
Chemistry 4631

Instrumental Analysis Lecture 22

Measures potential under very low currents.

The cell is 2 half cells. Consist of a reference electrode, indicator electrode, and potential measuring device.

reference electrode salt bridge analyte solution indicator electrode

E

© 2007 Thomson Higher Education

 $E_{\rm ind}$

Reference electrodes

An electrode with a known constant half-potential and insensitive to composition of the solution.

Ideal reference

- Reversible and obeys Nernst Law
- Exhibits stable potential over time
- Returns to original potential in presence of small currents

Chem 4631

Not sensitive to temperature changes

TABLE 23-1	Potentials of Reference Election	rodes in Aqueous Solutions
-------------------	----------------------------------	----------------------------

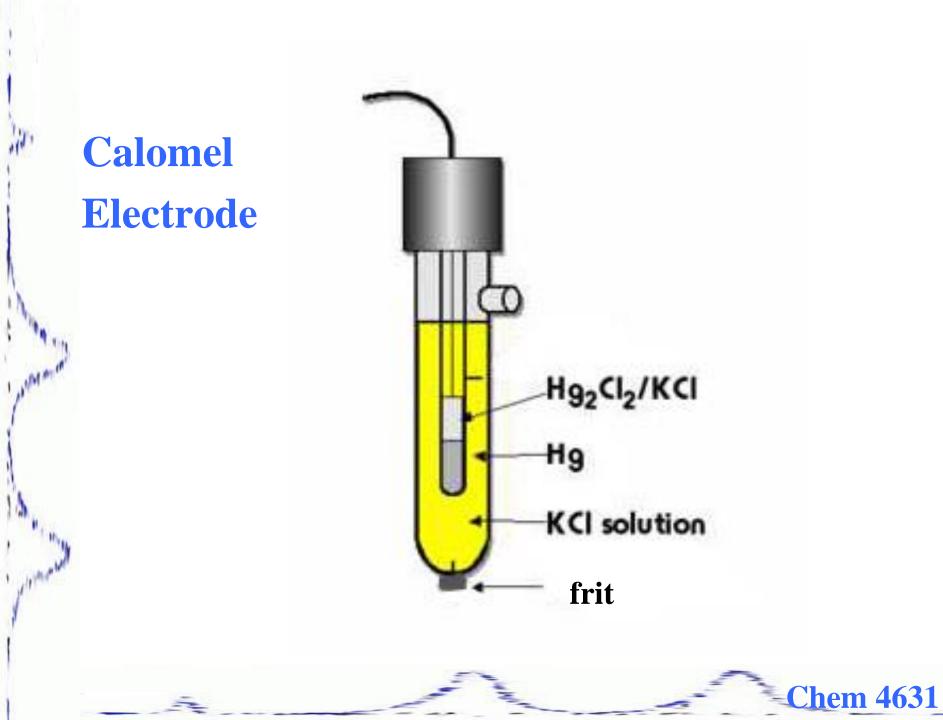
Temperature, °C	Electrode Potential vs. SHE, V					
	0.1 M° Calomelª	3.5 M ° Calomel ^b	Saturated ^c Calomel ^a	3.5 M ^{b,c} Ag-AgCl	Saturated ^{b,c} Ag-AgCl	
10	_	0.256	_	0.215	0.214	
12	0.3362	—	0.2528	_	-	
15	0.3362	0.254	0.2511	0.212	0.209	
20	0.3359	0.252	0.2479	0.208	0.204	
25	0.3356	0.250	0.2444	0.205	0.199	
30	0.3351	0.248	0.2411	0.201	0.194	
35	0.3344	0.246	0.2376	0.197	0.189	
38	0.3338	_	0.2355	—	0.184	
40	<u> </u>	0.244	<u> </u>	0.193		

Chem 4631

© 2007 Thomson Higher Education

Reference Electrodes Calomel Electrodes (SCE)

Consist of Hg in contact with solution of calomel and KCl. Hg | Hg₂Cl₂ (saturated), KCl (xM) ||

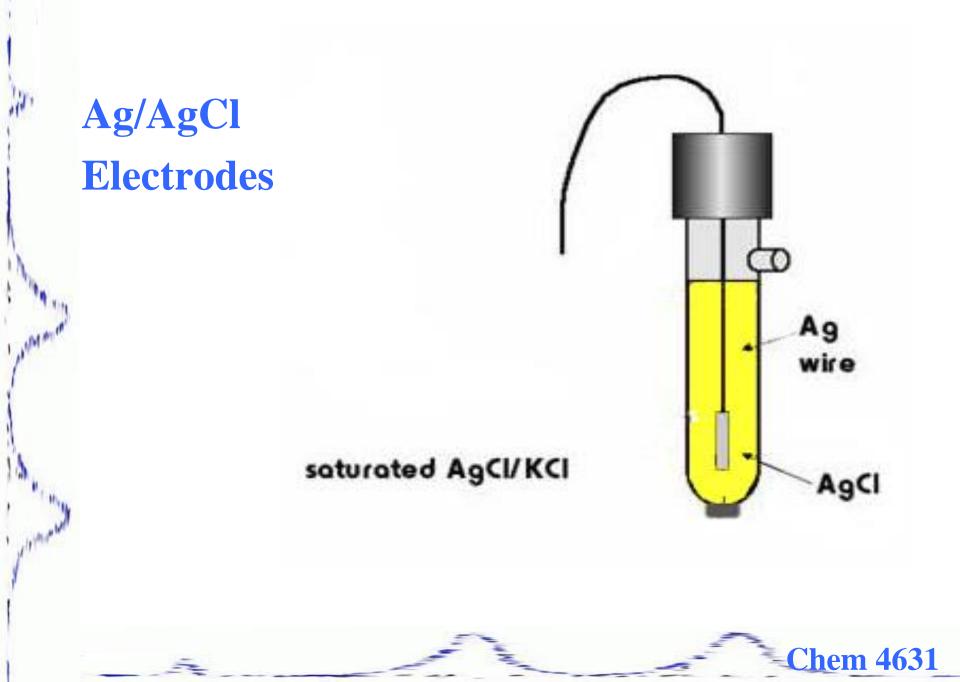

KCl usually 0.1, 1 M, and 4.6 ← saturated SCE

SCE most commonly used reference electrode

Advantage -- easy to prepare Disadvantage -- sensitive to temperature changes

E⁰_{SCE} = 0.244V at 25^oC Electrode reaction:

 $Hg_{2}Cl_{2}(s) + 2e^{-} <-->2Hg(l) + 2Cl^{-}(aq)$


Reference Electrodes Ag/AgCl Electrodes Ag wire in solution of KCl and AgCl

Ag | AgCl (saturated), KCl (saturated) ||

Chem 4631

AgCl (s) + $e^- \rightarrow Ag$ (s) + 2Cl⁻(aq)

 $E^{0}_{Ag/AgCl} = 0.199V \text{ at } 25^{\circ}C$

Indicator Electrodes

An electrode system having a potential that varies in a known way with variations in the concentration of an analyte.

$$E_{cell} = E_{ind} - E_{ref} + E_{j}$$

Ideal Indicator Electrode

Responds quickly to concentration change of an analyte.

Chem 4631

- Gives reproducible results.

Chem 4631

Indicator Electrodes

Three type of indicator electrodes – Metallic

- Membrane
- Ion-selective

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the first kind

Pure metal electrode in direct equilibrium with its cation in solution.

Chem 4631

i.e. Cu/Cu²⁺ or Ag/Ag⁺

 $X^{n+}(aq) + ne^{--->}X(s)$

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the first kind

Pure metal electrode in direct equilibrium with its cation in solution.

$$E_{ind} = E^{o}_{X^{n+}} - \frac{0.0592}{n} \log \frac{1}{a_{X^{n+}}} = E^{o}_{X^{n+}} + \frac{0.0592}{n} \log a_{X^{n+}}$$

$$E_{ind} = E^{o}_{X^{n+}} - \frac{0.0592}{n} pX$$

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the first kind

Disadvantages

- not very selective, may respond to several cations
- metal may dissolve in acids
- metal may oxidized

Ag/Ag⁺, Hg/Hg⁺ -- used in neutral solutions Cu/Cu²⁺, Zn/Zn²⁺, Cd/Cd²⁺, Bi/Bi³⁺, Tl/Tl²⁺, Pb/Pb²⁺ -must be used in deaerated solutions

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the second kind

Metal in contact with an anion that form precipitates or complexes with cations.

i.e. Ag/AgCl AgCl (s) + $e^{-} <---> Ag (s) + Cl^{-}(aq) E^{0} = 0.222V$

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the second kind

Metal in contact with an anion that form precipitates or complexes with cations.

AgCl (s) + $e^{-} < ---> Ag (s) + Cl^{-}(aq) E^{0} = 0.222V$

 $E_{ind} = E^{o}_{AgCl} - 0.0592 \log a_{Cl^{-}} = E^{o}_{AgCl} + 0.0592 \log pCl$

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the third kind

Metal in contact with solution that responds to a different cation.

Chem 4631

i.e. Hg electrode to measure pCa

Indicator Electrodes Metallic Indicator Electrodes

Redox system

Pt, Pd, Au or C in contact with redox system.

Chem 4631

i.e. Pt in Ce^{III}/Ce^{IV}

 $E_{ind} = E^{o}_{Ce(IV)} - 0.0592 \log \frac{a_{Ce^{+3}}}{a_{Ce^{+4}}}$

Membrane Indicator Electrodes

Membrane Electrodes also called ion selective electrodes (ISEs) or pIon electrodes

 TABLE 23-2
 Types of Ion-Selective Membrane Electrodes

A. Crystalline Membrane Electrodes

Single crystal
Example: LaF₃ for F⁻
Polycrystalline or mixed crystal
Example: Ag₂S for S²⁻ and Ag⁺

B. Noncrystalline Membrane Electrodes

Glass
Examples: silicate glasses for Na⁺ and H⁺
Liquid
Examples: liquid ion exchangers for Ca²⁺ and neutral carriers for K⁺
Immobilized liquid in a rigid polymer
Examples: PVC matrix for Ca²⁺ and NO₃⁻

<u>Chem 4631</u>

© 2007 Thomson Higher Education

Indicator Electrodes Membrane Electrodes

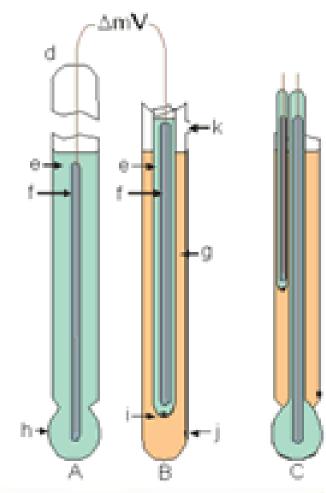
Properties

- Minimal Solubility solubility in analyte solutions approaches zero
- Electrical Conductivity must be small usually in the form of migration of singly charged ions within the membrane
- Selective Reactivity must selectively bind with analyte ion by ion-exchange, crystallization, or complexation

Indicator Electrodes Membrane Electrodes pION electrodes

i.e. pH Electrode -- glass electrode

No electrons transported across membrane


Membrane allows certain ion to cross while excluding others.

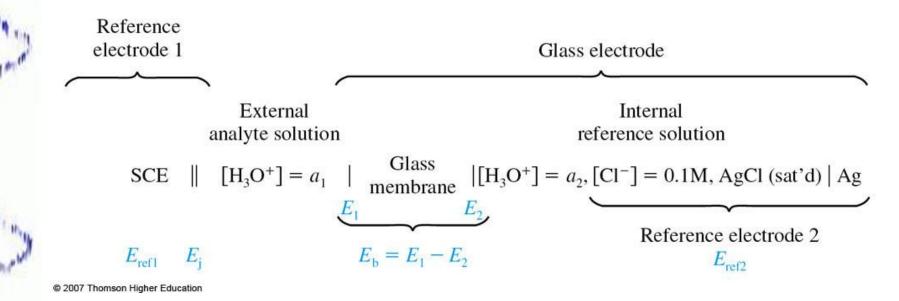
Indicator Electrodes Membrane Electrodes pH Electrode -- glass electrode Responds to changes in pH Consist of • a sensing electrode

• reference electrode (half-cell system)

Nowdays use a combination electrode • a sensing electrode with a built in reference.

pH Electrode

A - pH sensor B - reference half cell C - combination pH electrode (A+B) D- seal E- internal filling solution F- internal reference electrode G- external filling solution H- pH sensitive glass membrane I- internal liquid junction J- external liquid junction K- fill hole


Indicator Electrodes Membrane Electrodes

> pH Electrode -- glass electrode The sensing electrode measures pH

- across the thin glass membrane
- 0.03 to 1.00 mm thick
- consist of 22% Na₂O, 6% CaO, 72% SiO₂
- or 10%Li₂O, 10% CaO, and 80% SiO₂ (for Na⁺ error)

Indicator Electrodes Membrane Electrodes

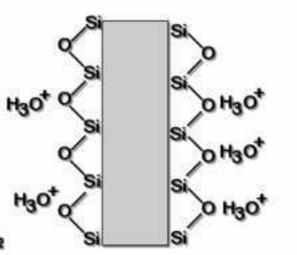
pH Electrode -- glass electrode

Indicator Electrodes Membrane Electrodes pH Electrode -- glass electrode

pH measurement occurs by an ion-exchange reaction:

Chem 4631

H⁺ + Na⁺Gl⁻ <---> Na⁺ + H⁺Gl⁻ soln glass soln glass


pH Electrode -- glass electrode

Membrane electrodes

H₃O[•] partially populates both the inner and outer SiO₂ surfaces.

The concentration difference results in a potential across the glass membrane.

A special glass is used: 22% Na₂O, 6% CaO, 72% SiO₂

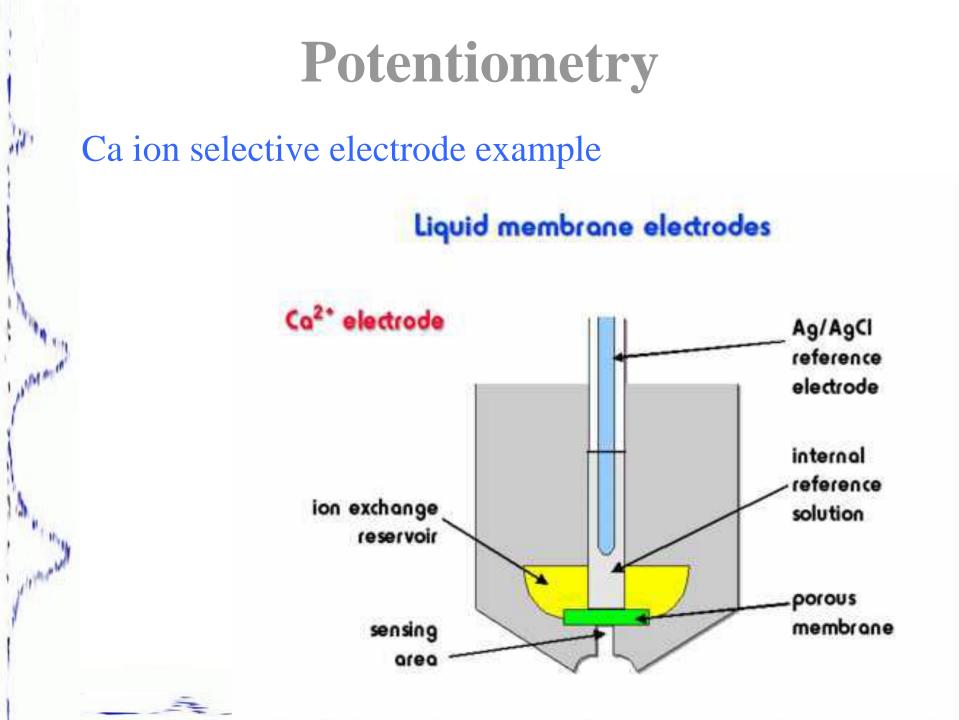
Indicator Electrodes Membrane Electrodes

Membrane electrodes can also be used to measure other ions.

1st type that were used: Na⁺, Ca²⁺, and Cl⁻

(Na⁺ selective glass electrode made up of 11%Na₂O, 18% Al₂O₃, 71% SiO₂)

Indicator Electrodes Membrane Electrodes


Instead of glass the membrane may be a polymer saturated with a liquid ion exchanger (with ion-exchange capabilities).

Chem 4631

Ion selective electrodes - ISE's

Indicator Electrodes Membrane Electrodes

> Many ISE's (and pH electrodes) are membrane-based devices which separate the sample from the inside of the electrode. On the inside is a filling solution containing the ion of interest at a constant activity.

Ca ion selective electrode example

Liquid membrane electrodes

The reservoir forces exchanger into the membrane. The exchanger forms complexes with the species of interest.

The results in a concentration difference and a resulting ΔV that we can measure.

Indicator Electrodes Membrane Electrodes

> A gradient is established across the membrane when the electrode is immersed in a solution.

> > **Chem 4631**

 $\Delta G = -RT \ln(a_{sample}/a_{int.soln.})$ R = 8.134 J/K mol

Potential produced: $E = -\Delta G/nF = (RT/nF) \ln(a_{sample}/a_{int.soln.})$

Indicator Electrodes Membrane Electrodes Potential produced: $E = -\Delta G/nF = (RT/nF) \ln(a_{sample}/a_{int.soln})$

This potential is monitored relative to a
reference electrode.Eref - constant (fixed) $a_{int. soln.}$ - constant

where,

Chem 4631

Indicator Electrodes Membrane Electrodes

 $E = K + (2.303RT/Z_iF) \log a_i$ $Z_i - \text{ ionic charge}$ $a_i - \text{ ionic activity}$ K - constant

Indicator Electrodes Membrane Electrodes

E is proportional to log a_i

- so a 59.1 mV change corresponds to a 10 fold change in a (for monoatomic ions)
- a_i unity for dilute solutions
- to relate E to [] need to use standardization curves.

TABLE 23-4 Characteristics of Liquid-Membrane Electrodes

Analyte Ion	Concentration Range, M ⁺	Major Interferences [‡]
NH4 ⁺	10^{0} to 5×10^{-7}	<1 H ⁺ , 5 × 10 ⁻¹ Li ⁺ , 8 × 10 ⁻² Na ⁺ , 6 × 10 ⁻⁴ K ⁺ , 5 × 10 ⁻² Cs ⁺ , >1 Mg ²⁺ , >1 Ca ²⁺ , >1 Sr ²⁺ , >0.5 Sr ²⁺ , 1 × 10 ⁻² Zn ²⁺
Cd ²⁺	10^{0} to 5×10^{-7}	Hg ²⁺ and Ag ⁺ (poisons electrode at >10 ⁻⁷ M), Fe ³⁺ (at >0.1[Cd ²⁺], Pb ²⁺ (at >[Cd ²⁺], Cu ²⁺ (possible)
Ca ²⁺	10^0 to 5×10^{-7}	$\begin{array}{l} 10^{-5}\mathrm{Pb}^{2+};4\times10^{-3}\mathrm{Hg}^{2+},\mathrm{H}^{+},6\times10^{-3}\mathrm{Sr}^{2+};2\times10^{-2}\mathrm{Fe}^{2+};4\times10^{-2}\mathrm{Cu}^{2+};\\ 5\times10^{-2}\mathrm{Ni}^{2+};0.2\mathrm{NH}_{3};0.2\mathrm{Na}^{+};0.3\mathrm{Tris}^{+};0.3\mathrm{Li}^{+};0.4\mathrm{K}^{+};0.7\mathrm{Ba}^{2+};1.0\mathrm{Zn}^{2+};\\ 1.0\mathrm{Mg}^{2+}\end{array}$
Cl-	$10^{\rm o}{\rm to}5\times10^{-6}$	Maximum allowable ratio of interferent to [Cl ⁻]: OH ⁻ 80, Br ⁻ 3×10^{-3} , I ⁻ 5×10^{-7} , S ²⁻ 10^{-6} , CN ⁻ 2×10^{-7} , NH ₃ 0.12 , S ₂ O ₃ ²⁻ 0.01
BF_4^-	10^{0} to 7×10^{-6}	$5 \times 10^{-7} \text{ClO}_4^-$; $5 \times 10^{-6} \text{ I}^-$; $5 \times 10^{-5} \text{ClO}_3^-$; $5 \times 10^{-4} \text{ CN}^-$; 10^{-3} Br^- ; 10^{-3} NO_2^- ; $5 \times 10^{-3} \text{ NO}_3^-$; $3 \times 10^{-3} \text{ HCO}_3^-$, $5 \times 10^{-2} \text{ Cl}^-$; $8 \times 10^{-2} \text{ H}_2 \text{PO}_4^-$, HPO_4^{-2-} , PO_4^{-3-} ; 0.2 OAc^- ; 0.6 F^- ; 1.0 SO_4^{-2-}
NO ₃ ⁻	10^{0} to 7×10^{-6}	10^{-7}ClO_4^- ; 5 × 10 ⁻⁶ I ⁻ ; 5 × 10 ⁻⁵ ClO ₃ ⁻ ; 10 ⁻⁴ CN ⁻ ; 7 × 10 ⁻⁴ Br ⁻ ; 10 ⁻³ HS ⁻ ; 10 ⁻² HCO ₃ ⁻ , 2 × 10 ⁻² CO ₃ ²⁻ ; 3 × 10 ⁻² Cl ⁻ ; 5 × 10 ⁻² H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ ; PO ₄ ³⁻ ; 0.2 OAc ⁻ ; 0.6 F ⁻ ; 1.0 SO ₄ ²⁻
NO ₂ ⁻	1.4×10^{-6} to 3.6×10^{-6}	7×10^{-1} salicylate, 2×10^{-3} I ⁻ , 10^{-1} Br ⁻ , 3×10^{-1} ClO ₃ ⁻ , 2×10^{-1} acetate, 2×10^{-1} HCO ₃ ⁻ , 2×10^{-1} NO ₃ ⁻ , 2×10^{-1} SO ₄ ²⁻ , 1×10^{-1} Cl ⁻ , 1×10^{-1} ClO ₄ ⁻ , 1×10^{-1} F ⁻
ClO ₄ ⁻	$10^{\rm o}$ to 7×10^{-6}	$2 \times 10^{-3} \text{ I}^-; 2 \times 10^{-2} \text{ CIO}_3^-; 4 \times 10^{-2} \text{ CN}^-, \text{Br}^-; 5 \times 10^{-2} \text{ NO}_2^-, \text{NO}_3^-; 2 \text{ HCO}_3^-, \text{CO}_3^{2-}; \text{CI}^-, \text{H}_2\text{PO}_4^-, \text{HPO}_4^{2-}, \text{PO}_4^{3-}, \text{OAc}^-, \text{F}^-, \text{SO}_4^{2-}$
K ⁺	10^{o} to $1 imes10^{-6}$	$3 \times 10^{-4} \text{ Cs}^+$; $6 \times 10^{-3} \text{ NH}_4^+$, Tl^+ ; 10^{-2} H^+ ; 1.0 Ag^+ , Tris^+ ; 2.0 Li^+ , Na^+
Water hardness $(Ca^{2+} + Mg^{2+})$	10^{-3} to 6×10^{-6}	$3 \times 10^{-5} \text{ Cu}^{2+}, \text{Zn}^{2+}; 10^{-4} \text{ Ni}^{2+}; 4 \times 10^{-4} \text{ Sr}^{2+}; 6 \times 10^{-5} \text{ Fe}^{2+}; 6 \times 10^{-4} \text{ Ba}^{2+}; 3 \times 10^{-2} \text{ Na}^+; 0.1 \text{ K}^+$

Chem 4631

All electrodes are the plastic-membrane type.

© 2007 Thomson Higher Education

Indicator Electrodes

Solid State Electrodes

Eventually membrane electrodes (ISE's) lead to solid-state electrodes

TABLE 23-3 Characteristics of Solid-State Crystalline Electrodes

Analyte Ion	Concentration Range, M	Major Interferences
Br ⁻	10^{0} to 5×10^{-6}	CN ⁻ , I ⁻ , S ²⁻
Cd ²⁺	10^{-1} to 1×10^{-7}	Fe ²⁺ , Pb ²⁺ , Hg ²⁺ , Ag ⁺ , Cu ²⁺
Cl-	10^{0} to 5×10^{-5}	CN ⁻ , I ⁻ , Br ⁻ , S ²⁻ , OH ⁻ , NH ₃
Cu ²⁺	10^{-1} to 1×10^{-8}	Hg^{2+}, Ag^{+}, Cd^{2+}
CN ⁻	10^{-2} to 1×10^{-6}	S ²⁻ , I ⁻
F ⁻	Sat'd to 1×10^{-6}	OH-
I-	10^{0} to 5×10^{-8}	CN ⁻
Pb ²⁺	10^{-1} to 1×10^{-6}	Hg ²⁺ , Ag ⁺ , Cu ²⁺
Ag +/S ²⁻	Ag ⁺ : 10^{0} to 1×10^{-7} S ²⁻ : 10^{0} to 1×10^{-7}	Hg ²⁺
SCN-	10° to 5×10^{-6}	I ⁻ , Br ⁻ , CN ⁻ , S ²⁻

Chem 4631

© 2007 Thomson Higher Education

Indicator Electrodes Solid State Electrodes

> **Crystal electrodes Example - fluoride ion-selective electrode Consist of :**

- LaF₃ crystal
- Internal electrolyte solution (0.1 M NaF and 0.1 M KCl)

Chem 4631

– Ag/AgCl wire

 $LaF_3 \leftrightarrow LaF_2^+ + F^-$

Indicator Electrodes Solid State Electrodes

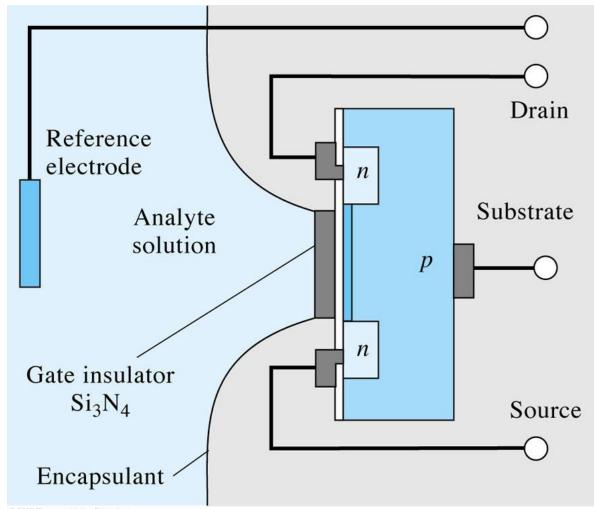
Crystal electrodes

Example - fluoride ion-selective electrode

LaF₃ crystal is doped with EuF₂ to provide vacancies (holes) of a fluoride ion site.

Nerstian response is obtained down to $10^{-6}M$ E = K - 0.0591 log a_{F}

Interference (OH⁻) - has a similar size and charge, so the pH range for the electrode is only 0 to 8.5


Indicator Electrodes Solid State Electrodes

ISFET - ion selective field effect transistor

- Coat a transistor with a chemically sensitive material
- Analyte in contact with material and reference electrode
- Change in analyte concentration give a change in electrochemical potential

Chem 4631

Advantages - rugged, small, inert, rapid response Disadvantage – must have a reference electrode

Chem 4631

© 2007 Thomson Higher Education

Assignment

- Read Chapter 22
- HW12 Chapter 22: 1, 5, 7, 9, and 11
- HW12 Due 3/10/21

- Read Chapter 23
- HW13 Chapter 23: 2, 4, 7, 8, and 11
- HW13 Chapter 23 Due 3/17/21