Dijkstra's Algorithm

Dr. Sasmita Kumari Nayak Computer Science & Engineering

Dijkstra's Algorithm

- It is a single-source shortest path problem or algorithm in the graph theory.
- It is used for finding shortest paths from a source vertex u to all other vertices in the graph.
- This works on both directed and undirected graphs.
- All the edges must have non-negative weights.

Procedure

Approach: Greedy

Input: Weighted graph G= $\{E,V\}$ and source vertex $v \in V$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex $v \in V$ to all other vertices

Pseudocode

DIJKSTRA (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE (G, s)
- 2. $S = \emptyset$
- 3. Q = V[G]
- 4. while $Q \neq \emptyset$
- 5. u = EXTRACT-MIN(Q)
- $6. \quad S = S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s)

- 1. for each vertex $v \in V[G]$
- 2. $d[v] = \infty$
- 3. π [v] = NIL
- 4. d[s] = 0

RELAX (u, v, w)

- 1. if d[v] > d[u] + w(u, v)
- 2. d[v] = d[u] + w(u, v)
- 3. π [v] = u

Example

u	Α	B	С	D	Ε
π	Ν	А	А	Ν	Ν

u	Α	B	С	D	Ε
π	Ν	А	А	Ν	Ν

u	Α	B	С	D	Ε
π	Ν	С	А	С	С

u	Α	B	С	D	Ε
π	Ν	С	А	С	С

u	Α	B	С	D	Ε
π	Ν	С	А	В	С

u	Α	В	С	D	Ε
π	Ν	С	А	В	С

u	Α	В	С	D	Ε
π	Ν	С	А	В	С

Running Times

- The simplest implementation is to store vertices in an array or linked list. This will produce a running time of O(|V|^2 + |E|)
- For any graphs with very few edges and many nodes or vertices, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of O((|E|+|V|) log |V|)

Time Complexity: Using Linked list

- The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array
 - Good for dense graphs (many edges)
- o |V| vertices and |E| edges
- Initialization O(|V|)
- While loop O(|V|)
 - Find and remove min distance vertices O(|V|)
- o Potentially | E | updates
 - Update costs O(1)

Total time $O(|V^2| + |E|) = O(|V^2|)$