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Unit 1- TOPICS 

• Notion of Algorithm 

• Review of Asymptotic Notations 

• Mathematical Analysis of Non-Recursive and 

Recursive Algorithms 

• Brute Force Approaches: Introduction 

• Selection Sort and Bubble Sort 

• Sequential Search and Brute Force String 

Matching 
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ALGORITHM 

• An algorithm is an exact specification of how to solve a 
computational problem 

• An algorithm must specify every step completely, so a 
computer can implement it without any further 
“understanding” 

• An algorithm must work for all possible inputs of the 
problem. 

• Algorithms must be: 

• Correct: For each input produce an appropriate output 

• Efficient: run as quickly as possible, and use as little 
memory as possible – more about this later 

• There can be many different algorithms for each 
computational problem. 
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WHAT IS AN ALGORITHM? 

• An algorithm is a sequence of unambiguous 

instructions for solving a problem, i.e., for obtaining a 

required output for any legitimate input in a finite 

amount of time. 
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             “computer”  

problem 

 algorithm 

input output 



NOTION OF ALGORITHM 

• Euclid’s algorithm 

Step 1  If n = 0, return m and stop; otherwise go to Step 2 

Step 2  Divide m by n and assign the value of the remainder to r 

Step 3  Assign the value of n to m and the value of r to n.  Go to 

        Step 1. 

                           while n ≠ 0 do             

                    r ← m mod n 

                      m← n    

                      n ← r     

                      return m 
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Cont… 

• Problem: Find gcd(m,n), the greatest common divisor of two 

non-negative, not both zero integers m and n 

 

• Examples:  gcd(60,24) = 12,    gcd(60,0) = 60 

 

• Euclid’s algorithm is based on repeated application of 

equality gcd(m,n) = gcd(n, m mod n) until the second number 

becomes 0, which makes the problem trivial. 

 

• Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12 
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Other methods for computing gcd(m,n) 

• Consecutive integer checking algorithm 

Step 1  Assign the value of min{m,n} to t 

Step 2  Divide m by t.  If the remainder is 0, go to Step 3; 

        otherwise, go to Step 4 

Step 3  Divide n by t.  If the remainder is 0, return t and 

stop; 

        otherwise, go to Step 4 

Step 4  Decrease t by 1 and go to Step 2 
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Cont… 

• Middle-school procedure 

Step 1  Find the prime factorization of m 

Step 2  Find the prime factorization of n 

Step 3  Find all the common prime factors 

Step 4  Compute the product of all the  common prime factors 

        and return it as gcd(m,n) 
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Sieve of Eratosthenes 

Input: Integer n ≥ 2 

Output: List of primes less than or equal to n 

for p ← 2 to n do  A[p] ← p 

for p ← 2 to n do   

   if A[p] != 0  //p hasn’t been previously eliminated from the list 

      j ← p* p 

          while j ≤ n  do 

                 A[j] ← 0  //mark element as eliminated   

                 j ← j + p 

Example: 2  3  4  5  6  7  8  9 10  11  12  13  14  15  16  17  18  19 20 

                2  3      5      7      9       11         13        15       17        19 

                2  3      5      7               11         13                   17        19 

                2  3      5      7               11         13                   17        19 
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SOME OF THE IMPORTANT 

POINTS 
• The non-ambiguity requirement for each step of an algorithm 

cannot be compromised. 

• The range of inputs for which an algorithm works has to be 

specified carefully. 

• The same algorithm can be represented in several different 

ways.  

• Several algorithms for solving the same problem exist. 

• Algorithms for same problem can be based on very different 

ideas and can solve problem dramatically with different speeds 
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HOW DO WE COMPARE 

ALGORITHMS? 
• We need to define a number of objective measures. 

 (1) Compare execution times?  

  Not good: times are specific to a particular  computer !! 

  

     (2) Count the number of statements executed?   

  Not good: number of statements vary with the programming 
  language as well as the style of the individual programmer. 

 

IDEAL SOLUTION 

• Express running time as a function of the input size n (i.e., f(n)). 

• Compare different functions corresponding to running times. 

• Such an analysis is independent of machine time, programming style, etc. 
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Example 

Associate a "cost" with each statement. 

Find the "total cost“ by finding the total number of times each statement is 
executed.  

                     Algorithm 1  Cost                        Algorithm 2               Cost 

             arr[0] = 0;                c1                      for(i=0; i<N; i++)          c2 

             arr[1] = 0;                c1                      arr[i] = 0;                       c1 

             arr[2] = 0;                c1 

     ...                   ... 

             arr[N-1] = 0;           c1    

                          -------------------                                        ---------------------- 

            c1+c1+...+c1 = c1 x N            (N+1) x c2 + N x c1 = (c2 + c1) x N + c2                                                     
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Another Example 

Algorithm 3                        Cost  

  sum = 0;                                   c1  

 for(i=0; i<N; i++)                    c2 

     for(j=0; j<N; j++)                 c2  

        sum += arr[i][j];                   c3 

                                              ------------ 

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N2 
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Fundamentals of Algorithmic Problem 

solving 
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Understand the problem 

Decide on computational means 

Exact vs approximate solution 

Data structures 

Algorithm design technique 

Design an algorithm 

Prove correctness 

Analyze the algorithm 

Code the algorithm 



ANALYSIS OF ALGORITHMS 
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• How good is the algorithm? 

• Correctness 

• Time efficiency 

• Space efficiency 

• Does there exist a better algorithm? 

• Lower bounds 

• Optimality 



ASYMPTOTIC ANALYSIS 
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• To compare two algorithms with running times f(n) and 

g(n), we need a rough measure that characterizes how 

fast each function grows. 

• Hint: use rate of growth  

• Compare functions in the limit, that is, asymptotically! 

• (i.e., for large values of n) 



ASYMPTOTIC NOTATION 

17 Ms. Sasmita Kumari Nayak 

• O notation: asymptotic “less than”:    

• f(n)=O(g(n)) implies:  f(n) “≤” g(n) 

•  Ω  notation: asymptotic “greater than”:   

• f(n)= Ω (g(n)) implies: f(n) “≥” g(n) 

• θ notation: asymptotic “equality”:    

• f(n)= θ (g(n)) implies: f(n) “=” g(n) 



ASYMPTOTIC NOTATIONS 
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O-notation 

  



Examples 
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 f(n)=3n2+n  

         = 3n2+n2 

          =4n2 

 f(n)<=c*g(n) 

3n2+n<=4n2=o(n2) 

Where n>=n0 and n=1 

n2 ≤ cn2 ; c ≥  1  ; c = 1 and n0= 1 



ASYMPTOTIC NOTATIONS (CONT.) 
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Ω -notation 

  

 Ω(g(n)) is the set of functions with 

larger or same order of growth as 

g(n) 



Examples 
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 f(n)=3n2+n  

         = 3n2+n 

          =3n2 

 f(n)>=c*g(n) 

3n2+n>=3n2= Ω(n2) 

Where n<=n0 and n=1  



ASYMPTOTIC NOTATIONS (CONT.) 
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θ -notation 

  

 θ(g(n)) is the set of 

functions with the same 

order of growth as g(n) 

 



Examples 
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C2g(n)<=f(n)<=c1g(n) for all 

n>=n0 

3n2+n<=f(n)<=3n2+n2 

3n2<=f(n)<=4n2 

Where c2=3, c1=4 and n=1 

Therefore, 3n2+n ∈  θ(n2) 



Establishing order of growth using limits 
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lim T(n)/g(n) =  

    0    order of growth of T(n)  <  order of growth of g(n)  

c > 0  order of growth of T(n) = order of growth of g(n)  

 ∞    order of growth of T(n) >  order of growth of g(n)  

Examples: 
• 10n                vs.             n2  
 
 
• n(n+1)/2        vs.             n2  

n→∞ 



L’Hôpital’s rule and Stirling’s formula 
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L’Hôpital’s rule:  If limn f(n) = limn g(n) =   and  
                               the derivatives f´, g´ exist, then  

        
        
        
        
        
        
        
         

Stirling’s formula:  n!  (2n)1/2 (n/e)n 

 

         
       

   

f(n) 
g(n) 

lim 
n 

=  
f ´(n) 
g ´(n) 

lim 
n 

Example:  log n  vs. n 

Example:  2n vs. n! 



Orders of growth of some important 

functions 
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• All logarithmic functions loga n belong to the same 
class  
(log n) no matter what the logarithm’s base a > 1 
is 

• All polynomials of the same degree k belong to the 
same class: akn

k + ak-1nk-1 + … + a0  (nk)  
 

• Exponential functions an have different orders of 
growth for different a’s 
 

• order log n  < order n  (>0)  < order an  < order n! 
< order nn       



Basic asymptotic efficiency classes 
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1 constant 

log n logarithmic 

n linear 

n log n n-log-n 

n2 quadratic 

n3 cubic 

2n exponential 

n! factorial 



MATHEMATICAL ANALYSIS OF NO 

RECURSIVE ALGORITHMS 
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General Plan for Analysis 

  

• Decide on parameter n indicating input size 

• Identify algorithm’s basic operation 

• Determine worst, average, and best cases for input of 
size n 

• Set up a sum for the number of times the basic 
operation is executed 

• Simplify the sum using standard formulas and rules 



Example 1: Maximum element 
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C(n) є Θ(n) 



Example 2: Element uniqueness problem 
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C(n) є Θ(n2) 



Example 3: Matrix multiplication 
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C(n) є Θ(n3) 



MATHEMATICAL ANALYSIS OF 

RECURSIVE ALGORITHMS 
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• Decide on  a parameter indicating an input’s size. 

• Identify the algorithm’s basic operation.  

• Check whether the number of times the basic op. is 
executed may vary on different inputs of the same 
size.  (If it may, the worst, average, and best cases 
must be investigated separately.) 

• Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic 
op. is executed. 

• Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions 
or another method. 



Example 1: Recursive evaluation of n! 
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Definition: n ! = 1  2  … (n-1)  n  for n ≥ 1  and  0! 
= 1 

 

Recursive definition of n!:  F(n) = F(n-1)  n  for n ≥ 1  
and   

                                               F(0) = 1 

 



Recursion 
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• To see how the recursion works, let’s break down the 

factorial function to solve factorial(3) 



Breakdown 
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• Here, we see that we start at the top level, factorial(3), and 
simplify the problem into 3 x factorial(2). 

• Now, we have a slightly less complicated problem in 
factorial(2), and we simplify this problem into 2 x 
factorial(1). 



Breakdown 
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• We continue this process until we are able to reach a problem 
that has a known solution. 

• In this case, that known solution is factorial(0) = 1. 

• The functions then return in reverse order to complete the 
solution.  



Analysis of Factorial 
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• Recurrence Relation 

M(n) = M(n-1) + 1 

M(0) = 0  

 

• Solve by the method of backward substitutions  

M(n) = M(n-1) + 1 

= [M(n-2) + 1] + 1 = M(n-2) + 2  substituted M(n-2) for M(n-1) 

= [M(n-3) + 1] + 2 = M(n-3) + 3  substituted M(n-3) for M(n-2) 

.. a pattern evolves  

= M(0) + n 

= n 

 

Therefore M(n) ε Θ(n) 



Example 2: Counting #bits 

38 Ms. Sasmita Kumari Nayak 



Analysis of Counting # of bits 
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Recursive relation including initial 

conditions 

A(n) = A(floor(n/2)) + 1 

IC A(1) = 0 

 

substitute n = 2k  (also k = lg(n)) 

A(2k) = A(2k-1) + 1 and IC A(20) = 0 

  

A(2k) = [A(2k-2) + 1] + 1 = A(2k-2) + 2 

= [A(2k-3) + 1] + 2 = A(2k-3) + 3 

... 

= A(2k-i) + i 

... 

 

= A(2k-k) + k 

A(2k) = k 

  

Substitute back k = lg(n) 

A(n) = lg(n) ε Θ(lg n) 



Example 3: Tower of Hanoi 
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Given: Three Pegs A, B and C 

Peg A initially has n disks, different size, stacked up, 

larger disks are below smaller disks 

Problem: to move  the n disks to Peg C, subject to 

1. Can move only one disk at a time 

2. Smaller disk should be above larger disk 

3. Can use other peg as intermediate 

 

A B C A B C 



Tower of Hanoi 
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• How to Solve: Strategy… 

– Generalize first: Consider n disks for all n  1 

– Our example is only the case when n=4 

• Look at small instances… 

– How about n=1 

• Of course, just “Move disk 1 from A to C” 

 

– How about n=2? 

1. “Move disk 1 from A to B” 

2. “Move disk 2 from A to C” 

3. “Move disk 1 from B to C” 



Tower of Hanoi (Solution!) 
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• General Method: 

– First, move first (n-1) disks from A to B 

– Now, can move largest disk from A to C 

– Then, move first (n-1) disks from B to C 

• Try this method for n=3 

 

1. “Move disk 1 from A to C” 

2. “Move disk 2 from A to B” 

3. “Move disk 1 from C to B” 

 

4. “Move disk 3 from A to C” 

 

5. “Move disk 1 from B to A” 

6. “Move disk 1 from B to C” 

7. “Move disk 1 from A to C” 
 



Algorithm for Towel of Hanoi (recursive) 
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• Recursive Algorithm 

– when (n=1), we have simple case 

– Else (decompose problem and make recursive-calls) 

Hanoi(n, A, B, C); 

(* Move n disks from A to C via B *) 

begin 

  if (n=1) then “Move top disk from A to C” 

  else (* when n>1 *) 

    Hanoi (n-1, A, C, B); 

    “Move top disk from A to C” 

    Hanoi (n-1, B, C, A); 

  endif 

end; 



Analysis of Tower of Hanoi 
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Recursive relation for moving n discs 

M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1 

IC: M(1) = 1 

Solve using backward substitution 

M(n) =  2M(n-1) + 1 

= 2[2M(n-2) + 1] +1 = 22M(n-2) + 2+1 

=22[2M(n-3) +1] + 2+1 = 23M(n-3) + 22 + 2 + 1 

.. 

M(n) = 2iM(n-i) + ∑j=0
-i2j = 2iM(n-i) + 2i-1 

... 

M(n) = 2n-1M(n-(n-1)) + 2n-1-1 = 2n-1M(1) + 2n-1-1 = 2n-1 + 2n-1-1 = 2n-1 

  

M(n) ε Θ(2n) 



Iteration vs. Recursion 
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• After looking at both iterative and recursive methods, it 

appears that the recursive method is much longer and more 

difficult. 

• If that’s the case, then why would we ever use recursion? 

• It turns out that recursive techniques, although more 

complicated to solve by hand, are very simple and elegant to 

implement in a computer. 



BRUTE FORCE 
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• A straightforward approach, usually based directly on the 

problem’s statement and definitions of the concepts involved 

• Usually can solve small sized instances of a problem 

• A yardstick to compare with more efficient ones 

Examples: 

•  Computing an (a > 0, n a nonnegative integer) 

• Computing n! 

•  Multiplying two matrices 

• Searching for a key of a given value in a list 



BRUTE-FORCE SORTING ALGORITHM 
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Selection Sort   Scan the array to find its smallest element and 

swap it with the first element.  Then, starting with the second 

element, scan the elements to the right of it to find the smallest 

among them and swap it with the second elements.  Generally, 

on pass i (0  i  n-2), find the smallest element in A[i..n-1] 

and swap it with A[i]: 

 

 A[0]     .   .   .    A[i-1]  |  A[i],  .   .   .  , A[min], .   .   ., A[n-

1]         

        in their final positions 

 



Selection Sort Algorithm 
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Analysis of Selection Sort 
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| 89   45   68   90   29   34   17 

17 |  45   68   90   29    34   89 

17   29 | 68   90   45     34   89 

17   29  34   45 |  90     68   89 

17   29  34   45   68  |   90   89 

17   29  34   45   68      89 | 90 
C(n) є Θ(n2) 
# of key swaps є Θ(n) 



BUBBLE SORT 
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• Compare adjacent elements and exchange them if out of order 

• Essentially, it bubbles up the largest element to the last 

position 

A0, … …, Aj <-> Aj+1, … …, An-i-1 | An-i ≤ … ≤ An-1 
? 



Cont… 
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ALGORITHM BubbleSort(A[0..n-1]) 

for i <- 0 to n-2 do 

 for j <- 0 to n-2-i do 

  if A[j+1] < A[j]  

   swap A[j] and A[j+1] 

Example  : 89, 45, 68, 90, 29, 34, 17  

C(n) є Θ(n2) Sworst(n) = C(n) 



SEQUENTIAL SEARCH 
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ALGORITHM SequentialSearch(A[0..n-1], K) 

//Output: index of the first element in A, whose //value is equal to K or -1 

if no such element is found 

i <- 0 

while i < n and A[i] ≠ K do 

 i <- i+1 

if i < n  

 return i 

else 

 return -1 

Input size: n 
Basic op: <, ≠ 

Cworst(n) = n 



BRUTE-FORCE STRING MATCHING 
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• pattern: a string of m characters to search for 

• text: a (longer) string of n characters to search in 

• problem: find a substring in the text that matches the pattern 

 

Brute-force algorithm 

Step 1  Align pattern at beginning of text 

Step 2  Moving from left to right, compare each character of 

       pattern to the corresponding character in text until 
• all characters are found to match (successful search); or 

• a mismatch is detected 

Step 3  While pattern is not found and the text is not yet 

       exhausted, realign pattern one position to the right and 

       repeat Step 2 



Pseudocode and Efficiency  
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Time efficiency: Θ(mn) comparisons (in the worst case) 


