
Sequential Search Algorithm

Prof. Sasmita Kumari Nayak, CSE

Introduction

ALGORITHM SequentialSearch(A[0..n-1], K)

//Output: index of the first element in A, whose //value is equal to K or -1 if

no such element is found

i <- 0

while i < n and A[i] ≠ K do

 i <- i+1

if i < n

 return i

else

 return -1

Prof. Sasmita Kumari Nayak, CSE

Input size: n
Basic op: <, ≠

Cworst(n) = n

Prof. Sasmita Kumari Nayak, CSE

Let the elements of array are -

Let the element to be searched is K = 41

Now, start from the first element and compare K with each element of the array.

The value of K, i.e., 41, is not matched with the first element of the array. So, move to the

next element. And follow the same process until the respective element is found

Example

Cont…

Prof. Sasmita Kumari Nayak, CSE

Now, the element to be searched is found.

So algorithm will return the index of the

element matched.

Time Complexity

Prof. Sasmita Kumari Nayak, CSE

Case Time Complexity

Best Case O(1)

Average Case O(n)

Worst Case O(n)

• Best Case Complexity - In Linear search, best case occurs when the element

we are finding is at the first position of the array.

• Average Case Complexity - The average case time complexity of linear search

is O(n).

• Worst Case Complexity - In Linear search, the worst case occurs when the

element we are looking is present at the end of the array. The worst-case in

linear search could be when the target element is not present in the given

array, and we have to traverse the entire array.

Brute-Force String Matching Algorithm

Prof. Sasmita Kumari Nayak, CSE

Brute-Force String Matching Algorithm

Prof. Sasmita Kumari Nayak, CSE

Cont…

Prof. Sasmita Kumari Nayak, CSE

Brute-Force String Matching Algorithm

Prof. Sasmita Kumari Nayak, CSE

ALGORITHM BruteForceStringMatch(T [0..n − 1], P[0..m − 1])
//Implements brute-force string matching
//Input: An array T [0..n − 1] of n characters representing a text and
// an array P[0..m − 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or −1 if the search is unsuccessful

for i ←0 to n − m do
 j ←0
 while j <mand P[j]= T [i + j] do
 j ←j + 1
 if j = m return i
return −1

Prof. Sasmita Kumari Nayak, CSE

Example

Prof. Sasmita Kumari Nayak, CSE

Efficiency

Prof. Sasmita Kumari Nayak, CSE

Strengths

Prof. Sasmita Kumari Nayak, CSE

Weakness

Prof. Sasmita Kumari Nayak, CSE

Applications

