
Brute Force and Exhaustive Search

Prof. Sasmita Kumari Nayak, CSE

Introduction to Brute Force
 Brute force is a straightforward approach to solve a problem.

 It is directly based on the problem statement and definitions of the concepts
involved.

 some features of the brute force algorithm are:

 It is an intuitive, direct, and straightforward technique

 Many problems solved in day-to-day life using the brute force
strategy, for example exploring all the paths to a nearby market
to find the minimum shortest path, optimal algorithms etc.

 Arranging the books in a rack using all the possibilities to
optimize the rack spaces, etc.

Prof. Sasmita Kumari Nayak, CSE

Advantages of Brute Force

 The brute force approach is a guaranteed way to find the correct solution
by listing all the possible candidate solutions for the problem.

 It is a generic method and not limited to any specific domain of problems.

 The brute force method is ideal for solving small and simpler problems.

 It is known for its simplicity and can serve as a comparison benchmark.

Prof. Sasmita Kumari Nayak, CSE

Disadvantages of Brute Force

 The brute force approach is inefficient. For real-time problems, algorithm
analysis often goes above the O(N!) order of growth.

 This method relies more on compromising the power of a computer system
for solving a problem than on a good algorithm design.

 Brute force algorithms are slow.

 Brute force algorithms are not constructive or creative compared to
algorithms that are constructed using some other design paradigms.

Prof. Sasmita Kumari Nayak, CSE

Bubble Sort Algorithm

Prof. Sasmita Kumari Nayak, CSE

Introduction to sorting

 There are two types of sorting: Sequential Sort and Recursive Sort.

 In general, Sequential Sort is simple but slower, Recursive Sort is much
faster but requires more algorithmic understanding.

Sequential Sort

 1 Selection Sort - continuously finding the smallest or the greatest element
in each iterated subset and swapping with the beginning element of the
subset

 2 Insertion Sort - continuously inserting the element into an iterated subset
in a given order

 3 Bubble Sort - continuously comparing the nearing 2 elements and
swapping the element in a given order

Prof. Sasmita Kumari Nayak, CSE

Introduction to Bubble Sort
 One of the simplest sorting algorithms proceeds by walking down the list,

comparing adjacent elements, and swapping them if they are in the wrong order.

 The process is continued until the list is sorted.

 Algorithm:

 Given n numbers to sort:

 Repeat the following n-1 times:

 For each pair of adjacent numbers:

 If the number on the left is greater than the number on the right, swap them

Prof. Sasmita Kumari Nayak, CSE

Prof. Sasmita Kumari Nayak, CSE

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

Algorithm:

Prof. Sasmita Kumari Nayak, CSE

Analysis of Bubble sort Algorithms

 Worst and Average Case Time Complexity: O(n*n). Worst case
occurs when array is reverse sorted.

 Best Case Time Complexity: O(n). Best case occurs when array

is already sorted.

Prof. Sasmita Kumari Nayak, CSE

