
Introduction
to

Mathematical Problem Solving

By

Ms. Sasmita Kumari Nayak

Module-I

Unit 1- TOPICS

• Notion of Algorithm

• Review of Asymptotic Notations

• Mathematical Analysis of Non-Recursive and

Recursive Algorithms

• Brute Force Approaches: Introduction

• Selection Sort and Bubble Sort

• Sequential Search and Brute Force String

Matching

2 Ms. Sasmita Kumari Nayak

ALGORITHM

• An algorithm is an exact specification of how to solve a
computational problem

• An algorithm must specify every step completely, so a
computer can implement it without any further
“understanding”

• An algorithm must work for all possible inputs of the
problem.

• Algorithms must be:

• Correct: For each input produce an appropriate output

• Efficient: run as quickly as possible, and use as little
memory as possible – more about this later

• There can be many different algorithms for each
computational problem.

3 Ms. Sasmita Kumari Nayak

WHAT IS AN ALGORITHM?

• An algorithm is a sequence of unambiguous

instructions for solving a problem, i.e., for obtaining a

required output for any legitimate input in a finite

amount of time.

4 Ms. Sasmita Kumari Nayak

 “computer”

problem

 algorithm

input output

NOTION OF ALGORITHM

• Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to

 Step 1.

 while n ≠ 0 do

 r ← m mod n

 m← n

 n ← r

 return m

5 Ms. Sasmita Kumari Nayak

Cont…

• Problem: Find gcd(m,n), the greatest common divisor of two

non-negative, not both zero integers m and n

• Examples: gcd(60,24) = 12, gcd(60,0) = 60

• Euclid’s algorithm is based on repeated application of

equality gcd(m,n) = gcd(n, m mod n) until the second number

becomes 0, which makes the problem trivial.

• Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

6 Ms. Sasmita Kumari Nayak

Other methods for computing gcd(m,n)

• Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3;

 otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and

stop;

 otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

7 Ms. Sasmita Kumari Nayak

Cont…

• Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors

 and return it as gcd(m,n)

8 Ms. Sasmita Kumari Nayak

Sieve of Eratosthenes

Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do A[p] ← p

for p ← 2 to n do

 if A[p] != 0 //p hasn’t been previously eliminated from the list

 j ← p* p

 while j ≤ n do

 A[j] ← 0 //mark element as eliminated

 j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 3 5 7 9 11 13 15 17 19

 2 3 5 7 11 13 17 19

 2 3 5 7 11 13 17 19

9 Ms. Sasmita Kumari Nayak

SOME OF THE IMPORTANT

POINTS
• The non-ambiguity requirement for each step of an algorithm

cannot be compromised.

• The range of inputs for which an algorithm works has to be

specified carefully.

• The same algorithm can be represented in several different

ways.

• Several algorithms for solving the same problem exist.

• Algorithms for same problem can be based on very different

ideas and can solve problem dramatically with different speeds

10 Ms. Sasmita Kumari Nayak

HOW DO WE COMPARE

ALGORITHMS?
• We need to define a number of objective measures.

 (1) Compare execution times?

 Not good: times are specific to a particular computer !!

 (2) Count the number of statements executed?

 Not good: number of statements vary with the programming
 language as well as the style of the individual programmer.

IDEAL SOLUTION

• Express running time as a function of the input size n (i.e., f(n)).

• Compare different functions corresponding to running times.

• Such an analysis is independent of machine time, programming style, etc.

11 Ms. Sasmita Kumari Nayak

Example

Associate a "cost" with each statement.

Find the "total cost“ by finding the total number of times each statement is
executed.

 Algorithm 1 Cost Algorithm 2 Cost

 arr[0] = 0; c1 for(i=0; i<N; i++) c2

 arr[1] = 0; c1 arr[i] = 0; c1

 arr[2] = 0; c1

 arr[N-1] = 0; c1

 ------------------- ----------------------

 c1+c1+...+c1 = c1 x N (N+1) x c2 + N x c1 = (c2 + c1) x N + c2

12 Ms. Sasmita Kumari Nayak

Another Example

Algorithm 3 Cost

 sum = 0; c1

 for(i=0; i<N; i++) c2

 for(j=0; j<N; j++) c2

 sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N2

13 Ms. Sasmita Kumari Nayak

Fundamentals of Algorithmic Problem

solving

14 Ms. Sasmita Kumari Nayak

Understand the problem

Decide on computational means

Exact vs approximate solution

Data structures

Algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

ANALYSIS OF ALGORITHMS

15 Ms. Sasmita Kumari Nayak

• How good is the algorithm?

• Correctness

• Time efficiency

• Space efficiency

• Does there exist a better algorithm?

• Lower bounds

• Optimality

ASYMPTOTIC ANALYSIS

16 Ms. Sasmita Kumari Nayak

• To compare two algorithms with running times f(n) and

g(n), we need a rough measure that characterizes how

fast each function grows.

• Hint: use rate of growth

• Compare functions in the limit, that is, asymptotically!

• (i.e., for large values of n)

ASYMPTOTIC NOTATION

17 Ms. Sasmita Kumari Nayak

• O notation: asymptotic “less than”:

• f(n)=O(g(n)) implies: f(n) “≤” g(n)

• Ω notation: asymptotic “greater than”:

• f(n)= Ω (g(n)) implies: f(n) “≥” g(n)

• θ notation: asymptotic “equality”:

• f(n)= θ (g(n)) implies: f(n) “=” g(n)

ASYMPTOTIC NOTATIONS

18 Ms. Sasmita Kumari Nayak

O-notation

Examples

19 Ms. Sasmita Kumari Nayak

 f(n)=3n2+n

 = 3n2+n2

 =4n2

 f(n)<=c*g(n)

3n2+n<=4n2=o(n2)

Where n>=n0 and n=1

n2 ≤ cn2 ; c ≥ 1 ; c = 1 and n0= 1

ASYMPTOTIC NOTATIONS (CONT.)

20 Ms. Sasmita Kumari Nayak

Ω -notation

 Ω(g(n)) is the set of functions with

larger or same order of growth as

g(n)

Examples

21 Ms. Sasmita Kumari Nayak

 f(n)=3n2+n

 = 3n2+n

 =3n2

 f(n)>=c*g(n)

3n2+n>=3n2= Ω(n2)

Where n<=n0 and n=1

ASYMPTOTIC NOTATIONS (CONT.)

22 Ms. Sasmita Kumari Nayak

θ -notation

 θ(g(n)) is the set of

functions with the same

order of growth as g(n)

Examples

23 Ms. Sasmita Kumari Nayak

C2g(n)<=f(n)<=c1g(n) for all

n>=n0

3n2+n<=f(n)<=3n2+n2

3n2<=f(n)<=4n2

Where c2=3, c1=4 and n=1

Therefore, 3n2+n ∈ θ(n2)

Establishing order of growth using limits

24 Ms. Sasmita Kumari Nayak

lim T(n)/g(n) =

 0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

Examples:
• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

L’Hôpital’s rule and Stirling’s formula

25 Ms. Sasmita Kumari Nayak

L’Hôpital’s rule: If limn f(n) = limn g(n) = and
 the derivatives f´, g´ exist, then

Stirling’s formula: n! (2n)1/2 (n/e)n

f(n)
g(n)

lim
n

=
f ´(n)
g ´(n)

lim
n

Example: log n vs. n

Example: 2n vs. n!

Orders of growth of some important

functions

26 Ms. Sasmita Kumari Nayak

• All logarithmic functions loga n belong to the same
class
(log n) no matter what the logarithm’s base a > 1
is

• All polynomials of the same degree k belong to the
same class: akn

k + ak-1nk-1 + … + a0 (nk)

• Exponential functions an have different orders of
growth for different a’s

• order log n < order n (>0) < order an < order n!
< order nn

Basic asymptotic efficiency classes

27 Ms. Sasmita Kumari Nayak

1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

MATHEMATICAL ANALYSIS OF NO

RECURSIVE ALGORITHMS

28 Ms. Sasmita Kumari Nayak

General Plan for Analysis

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for input of
size n

• Set up a sum for the number of times the basic
operation is executed

• Simplify the sum using standard formulas and rules

Example 1: Maximum element

29 Ms. Sasmita Kumari Nayak

C(n) є Θ(n)

Example 2: Element uniqueness problem

30 Ms. Sasmita Kumari Nayak

C(n) є Θ(n2)

Example 3: Matrix multiplication

31 Ms. Sasmita Kumari Nayak

C(n) є Θ(n3)

MATHEMATICAL ANALYSIS OF

RECURSIVE ALGORITHMS

32 Ms. Sasmita Kumari Nayak

• Decide on a parameter indicating an input’s size.

• Identify the algorithm’s basic operation.

• Check whether the number of times the basic op. is
executed may vary on different inputs of the same
size. (If it may, the worst, average, and best cases
must be investigated separately.)

• Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic
op. is executed.

• Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions
or another method.

Example 1: Recursive evaluation of n!

33 Ms. Sasmita Kumari Nayak

Definition: n ! = 1 2 … (n-1) n for n ≥ 1 and 0!
= 1

Recursive definition of n!: F(n) = F(n-1) n for n ≥ 1
and

 F(0) = 1

Recursion

34 Ms. Sasmita Kumari Nayak

• To see how the recursion works, let’s break down the

factorial function to solve factorial(3)

Breakdown

35 Ms. Sasmita Kumari Nayak

• Here, we see that we start at the top level, factorial(3), and
simplify the problem into 3 x factorial(2).

• Now, we have a slightly less complicated problem in
factorial(2), and we simplify this problem into 2 x
factorial(1).

Breakdown

36 Ms. Sasmita Kumari Nayak

• We continue this process until we are able to reach a problem
that has a known solution.

• In this case, that known solution is factorial(0) = 1.

• The functions then return in reverse order to complete the
solution.

Analysis of Factorial

37 Ms. Sasmita Kumari Nayak

• Recurrence Relation

M(n) = M(n-1) + 1

M(0) = 0

• Solve by the method of backward substitutions

M(n) = M(n-1) + 1

= [M(n-2) + 1] + 1 = M(n-2) + 2 substituted M(n-2) for M(n-1)

= [M(n-3) + 1] + 2 = M(n-3) + 3 substituted M(n-3) for M(n-2)

.. a pattern evolves

= M(0) + n

= n

Therefore M(n) ε Θ(n)

Example 2: Counting #bits

38 Ms. Sasmita Kumari Nayak

Analysis of Counting # of bits

39 Ms. Sasmita Kumari Nayak

Recursive relation including initial

conditions

A(n) = A(floor(n/2)) + 1

IC A(1) = 0

substitute n = 2k (also k = lg(n))

A(2k) = A(2k-1) + 1 and IC A(20) = 0

A(2k) = [A(2k-2) + 1] + 1 = A(2k-2) + 2

= [A(2k-3) + 1] + 2 = A(2k-3) + 3

...

= A(2k-i) + i

...

= A(2k-k) + k

A(2k) = k

Substitute back k = lg(n)

A(n) = lg(n) ε Θ(lg n)

Example 3: Tower of Hanoi

40 Ms. Sasmita Kumari Nayak

Given: Three Pegs A, B and C

Peg A initially has n disks, different size, stacked up,

larger disks are below smaller disks

Problem: to move the n disks to Peg C, subject to

1. Can move only one disk at a time

2. Smaller disk should be above larger disk

3. Can use other peg as intermediate

A B C A B C

Tower of Hanoi

41 Ms. Sasmita Kumari Nayak

• How to Solve: Strategy…

– Generalize first: Consider n disks for all n 1

– Our example is only the case when n=4

• Look at small instances…

– How about n=1

• Of course, just “Move disk 1 from A to C”

– How about n=2?

1. “Move disk 1 from A to B”

2. “Move disk 2 from A to C”

3. “Move disk 1 from B to C”

Tower of Hanoi (Solution!)

42 Ms. Sasmita Kumari Nayak

• General Method:

– First, move first (n-1) disks from A to B

– Now, can move largest disk from A to C

– Then, move first (n-1) disks from B to C

• Try this method for n=3

1. “Move disk 1 from A to C”

2. “Move disk 2 from A to B”

3. “Move disk 1 from C to B”

4. “Move disk 3 from A to C”

5. “Move disk 1 from B to A”

6. “Move disk 1 from B to C”

7. “Move disk 1 from A to C”

Algorithm for Towel of Hanoi (recursive)

43 Ms. Sasmita Kumari Nayak

• Recursive Algorithm

– when (n=1), we have simple case

– Else (decompose problem and make recursive-calls)

Hanoi(n, A, B, C);

(* Move n disks from A to C via B *)

begin

 if (n=1) then “Move top disk from A to C”

 else (* when n>1 *)

 Hanoi (n-1, A, C, B);

 “Move top disk from A to C”

 Hanoi (n-1, B, C, A);

 endif

end;

Analysis of Tower of Hanoi

44 Ms. Sasmita Kumari Nayak

Recursive relation for moving n discs

M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

IC: M(1) = 1

Solve using backward substitution

M(n) = 2M(n-1) + 1

= 2[2M(n-2) + 1] +1 = 22M(n-2) + 2+1

=22[2M(n-3) +1] + 2+1 = 23M(n-3) + 22 + 2 + 1

..

M(n) = 2iM(n-i) + ∑j=0
-i2j = 2iM(n-i) + 2i-1

...

M(n) = 2n-1M(n-(n-1)) + 2n-1-1 = 2n-1M(1) + 2n-1-1 = 2n-1 + 2n-1-1 = 2n-1

M(n) ε Θ(2n)

Iteration vs. Recursion

45 Ms. Sasmita Kumari Nayak

• After looking at both iterative and recursive methods, it

appears that the recursive method is much longer and more

difficult.

• If that’s the case, then why would we ever use recursion?

• It turns out that recursive techniques, although more

complicated to solve by hand, are very simple and elegant to

implement in a computer.

BRUTE FORCE

46 Ms. Sasmita Kumari Nayak

• A straightforward approach, usually based directly on the

problem’s statement and definitions of the concepts involved

• Usually can solve small sized instances of a problem

• A yardstick to compare with more efficient ones

Examples:

• Computing an (a > 0, n a nonnegative integer)

• Computing n!

• Multiplying two matrices

• Searching for a key of a given value in a list

BRUTE-FORCE SORTING ALGORITHM

47 Ms. Sasmita Kumari Nayak

Selection Sort Scan the array to find its smallest element and

swap it with the first element. Then, starting with the second

element, scan the elements to the right of it to find the smallest

among them and swap it with the second elements. Generally,

on pass i (0 i n-2), find the smallest element in A[i..n-1]

and swap it with A[i]:

 A[0] . . . A[i-1] | A[i], . . . , A[min], . . ., A[n-

1]

 in their final positions

Selection Sort Algorithm

48 Ms. Sasmita Kumari Nayak

Analysis of Selection Sort

49 Ms. Sasmita Kumari Nayak

| 89 45 68 90 29 34 17

17 | 45 68 90 29 34 89

17 29 | 68 90 45 34 89

17 29 34 45 | 90 68 89

17 29 34 45 68 | 90 89

17 29 34 45 68 89 | 90
C(n) є Θ(n2)
of key swaps є Θ(n)

BUBBLE SORT

50 Ms. Sasmita Kumari Nayak

• Compare adjacent elements and exchange them if out of order

• Essentially, it bubbles up the largest element to the last

position

A0, … …, Aj <-> Aj+1, … …, An-i-1 | An-i ≤ … ≤ An-1
?

Cont…

51 Ms. Sasmita Kumari Nayak

ALGORITHM BubbleSort(A[0..n-1])

for i <- 0 to n-2 do

 for j <- 0 to n-2-i do

 if A[j+1] < A[j]

 swap A[j] and A[j+1]

Example : 89, 45, 68, 90, 29, 34, 17

C(n) є Θ(n2) Sworst(n) = C(n)

SEQUENTIAL SEARCH

52 Ms. Sasmita Kumari Nayak

ALGORITHM SequentialSearch(A[0..n-1], K)

//Output: index of the first element in A, whose //value is equal to K or -1

if no such element is found

i <- 0

while i < n and A[i] ≠ K do

 i <- i+1

if i < n

 return i

else

 return -1

Input size: n
Basic op: <, ≠

Cworst(n) = n

BRUTE-FORCE STRING MATCHING

53 Ms. Sasmita Kumari Nayak

• pattern: a string of m characters to search for

• text: a (longer) string of n characters to search in

• problem: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of

 pattern to the corresponding character in text until
• all characters are found to match (successful search); or

• a mismatch is detected

Step 3 While pattern is not found and the text is not yet

 exhausted, realign pattern one position to the right and

 repeat Step 2

Pseudocode and Efficiency

54 Ms. Sasmita Kumari Nayak

Time efficiency: Θ(mn) comparisons (in the worst case)

