

PRESENTATION ON

EXPLOSIVES POWER AND POWER INDEX

CUFS 2416 EXPLOSIVE AND POST BLAST INVESTIGATION

B.SC. FORENSIC SCIENCE (SEM 6) SCHOOL OF FORENSIC SCIENCES BHUBANESHWAR CAMPUS

CONTENT

- Introduction
- Explosive Power

EXPLOSIVE POWER

- **Explosive power** refers to the destructive energy released by an explosive material upon detonation. It is typically measured by the amount of pressure, heat, and damage generated by the explosion.
- Explosive power is the ability to produce a maximum amount of force in a very short period of time

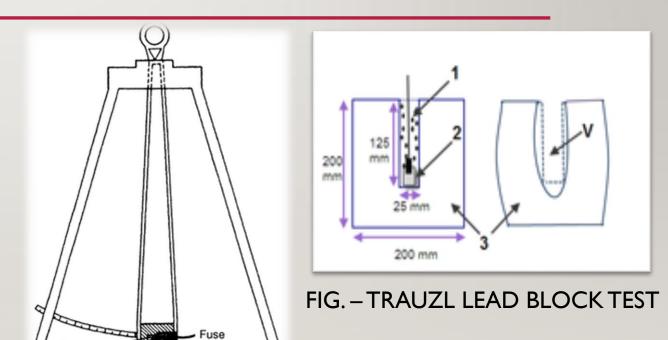
EXPLOSIVE POWER

• It is the total work done by a standard quantity of explosive.

$$Explosive\ power = Q \times V$$

- It is used to determine the potential of an explosive to cause harm or damage.
- Explosive power is an important factor in evaluating the suitability of an explosive for specific applications, as well as its handling, storage, and transport requirements.

DETERMINATION OF EXPLOSIVE POWER


- The most commonly used method Calorimetry
- Other methods –

TEST

- measuring the pressure
 generated by the explosion –
 BALLISIC MORTAR TEST
- measuring the amount of
 damage caused by the explosion
 TRAUZL LEAD BLOCK

FIG. – BALLISTIC MORTAR TEST

Explosive

In an explosive reaction, heat and gases are liberated. The volume of gas V and the heat of explosion Q can both be calculated independently but these values can be combined to give the value for the explosive power:

$$Explosive\ power = Q \times V$$

• The value for the explosive power is then compared with the explosive power of a standard explosive (picric acid) resulting in the power index, where data for $Q_{\text{(picric acid)}}$ and $V_{\text{(picric acid)}}$ are 3250 kJ kg ?1 and 0.831 dm 3 g ?1, respectively.

Power Index =
$$\frac{Q \times V}{Q_{\text{(picric acid)}} \times V_{\text{(picric acid)}}} \times 100$$
 (5.13)

The power index of some primary and secondary explosive substances taking picric acid as the standard

Explosive substance	Q _v /kJ g ^{?1}	V/dm ³ g ^{?1}	Q V 10 ⁴	Power index/%
Primary explosives				
Mercury fulminate	1755	0.215	37.7	14
Lead styphnate	1885	0.301	56.7	21
Lead azide	1610	0.218	35.1	13
Secondary explosives				
Nitroglycerine	6194	0.740	458.4	170
EGDN	6658	0.737	490.7	182
PETN	5794	0.780	451.9	167
RDX	5036	0.908	457.3	169

THANK YOU.