

Introduction to MALDI-TOF Mass Spectrometry

Principles of MALDI-TOF

Overview

- Matrix Assisted Laser Desorption/ Ionisation – Time of Flight (MALDI-TOF) mass spectrometry used to detect and characterize mixtures of organic molecules.
- In micro used as a rapid, accurate and cost-effective method for ID of microbes
- 2 commercially available:
 - Vitek MS (bioMerieux)
 - MALDI Biotyper CA system (Bruker Daltonics)

Bruker, MBT Compass User Manual, 2018

Mass Spectrometry

- Mass spectrometry (MS) measures mass-to-charge ratio (m/Q) of ions.
- Results presented as a mass spectrum a plot of the ion signal as a function of the mass-to-charge ratio.
- Spectra used to determine
 - elemental or isotopic signature
 - the masses of particles
 - the chemical ID or structure

Three components of MS

An ion source

 Sample (solid, liquid, or gaseous) is ionized - for solids via electrons or MALDI

A mass analyzer

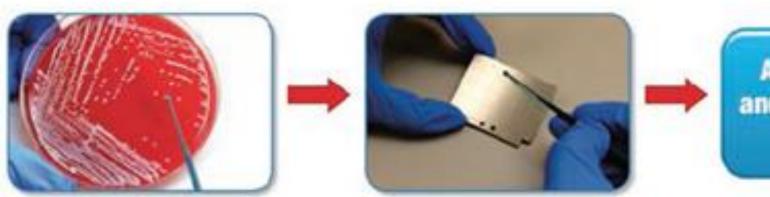
- Ions then separated based on mass-to-charge ratio
- Done by acceleration and subjecting to an electric or magnetic field
- Ions with a lower mass will reach the detector first.

A detector

- records either charge or current produced when ion passes by or hits a surface
- produces a mass spectrum (mass-to-charge ratio)
- Usually an electron multiplier

MALDI – TOF MS

1. An ion source


- Laser and ionization chamber to ionize sample and transfer into a gas phase
- Uses laser energy-absorbing matrix to create ions from large molecules

2. A mass analyser

- separates ionized analytes according to their mass (all same charge)
- TOF uses electric field to accelerate ions
 & measure time to reach detector.
- 3. A detection device to monitor separated ions

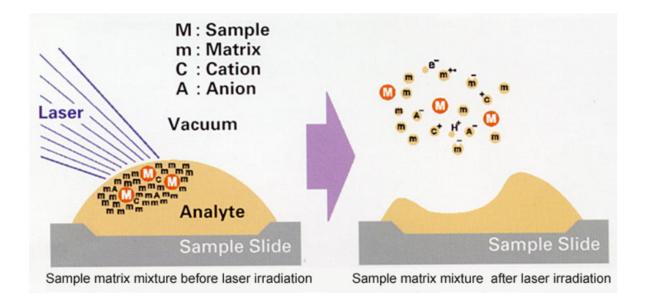
Patel, Clin Chem, 2015

Add Formic Acid and Dry; Add Matrix and Dry

Procedure

- Combine isolated colony (analyte), formic acid & matrix on MALDI plate
- Solvents vaporize, leaving only the recrystallized matrix with analyte embedded

Matrix


 Matrix isolates molecules from each other, protecting them from fragmentation and enabling desorption by laser energy

Consists of:

- Small crystalised acid molecules usually sinapinic acid, alpha-cyano (alpha matrix) or DHB acid.
- Purified water
- Organic solvent (alcohol or acetonitile)
- Trifluoroacetic acid 2.5%

Ion Source - Laser

- Uses UV lasers (nitrogen laser light, wavelength 337nm)
- Laser pulses fired at the matrix crystals in the dried-droplet spot.
- Matrix absorbs the laser energy converting it to an ionised state
- Charge is transferred to analyte (random collision in the gas phase)
- Ionised analyte and matrix molecules are desorbed from the plate

Shimadzu, Principles of MALDI-TOF MS, 2020

Creative Proteomics, MALDI-TOF MS, June 2020

Mass Analyser – Time of Flight

- Ionized microbial molecules accelerated through a positively charged electrostatic field into time of flight (TOF) tube
- Inside vacuum tube ions travel toward an ion detector
- Small analytes travel the fastest (generating mass spectrum)
- Ions emerge from the mass analyser and hit the ion detector → generate a mass spectrum representing the number of ions of a given mass impacting the detector over time

Carroll, MCM 12 ed, 2019 Patel, Clin Chem, 2015

Shimadzu, Principles of MALDI-TOF MS, 2020

Results

- Mass spectrum provides profile unique to individual types of microbes, with peaks specific to genera and species
- Once acquired compared to a database of reference spectra
- A value percentage or score is produced

Results

Results

- ID is started immediately after mass spectrum available.
- During the run the appearance of sample and QC positions in the MALDI plate display reflects the success of the measurement and ID a each position
 - If spectrum measurement successful left half of the sample is green.
 - If measurement fails left half of the sample is orange
 - Colouring of right half of sample position indicates the score value of ID

Bruker, MBT Compass User Manual, 2018

Bruker, MBT Compass User Manual, 2018

MALDI Scores

 Higher the log (score), higher the similarity between mass spectrum of isolate & the database entry in the reference library

Consistency	Description
High (A)	Best match is a high-confidence ID
	Second-best match is:
	 high- confidence ID identical sp ID to best match
	• low- confidence ID identical to genus in best match
	 non-identification
Low (B)	Requirements for high consistency not met.
	Best match is a high- or low- confidence ID
	Second-best match is:
	 high- or low-confidence ID identical to genus in best
	match
	 non-identification
None (C)	Requirements for high or low consistency not met

Range	Interpretation	Symbols	Color
2.00 - 3.00	High Confidence Identification	(+++)	green
1.70 - 1.99	- 1.99 Low Confidence Identification		yellow
0.00 - 1.69	No Organism Identification Possible	(-)	red

Sample Name	Sample ID	Organism (best match)	Score Value	Organism (second best match)	Score Value
(++++)(A)	ID of A1 (standard)	Escherichia coli	2.68	Escherichia coli	2.30
(+++)(A)	ID of A1 (standard)	Escherichia coli	2.75	Escherichia coli	2.35
(+++)(A)	ID of A3 (standard)	Cupriavidus necator	2.61	Cupriavidus necator	2.15
(+++)(A)	ID of A4 (standard)	Staphylococcus aureus	2.29	Staphylococcus aureus	2.27
(+++)(A)	ID of A5 (standard)	Escherichia coli	2.69	Escherichia coli	2.30
<u>A6</u> (-) (C)	ID of A6 (standard)	No Organism Identification Possible	1.41	No Organism Identification Possible	1.38
(+++)(A)	ID of A7 (standard)	Proteus mirabilis	2.67	Proteus mirabilis	<u>2.66</u>
<u>A8</u> (-) (C)	ID of A8 (standard)	No Organism Identification Possible	1.10	No Organism Identification Possible	1.10

Ξ	+	🎑 Hide Id	entified	Group by spec. Advanced •				
		ID	Positi	on Detected Species	Sco	re	Comme	nt
Þ	•	ID of A5	A5	Escherichia coli	2.6	9 clos	sely related to Shi	gella and no
Þ	•	ID of A6	A6	No Organism Identification Poss	sible 1.4	1		
4	•	ID of A7	A7	Proteus mirabilis	2.6	57		
		Score *		Detected Species		Comme	nt	Link
	•	2.67	Proteus m	nirabilis DSM 18254 DSM				<u>584</u>
	•	2.66	Proteus m	nirabilis 9482_2 CHB				<u>584</u>
	•	2.54	Proteus m	nirabilis DSM 30115 DSM				<u>584</u>
	•	2.53	Proteus m	nirabilis DSM 46227 DSM				<u>584</u>
	•	2.52	Proteus m	nirabilis DSM 788 DSM				<u>584</u>
	•	2.49	Proteus m	nirabilis DSM 50903 DSM				<u>584</u>
	•	2.46	Proteus m	nirabilis RV412_A1_2010_06b LBK				<u>584</u>
	•	2.39	Proteus m	nirabilis 13210_1 CHB				<u>584</u>
	•	2.19	Proteus m	nirabilis (PX) 22086112 MLD				<u>584</u>
	0	1.72	Proteus v	ulgaris DSM 13625 DSM				<u>585</u>
Þ	•	ID of A8	A8	No Organism Identification Poss	ible 1.1	.0 is a	member of Pseu	domonas pu

Advantages

- Rapid (≤3 minutes per isolate)
- Inexpensive low reagent cost
- Small amounts of organism are required
- Direct sample ID possible
- Reduced labour
- Accurate ID

Microorganism group	Number of processed samples	Number of correct identifications	Number of incorrect identifications
Non-fermenting Gram-negative bacteria	229	215 (93.89%)	14 (6.11%)
Enterobacteriacea	265	263 (99.25%)	2 (0.75%)
Other Gram-negative bacteria	204	195 (95.59%)	9 (4.41%)
Gram-positive bacteria	230	224 (97.39%)	6 (2.61%)
Yeasts	225	219 (97.33%)	6 (2.67%)
Total number	1153	1116 (96.79%)	37 (3.21%)*

^{*} Of the 1153 samples, 0.61% (7 samples) provided low-confidence identifications; 1.91% (22 samples) could not be identified; and 0.69% (8 samples) gave a false result.

Limitations

- Databases are proprietary unlike publicly available sequence databases
- Difficulties in ID with some organisms
- Difficulty analysing mixed cultures
- Identifying organisms from liquid cultures
- Low identification scores repeat testing for 10% of isolates
- Growth on some media may be associated with low scores
- Small/mucoid colonies may fail ID
- ID of biosafety level 3/4 organisms
- Requires room temperature (20-25 °C)
- Human error

Difficulties in Identification

- Misidentification rare
- Can occur with closely related organisms
 - E. coli and Shigella
 - Discrimination between species from same complex eg. E cloacae complex
- Salmonella can only be ID to genus level No typing
- Difficulties with some species alpha haemolytic strep
- Mycobacteria & filamentous fungi

Considerations for other organisms

- Mycobacteria:
 - Requires processing to kill tested bacteria, break down cell envelopes, disrupt clumped cells
 - Can ID most clinically relevant species
 - MTB complex ID to complex level only
 - Some related mycobacterium species not well differentiated (M. chimaera and M. intracellulare)
- Enhanced databases ID Nocardia often specific extraction processes needed
- Fungi:
 - Can identify yeast well
 - Filamentous fungi limited variable phenotypes & protein spectra vary with growth conditions
 - Available for aspergillus, fusarium & mucorales

Common Sources of Error

- Colony inoculation in erroneous target plate locations
- Testing impure colonies
- Smearing between spots
- Failure to clean target plates
- Entry of wrong results

Conclusion

- MALDI-TOF MS utilizes:
 - Laser & matrix as an ion source
 - TOF (electric field) as a mass analyser
 - Ion detector
- Provides a rapid, accurate and cost-effective method for ID of many bacteria & yeast

 Several limitations which operators need to be aware of when reporting & troubleshooting