
cardiomyocytes (hiPSC-CMSs), Lipofectamine STEM was shown to produce superior
transfection efficiency (up to 32%) as compared to other reagents (Lipofectamine 3000,
Lipofectamine 2000 and the non-liposomal PEI-based reagents TransporterTM 5 and
PEI25) that produced efficiencies below 20% (Tan et al., 2019).

As a general guideline, using cells from the early passage was recommended to achieve
good transfection efficiency, especially for transfection that involves primary or stem
cells (Young et al., 2002; Covello et al., 2014;Wang, Shang & Li, 2015). Another interesting
observation was that 37 �C was the optimal incubation temperature that could help reach
higher transfection efficiency in primary cells (Young et al., 2002). This phenomenon
could be because 37 �C is the optimal culture temperature for mammalian cells (Wang
et al., 2017a). Meanwhile, chemical transfection appeared to be less appealing than viral
and physical transfection for transfecting primary cells, especially in human primary stem
cells.

Human vs animal cells
The origin of cell lines, such as human vs. animal cell lines, may also contribute to varying
degrees of efficiencies when transfected using the same transfection reagents under similar
conditions (Kiefer et al., 2004; Kim & Eberwine, 2010; Maurisse et al., 2010). In a study
which involved transfection into smooth muscle cells from human and rat (Kiefer et al.,
2004), most of the transfection reagents were reported to show higher efficiencies
in transfecting rats smooth muscle cells (A-10 SMCs) as compared to human aorta smooth
muscle cells (HASMCs). Among the seven transfection reagents tested (DAC-30, DC-30,
Lipofectin, LipofectAMINEPLUS, Effectene, FuGene 6 and Superfect), FuGENE 6 was
concluded to produce the best transfection efficiency in both HASMCs and A-10 SMCs,
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but the efficiency was 4 fold lower in the former (~10% vs. ~40%). In both cell lines,
SuperFect produced the highest cytotoxic effects, followed by DAC-30 and Lipofectamine
Plus, while FuGENE 6 was considered comparatively safe to the cell lines (Kiefer et al., 2004).

In another study which compared the transfection outcome between different cell
lines from human and animal origin, pig tracheal epithelial cells (PTE) was shown to
be more efficiently transfected than the human tracheal epithelial cell line (HTE) by
transfection reagents including Effectene, Lipofectamine Plus and PEI (Maurisse et al.,
2010). Transfected HTE also exhibited lower viability than PTE post chemical transfection
(Maurisse et al., 2010). Combined findings from the two cited studies (Kiefer et al., 2004;
Maurisse et al., 2010) suggested that probably animal cell lines may be more efficiently
transfected than human cell lines.

Cell lines derived from the same species
The performance of different transfection reagents could also vary in different cell lines
derived from the same species. For instance, liposomal reagents were reported to exhibit
higher efficiencies than non-liposomal reagents in transfecting various immortalized
human cell lines, including HEK293, MDA-MB-231, MCF-7, A549, A673, HCT116, HeLa,
HepG2, JU77, Huh-7 and HL-60 (Borawski et al., 2007; Ooi et al., 2016; Sork et al., 2016;
Shi et al., 2018; Wang et al., 2018). The same trend was also observed in transfection
into animal cell lines involving P16 and PTE (Maurisse et al., 2010), PC12 (Covello et al.,
2014), bMDAM (Jensen, Anderson & Glass, 2014), E14 and R1 cells (Tamm et al., 2016).

However, non-liposomal reagents were shown to produce higher transfection
efficiencies than liposomal-based reagents in cell lines, including MCF-7, HepG2, 4T1,
HCT116 and HEK293 (Yamano, Dai & Moursi, 2010; Homann et al., 2017). In animal cell
lines, non-liposomal reagents were only reported to produce higher efficiency in a study
that involved transfection into Z3 cell line (Sandbichler, Aschberger & Pelster, 2012).

In general, lipid-based or liposomal reagents demonstrated higher transfection efficiencies
in most studies that involved immortalized human and animal cell lines. In some cell lines
such as MCF-7, HepG2 and HEK293, the comparisons between liposomal-based vs.
non-liposomal-based reagents were not conclusive, which may suggest that some cell lines
are less selective to the type of reagents for effective transfection, thereby offering
researchers a wider choice of approaches to opt for transfecting these cells.

On the other hand, non-liposomal reagents appeared to be comparatively safer than the
liposomal-based reagents (Sandbichler, Aschberger & Pelster, 2012; Cheung et al., 2018).
In both primary and immortalized human cell lines, liposomal reagents were reported to
produce more significant cytotoxic effects than non-liposomal reagents (Kiefer et al., 2004;
Yamano, Dai & Moursi, 2010; Homann et al., 2017; Cheung et al., 2018; Wang et al.,
2018). Consistent with the observations, liposomal-based reagents were also reported to
cause higher toxicities in the animal cells, the studies by Sandbichler, Aschberger & Pelster
(2012) and Covello et al. (2014).

Adherent vs. suspension cells
Suspension cells are commonly known as being more challenging to be transfected
than adherent cells due to reduced potential attachment of transfection complex to the
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suspension cells’ surface (Basiouni, Fuhrmann & Schumann, 2012). However, a study
comparing the efficiencies of Xfect, Lipofectamine 2000, Nanofectamin, TransIT-X2 and
TransIT-2020 showed that all reagents except Xfect showed higher efficiency transfecting
suspension cells as compared to adherent cells (Tamm et al., 2016). However, the
reasons underlying the opposing observations remain largely unclear and may be further
explored in the future.

The ratio of nucleic acids to transfection reagents

The ratio of nucleic acids to transfection reagents also plays a role in influencing
transfection efficiency (Arnold et al., 2006; Shi et al., 2018). In a study involving primary
human myoblasts, the effect of transfection efficiencies was compared using different
nucleic acid ratios to transfection reagents including FuGENE 6, Effectene, and ExGen 500
(a PEI-based reagent) (Arnold et al., 2006). One remarkable finding from the study was
that transfection efficiency might not necessarily correlate directly to the reagent volume
used. For instance, the ratio of 2 µg of DNA to 5 µL of FuGENE 6 reagent was shown
to produce the best transfection efficiency, whereas lower or higher DNA to reagent ratios
did not improve the efficiency (Arnold et al., 2006). A similar finding was also observed
in another study involving transfection into human gastric adenocarcinoma cell line
whereby the optimum transfection efficiency was not achieved using the highest
transfection reagent to DNA ratio volume tested among a range of combinations
(Gharaati-Far et al., 2018).

The use of disproportionate and high transfection reagent volume would cause
unwanted cytotoxicity that reduces the overall transfection outcome (Arnold et al., 2006;
Gharaati-Far et al., 2018). Therefore, determining an appropriate nucleic acid to
reagent ratio is an important step in initiating a new transfection study to achieve high
transfection efficiency and low cytotoxicity (Gharaati-Far et al., 2018; Shi et al., 2018).

Other factors

Serum-reduced or serum-free media are normally recommended in transfection involving
cationic transfection reagents such as Lipofectamine (Wallenstein et al., 2010), HiperFect
(Diener et al., 2015) and EndofectinMax (Shi et al., 2020). Such transfection activities
entail cationic liposome-DNA complexes formation, which requires the interaction
between positively-charged liposomal molecules and negatively charged nuclei acids (Son,
Tkach & Patel, 2000). As such, the presence of negatively charged molecules in serum
could potentially affect the complex interactions, thereby affecting transfection efficiency
(Simoes et al., 2000;Misra et al., 2013). However, the presence of 10% serum was found to
result in higher transfection efficiencies in MCF-7, HeLa, C2C12 and MC3T3 transfected
with FuGENE HD, jetPEI, Lipofectamine 2000 and Arrest-In (Yamano, Dai & Moursi,
2010). It was suggested that a minimal amount of serum in transfection could improve
inter-surface interaction between the transfection complexes and its host cell surface by
modulating the zeta potential of the transfection complexes (Yamano, Dai & Moursi, 2010).

On the other hand, freeze-thawing of transfection reagents was suggested as another
potential factor that may influence transfection efficiency. Lipofectamine 2000 reagent that
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underwent at least one freeze thaw cycle produced superior transfection efficiency in
the cell lines HEK293, Neuro2a, C2C12 myoblasts and myotubes, hTERT MSC, SMA and
HepG2 as compared to its nonfrozen control, without a compromise in cell viability
(Sork et al., 2016).

A possible explanation for this is that freeze-thawing could enhance molecular
rearrangement dispersion, thereby allowing a higher dispersion rate that allows maximal
contact between the nucleic acids to form more transfection complex (Sork et al., 2016).
However, more studies are needed to support this practice as freeze-thaw process was
also suggested to cause recrystallization that could damage some chemicals’ structures
(Cao et al., 2003).

Factors influencing efficiency of physical/mechanical transfection
Factors affecting transfection efficiencies of the physical or mechanical transfection
depends largely on the principles underlying these methods (Table 3). For instance, the
electroporation technique relies on an electrical field to increase the host cell membrane’s
permeability to internalize foreign nucleic acids (Sherba et al., 2020). As such, the voltage
and duration during the electroporation process are important factors that determine
the success of electroporation. Prolonged electroporation with high voltage applied could
potentially lead to cell damage and reduce transfection efficiency (Molnar et al., 2004).
The electro-transfection efficiency can also be improved by increasing the number of
electric pulses, but this may reduce the cell viability (Chopra et al., 2020). On the other side,
the electro-transfection efficiency is dependent on the type of cell used and the
electroporation condition should be optimized whenever a new cell type is going to be
electro-transfected (Potter & Heller, 2003). Some cell like T lymphocyte, might be poorly
transfected even a standard electroporation condition is being applied while
electro-transfection of fibroblasts could produce generally good transfection outcome
(Potter & Heller, 2003).

The electroporation buffer’s composition is another critical parameter that influences
transfection efficiency. ATPase inhibitor such as lidocaine in the electroporation buffer
was reported to improve cell viability post-electroporation while the use of K+-based buffer
resulted in better transfection efficiency than Mg2+-based buffer. Mg2+ ions were
hypothesized to play a key role in activating ATPases to restore the ionic homeostasis
post-electroporation to minimize cell death but could potentially reduce the transfection
efficiency (Sherba et al., 2020). Therefore, a suitable recipe of electroporation buffer
consisting of various components should be optimized to ensure a balance between
transfection efficiency and cell viability post-electroporation is well-maintained (Sherba
et al., 2020). Besides, the size and concentration of the vector should be carefully selected
during electroporation. Large plasmid size was reported to reduce electroporation
transfection (Molnar et al., 2004; Hornstein et al., 2016). In another study, the efficiencies
of electroporation transfection in dental follicle cells gradually improved as plasmid
concentrations increased in the range between 0.02 and 0.26 mg/ml. However, not only did
efficiency not improve, cell survival also declined post-electroporation with further
increment of plasmid concentration to 0.3 mg/ml (Yao et al., 2009). In circumstances when
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low electric pulse number is used, a high plasmid DNA concentration can be applied to
compensate the low number of electric pulses to achieve a good electro-transfection
efficiency (Chopra et al., 2020).

In laser-assisted transfection, density and duration of laser-irradiation used to deliver
foreign nucleic acids into the host cells would primarily affect the success of transfection
(Stevenson et al., 2006; Tsen et al., 2009). Higher laser power and prolonged exposure
to laser do not necessarily warrant good efficiency. In fact, moderate (Stevenson et al.,
2006) to low laser power and short exposure to laser-irradiation (Tsen et al., 2009) showed
superior efficiency and sustained cell survival compared to more prolonged exposure
and higher laser power during laser-assisted transfections. Besides, the efficiency of
laser-assisted transfection can be enhanced by increasing the number of laser pulse
(Terakawa et al., 2006). The use of different cell types during laser-assisted transfection
would also show different transfection efficiencies. For instance, in a study (Terakawa
et al., 2006) which compared the laser-assisted transfection efficiencies between five
different cell types, it was demonstrated that laser-assisted transfection of HeLa cells
produced highest transfection efficiency while CHO and human glioma cells showed
relatively lower laser-assisted transfection efficiencies.

Ultrasound-assisted transfection involves creating tiny pores on the host cell membrane
to facilitate the delivery of nucleic acids, including DNAs and RNAs (Tomizawa et al.,
2013). Similar to the former strategies, exposure duration, pulse number, and density
of ultrasound irradiation were also reported to be proportionately associated with
transfection efficiency up to a threshold value (Ogawa, Tachibana & Kondo, 2006;
Kinoshita & Hynynen, 2007; Zhou et al., 2012). Beyond a tolerance limit, cell survival and
transfection efficiency may decline. Likewise, increasing the amount of nucleic acids was
also shown to improve transfection efficiency of ultrasound-assisted transfection (Zhou
et al., 2012). In the same study, transfecting human 293T cells cultured in suspension was
claimed to be easier than transfecting the same cell type grown as adherent culture
(Zhou et al., 2012). However, this observation did not agree with the findings from another
study, which reported no significant difference in the number of the transfected rat cells
cultured in either suspension or monolayer conditions (Kinoshita & Hynynen, 2007).
Remarkably, the latter study also reported that rat cells grown as monolayer culture
maintained higher cell viability post-transfection (Kinoshita & Hynynen, 2007).
Nevertheless, discordant findings from these two studies suggest that the optimal culture
condition for sonoporation may vary with different cell lines used. In another study
(Ogawa, Tachibana & Kondo, 2006), it was shown that sono-transfection efficiency varied
with different cell types being used and the sono-transfection of Hela and T-24 cell lines
showed better efficiencies than PC-3, U937 and Meth A cell lines. Therefore, the choice
of cell type is another factor which could influence sonoporation transfection efficiency
(Ogawa, Tachibana & Kondo, 2006).

Magnetic-assisted transfection or magnetofection is another non-viral physical
transfection approach and it can be used to deliver either metal-coated nucleic acids
complex or magnetic-conjugated AAV vector into the host cell (Mykhaylyk et al., 2007).
There are two ways by which magnet can assist in cell transfection, namely, oscillating and
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static condition. In oscillating magnetofection, a magnet is placed near the host cell and
moved side-by-side to drag metal-coated nucleic acids nanoparticles complex onto the
host cell surface to facilitate endocytosis mechanically. In contrast, static magnetofection
does not involve such steps (Fouriki et al., 2010). The oscillating system was claimed to
demonstrate better transfection efficiency than the static system and sometimes superior to
chemical transfection (Fouriki et al., 2010). Besides, the distance between cells and magnet
could also affect transfection efficiency, whereby a shorter distance will generally result
in higher transfection efficiency (Fouriki et al., 2010). Interestingly, surface modification of
magnetic nanoparticles had also been shown to improve the efficiency of magnet-assisted
transfection. For instance, modifying the surface of Fe3O4 nanoparticles for gene
delivery with PEI enhanced plasmid DNA binding affinity to host cell, thereby improving
the transfection outcome (Wang et al., 2014). Other factors which could influence the
efficiency of magnetofection include cell types being used (Mykhaylyk et al., 2007) and
number of pulses (Kardos & Rabussay, 2012). For example, the use of magetofection to
transfect human lung epithelial cells might produce better transfection efficiency than
Jurkat cells (Mykhaylyk et al., 2007), and the use of double magnetic pulse could increase
the transfection efficiency by twice as compared to single magnetic pulse in delivery the
specific plasmid DNA in vivo (Kardos & Rabussay, 2012).

Gene injection involves direct delivery of a desired nucleic acid material into the host
cells’ nucleus via injection. This method serves as a good alternative when cell transfection
is challenging, especially when genetic modification of the host cell is required (Chow
et al., 2016). Like other non-viral genes delivery methods, there is no single method that
can fit all different cell types (Mellott, Forrest & Detamore, 2013) and the selection of a
suitable cell type and nucleic acid size are vital to ensure the success of gene injection.
For example, a previous study has reported the successful generation of transgene mice cell
line that expressed the cre recombinase (size ~1,000 bp) (Dahlhoff et al., 2012). On the
other hand, in a in vivo study, the number of mice muscle fibers expressing transgene
correlated with the number of injections and the dosages of the administered plasmid
(Wells et al., 1998). This was further supported by another in vitro study, which reported
that the number of the host cells expressing a reporter gene was closely correlated to the
amount of nucleic acids injected into the cells (Chow et al., 2016). Besides, the size,
shape and the presence of additional coating on the microneedles would also affect the
efficiency of gene injection as it has been reported that small size microneedles (<10 mm)
coated with microparticles were able to suffessfully deliver the desired cargo to the stratum
corneum layer of the skin (Mellott, Forrest & Detamore, 2013).

CONCLUSION
There is no single or universal transfection strategy that is apt for all cell lines and
experimental aims. Apart from the experimental budget and the availability of required
facilities, the choice for an optimal transfection approach or strategy depends on factors
including the type and origin of cells and the form of nucleic acids to be transfected.
It is also essential to consider factors that may affect transfection efficiency and cytotoxicity
to the host cells and how these parameters may be assessed accurately and conveniently.
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Likewise, the inclusion of appropriate controls in a transfection experiment is equally
important to allow a fair and unbiased assessment of the experimental outcome.
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