Sequential Search Algorithm

Prof. Sasmita Kumari Nayak, CSE

Introduction

ALGORITHM SequentialSearch(A[0..n-1], K)

//Output: index of the first element in A, whose //value is equal to K or -1 if
no such element is found

1<-0
while i <nand A[i] #K do Input size: n
| <-1+1 Basic op: <, #
ifi<n
return i C.orst(n) =n
else
return -1

Prof. Sasmita Kumari Nayak, CSE

Example

Let the elements of array are -
o 1 2 3 4 5 6 7 8

70 |40 |30 | 11 |57 | 41 | 25| 14 | 52

Let the element to be searched is K = 41
Now, start from the first element and compare K with each element of the array.

o 1 2 3 4 5 6 7 8
70 |40 (30 | M1 |57 |41 [25|14 | 52

T

K#70

The value of K, i.e., 41, is not matched with the first element of the array. So, move to the
next element. And follow the same process until the respective element is found

Prof. Sasmita Kumari Nayak, CSE

cCont...

0O 1 2 3 & 5 o
70 |40 [30| N 57 | 41 25 | 14 52
K40 Now, the element to be searched is found.
So algorithm will return the index of the
0O 1 2 3 & 5 6 7 B | h d
7O | 40 | 30 11 57 | 41 25 | 14 52 € ement matc €d.
K#30
0 1 2 =z £ 5 [7 8
TO | 40 | 30 11 57 | 41 25 | 14 52
K==11
O 1 2 3 & 5 6 7T 8
70 | 40 | 30 11 57 41 25 14 52
K57
O 1 2 3 & 5 (5] i 8
70 |40 | 30| N 57 | &1 25 | 14 52
K=41

Prof. Sasmita Kumari Nayak, CSE

Time Complexity

« Best Case Complexity - In Linear search, best case occurs when the element
we are finding is at the first position of the array.

« Average Case Complexity - The average case time complexity of linear search
IS O(n).

« Worst Case Complexity - In Linear search, the worst case occurs when the
element we are looking is present at the end of the array. The worst-case in
linear search could be when the target element is not present in the given
array, and we have to traverse the entire array.

Case Time Complexity

Best Case O(1)
Average Case O(n)

Worst Case O(n)
Prof. Sasmita Kumari Nayak, CSE

Brute-Force String Matching Algorithm

Prof. Sasmita Kumari Nayak, CSE

Brute-Force String Matching Algorithm

Given a text array 7'[1...n] and a pattern array
P[1...m] such that the elements of T° and P are
characters taken from alphabet > . e.g.,, > = {0,1}
or> ={a,b,...,z}.

The String Matching Problem is to find all the occur-
rence of P in T .

A pattern P occurs with shift s in 7", if P[1...m]
=T[s+ 1...s5 -+ m] . The String Matching Problem
is to find all values of s. Obviously, we must have
O<s<n—m.

Prof. Sasmita Kumari Nayak, CSE

Cont...

Examples:
1 String and pattern matching

Computing n!
3 Multiplying two matrices

. Searching for a key of a given value in a list

Prof. Sasmita Kumari Nayak, CSE

Brute-Force String Matching Algorithm

ALGORITHM BruteForceStringMatch(T [0..n = 1], P[0..m — 1])
//[lmplements brute-force string matching

[/input: An array T [0..n — 1] of n characters representing a text and
/[an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a

// matching substring or —1 if the search is unsuccessful

fori<0ton—-mdo
j <0
whilej<mand P[j]=T[i+)]do
j<—j+ 1
If j=mreturn i
return -1

Prof. Sasmita Kumari Nayak, CSE

Example

Initially, P is aligned with 7" at the first index position.
P is then compared with 7' from left-to-right. If a
mismatch occurs, “"slide” P to right by 1 position, and

start the comparison again.

b clﬂ,lcﬂb clalclalb
L
a=1 S=2
—:—clﬂb clalb

Prof. Sasmita Kumari Nayak, CSE

Efficiency

Brute-force pattern matching runs in time
O(nm).

=
Brute-force exact pattern match: worst case

Brute-force algorithm can be slow if text and pattern are repetitive

A a a = a a a = » o A a A A a a D Tex? length Ml
a a a a a =
- a - . - b
a a a a a 3
- Y - - - b
a a a a a - MN char compeares
- - - - - b
- a a - a D
- - - = - b
EY EY a a a o
- a < a - 5
E = a E) a b
a " » EY - = pattern length M

but this situation is rare in typical applications

Prof. Sasmita Kumari Nayak, CSE

Strengths

Strengths:
" |t is wide applicable.

" |t is not complex in nature unlike other
algorithms.

" It yields reasonable algorithms for some
important problems
* searching; string matching; matrix multiplication

" It yields standard algorithms for simple
computational tasks
* sum/product of n numbers; finding max/min in a list

Prof. Sasmita Kumari Nayak, CSE

Weakness

Weaknesses:
= |t rarely yields efficient algorithms

= Some brute force algorithms are
unacceptably slow

" e.g., the recursive algorithm for
computing Fibonacci numbers

= |t is not as constructive/creative as some
other design techniques

Prof. Sasmita Kumari Nayak, CSE

Applications

parsers.
spam filters.

digital libraries.

screen scrapers.

word processors.

web search engines.

natural language processing.
computational molecular biology.

feature detection in digitized images. . ..

Prof. Sasmita Kumari Nayak, CSE

