Experiment no. 1

Aim: Analysis of low explosives/ Identification of inorganic explosives by chemical method (Anions)

Requirements:

- a) Test Sample: Water samples spiked or if explosives samples available (Sodium chloride, calcium sulphate, sodium nitrate, potassium nitrite, sodium thiosulphate, sodium phosphate)
- b) Materials: Beaker(s), test tube(s), test tube stand, test tube holder, dropper, pipette, glass rod, measuring cylinder, spatula, spot plate, marker, volumetric flask.
- c) Instruments: Hot plate, water bath, weighing balance.
- d) Chemicals: alpha-naphthylamine, ammonium molybdate, barium chloride, benzidine, concentrated and dilute hydrochloric acid, concentrated sulphuric acid, ethylene diamine, ferrous sulphate, glacial acetic acid, hydrogen peroxide, ferric chloride, nitric acid, lead acetate, potassium dichromate, potassium permanganate, silver nitrate, sodium rhodizonate, sulphanilic acid, zinc dust.

Theory:

Low explosives are compounds that deflagrate. Low explosives are mechanical mixtures of individual ingredients. They are used mainly as propellants because they tend to exert a rapid pushing effect. Propellants are mixtures of one or more energetic materials, plasticizers, stabilizers, and inorganic additives. Black powder (gun powder) and smokeless powder are most commonly used low explosives. The composition of black powder are sodium/potassium (rarely ammonium) nitrate, charcoal, sulphur / sulphurless powder. The composition of smokeless powder are single, double, and triple base with nitrocellulose, nitroglycerine and/or nitroguanidine with stabilizer diphenylamine (DPA). The materials used in pyrotechnique includes oxidizing agent such as potassium chlorate, sodium nitrate, etc; fuels viz. sulphur, charcoal, phosphorous, aluminium powder, etc; color producing agents such as salts of different metals like sodium, strontium barium, etc; smoke producing substances like white phosphorous, hexachloroethane, etc; binding agent and stabilizers.

Procedure:

a. Preparation of reagents:

Sr. No	Reagent	Concentration	Preparation
1	Nitric acid	2 M	1.28 ml concentrated nitric acid made up to
			the mark with water in 10 ml volumetric
			flask.
2	Silver nitrate	0.1 M	0.1699 g of AgNO ₃ made up to the mark
			with water in 10 ml volumetric flask.
3	Lead acetate	0.25 M	95 mg lead acetate trihydrate with 100 μ l
	solution		glacial acetic acid solution made up to the
			mark with water in 10 ml volumetric flask.
4	Barium	0.25 M	61.1 mg barium chloride dihydrate made
	chloride		up to the mark with water in 10 ml
			volumetric flask.
5	Sodium	0.5 %	0.05 g of sodium rhodizonate made up to
	rhodizonate		the mark with water in 10 ml volumetric
			flask.Reagent should be freshly prepared.
6	Potassium	0.02 M	3.16 mg Potassium permanganate made up
	permanganate		to the mark with water in 10 ml volumetric
			flask.
7	Hydrogen	3 %	3 ml commercially available 30% H ₂ O ₂
	peroxide		made up to the mark with water in 10 ml
	solution	4.54	volumetric flask.
8	Sulphanilic	1 %	0.1 g of sulphanilic acid made up to the
	acid		mark with warm 30% acetic acid in 10 ml
0		0.2.0/	volumetric flask
9	α-	0.3 %	0.03 g of α -naphthylamine boiled with 7 ml
	Naphthylamine		distilled water, filter/ decant and mix with
10	Ferric Chloride	1 M	3 ml of glacial acetic acid.0.16 g of ferric chloride made up to the
10	Ferric Chioride	1 101	mark with water in 10 ml volumetric flask
11	Saturated		Excess amount of sodium acetate added to
11	solution of		
	sodium acetate		distilled water (till the point of insolubility)
12	Ammonium	0.2 M	0.5 g Ammonium molybdate
12	molybdate	0.2 111	+ 10 ml water
	moryouate		+ 3 ml concentarted nitric acid
13	Benzidine	1 m	1.625 g Benzidine with 2.5 ml glacial
15	Deliziulle	1 111	acetic acid made up to the mark with water
			in 10 ml volumetric flask.
			III IO IIII VOIUIICUIC HASK.

b. Chemical test:

Sr. No	Test for Anion	Procedure	
1	Chloride (Cl ⁻)	Step 1: 1ml water extract	
		+ 2-3 drops reagent 1	
		+ 2-3 drops reagent 2	
		Step 2: 1ml extract + 2-3 drops reagent 3	
2A	Sulphate (SO ₄ ²⁻)	Step 1	
		1 ml of extract	
		+ 2-3 drops reagent dilute hydrochloric acid	
		kept in a water bath at 100°C for 5 minutes,	
		+ 2-3 drops reagent 4	
		Step 2	
		1 drop of reagent 4 on filter paper,	
		+ 1 drop of reagent 5	
		the reddish-brown spot	
		+ 1 drop acidified extract	
2B	Sulphate (SO ₄ ²⁻)	3 drops extract	
		+ 2 drops reagent 6	
		+ 1 drop reagent 5.	
		pink precipitate	
		+ few drops reagent 7 and shake well.	
3	Nitrite (NO ²⁻)	1 drop neutral/ acid extract on a spot plate.	
	(Griess test).	+ 1 drop reagent 8	
		+ 1 drop reagent 9	
4A	Nitrate (NO ³⁻)	1 drop neutral/ acid extract on a spot plate.	
		+ 1 drop reagent 8	
		+ 1 drop reagent 9	
		+ zinc dust	
4B	Nitrate (NO ³⁻)	a crystal of ferrous sulphate on a spot plate	
		+ a drop of extract	
		+ a drop of concentrated sulphuric acid to run at the	
		side of the drop.	
5	Thiosulphate $(S_2O_3^{2-})$	Step 1	
		1 drop water extract	
		+ 2 drops reagent 10 and mix	
6	Phosphate (PO 4 ³⁻)	1 drop water extract on spot plate	
		+ 1 drop reagent 12	
		Stand time -30 seconds	
		+ 1 drop of reagent 13	
		Stand time -30 seconds	
		+ 3 drops reagent 11.	

Observation (on blank side):

Sr. No	Test for		Observation	Inference
1	Chloride	Cl-	white precipitate	Indicates the presence of
				chloride ion, [soluble in
				ammonium hydroxide and
				insoluble in nitric acid]
2a	Sulphate	SO4 ²⁻	white crystalline	Indicates the presence of
	Step 1		precipitate	sulphate
2a	Step 2		red color spot	Indicates the presence of
			disappears	sulphate
2b		SO ₄ ²⁻	pink coloured	Indicates the presence of
			precipitate becomes	sulphate
			clearly visible	
3	Nitrite	NO ²⁻	pink to red colour	Indicates the presence of
				nitrite
4A	Nitrate	NO ³⁻	pink to red colour	Indicating presence of nitrate
4B		NO ³⁻	brown ring forms	Indicating presence of nitrate
			round the crystal of	
			ferrous sulphate	
5	Thiosulphate	$S_2O_3^{2-}$	crystalline violet	Indicates the presence of
			visible	Thiosulphate
6	Phosphate	PO 4 ³⁻	blue gray colour	Indicates the presence of
				phosphate

Conclusion:

Thus, based on the inference from chemical test carried out, chloride, sulphate, nitrate, nitrite, thiosulphate, and phosphate identified in the extract of test sample.

Experiment no. 2

Aim: Analysis of low explosives/ Identification of inorganic explosives by chemical method (Cations)

Requirements:

- a) Test Samples: Water samples spiked (with lead acetate trihydrate, calcium carbonate, ammonium chloride, mercuric chloride, bismuth nitrate, arsenic pentahydrate, copper sulphate, antimony trioxide) or if explosives samples available.
- b) Materials: Beaker(s), test tube(s), test tube stand, test tube holder, dropper, pipette, glass rod, measuring cylinder, spatula, spot plate, filter paper, marker, volumetric flask, funnel, copper strip, iron nail.
- c) Instruments: Hot plate, weighing balance.
- d) Chemicals: concentrated hydrochloric acid, sodium rhodizonate, sodium hydroxide, potassium iodide, mercuric chloride, potassium hydroxide, potassium dichromate

Theory:

Low explosives are compounds or mixtures that deflagrate. These explosives have propagation speed less than 1000m/s. Low explosives are mechanical mixtures of individual ingredients. They are used mainly used as propellants because they tend to exert a rapid pushing effect. Propellants are mixtures of one or more energetic materials, plasticizers, stabilizer and inorganic additives. The main applications of propellants are in launching projectiles from guns, rockets and missile systems. Black powder (gun powder) and smokeless powder are the most commonly used low explosives.

Colour testing is a presumptive technique that indicates the presence or absence of particular chemical using chemical methods. Lead on reaction with potassium iodide and potassium dichromate forms yellow precipitate of lead iodide and lead dichromate that settles down. Calcium on reaction with sodium rhodizonate solution in presence of sodium hydroxide forms purple precipitate of calcium rhodizonate that settles down. Ammonium on reaction with Nessler's reagent forms a brown precipitate of iodide of Millon's base that settles down. Reactivity series of metals is an empirical and analytical progression of a series arranged from highest to lowest, i.e. they displace the lower placed metal in the order and form the a new compound.

Procedure

Sr. No	Reagent	Concentration	Preparation
1	Sodium	0.2 %	0.02 g sodium rhodizonate made up to the mark with
	rhodizonate		water in 10 ml volumetric flask.
2	Sodium	0.5 N	0.2 g sodium hydroxide made up to the mark with water
	hydroxide		in 10 ml volumetric flask.
3	Nessler's		A: 1 g potassium iodide + 1ml distilled water (1:1)
	reagent		B: 0.6 g mercuric chloride + 10 ml distilled water
			C: 4.5 g potassium hydroxide + 8ml distilled water.
			Solution B
			+ Solution A drop wise (till a permanent precipitate forms)
			+ Solution C, mix.
			Made up to 20 ml with water.
			Left overnight.

a. Preparation of reagents:

b. Chemical test:

Sr. No	Test for Cation	Procedure	
1	Lead (Pb ²⁺)	1ml water extract	
		+ 2-3 drops concentrated hydrochloric acid	
		white precipitate formed	
		filter and 2 parts divide	
		Part I: 1 ml filtrate	
		+ small amount potassium iodide	
		Part II: 1 ml filtrate	
		+ small amount potassium dichromate	
2	Calcium (Ca ²⁺)	2-3 drops extract on spot plate	
		+ 2-3 drops reagent 1	
		+ 2-3 drops reagent 2	
		mix, while blowing briskly with pipette	
3	Ammonium	2-3 drops extract on spot plate	
	(NH4 ⁺)	+ 2-3 drops Nessler's reagent	
4	Mercury (Hg ²⁺)	12 ml extract in beaker	
5	Antimony (Sb ³⁺)	+ 3 ml concentrated hydrochloric acid	

6	Bismuth (Bi ²⁺)	- then ceramic granules added to reduce bumping	
7	Arsenic (As ²⁺)	- kept on hot plate (60-70°C) until boiling starts	
8	Copper (Cu ²⁺)	- copper strip (prewashed with hydrochloric acid) placed	
		- iron nail (prewashed with distilled water) placed	
		- wait for some time to check deposition on nail & strip.	

Observation (on blank side):

Sr. No	Test for	Observation	Inference
1	Lead (Pb ²⁺)	yellow precipitate	Indicates the presence of lead ion.
2	Calcium (Ca ²⁺)	violet precipitate	Indicates the presence of calcium ion.
3	Ammonium (NH ₄ ⁺)	orange brown	Indicates the presence of ammonium
		precipitate	ion.
4	Mercury (Hg ²⁺)	silver deposition	Indicates the presence of mercury ion
5	Antimony (Sb ³⁺)	purplish-black	Indicates the presence of antimony
		deposition	ion
6	Bismuth (Bi ²⁺)	jet black	Indicating presence of bismuth ion
		deposition	
7	Arsenic (As ²⁺)	dull black	Indicating presence of arsenic ion
		deposition	
8	Copper (Cu ²⁺)	copper color on	Indicates the presence of copper ion
		nail	

Conclusion:

Thus, based on the inference from chemical test carried out, it is concluded that cations of lead, calcium, ammonium, mercury, bismuth, arsenic, antimony and copper identified in the extract of test sample.