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Introduction 

ALGORITHM SequentialSearch(A[0..n-1], K) 

//Output: index of the first element in A, whose //value is equal to K or -1 if 

no such element is found 

i <- 0 

while i < n and A[i] ≠ K do 

 i <- i+1 

if i < n  

 return i 

else 

 return -1 
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Input size: n 
Basic op: <, ≠ 

Cworst(n) = n 
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Let the elements of array are - 

Let the element to be searched is K = 41 

Now, start from the first element and compare K with each element of the array. 

The value of K, i.e., 41, is not matched with the first element of the array. So, move to the 

next element. And follow the same process until the respective element is found 

Example 



Cont… 
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Now, the element to be searched is found. 

So algorithm will return the index of the 

element matched. 



Time Complexity 
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Case Time Complexity 

Best Case O(1) 

Average Case O(n) 

Worst Case O(n) 

• Best Case Complexity - In Linear search, best case occurs when the element 

we are finding is at the first position of the array.  

• Average Case Complexity - The average case time complexity of linear search 

is O(n). 

• Worst Case Complexity - In Linear search, the worst case occurs when the 

element we are looking is present at the end of the array. The worst-case in 

linear search could be when the target element is not present in the given 

array, and we have to traverse the entire array.  
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Brute-Force String Matching Algorithm 
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ALGORITHM BruteForceStringMatch(T [0..n − 1], P[0..m − 1]) 
//Implements brute-force string matching 
//Input: An array T [0..n − 1] of n characters representing a text and 
// an array P[0..m − 1] of m characters representing a pattern 
//Output: The index of the first character in the text that starts a 
// matching substring or −1 if the search is unsuccessful 
 
for i ←0 to n − m do 
 j ←0 
 while j <mand P[j ]= T [i + j ] do 
  j ←j + 1 
 if j = m return i 
return −1 
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Example 
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Efficiency 
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Strengths 



Prof. Sasmita Kumari Nayak, CSE 

Weakness 



Prof. Sasmita Kumari Nayak, CSE 

Applications 


