
ARM Processors

1

-Swarna Prabha Jena
Department of ECE

ARM Powered Products

• ·_ ,r

.

2

The History of ARM

• Developed at Acorn Computers Limited,

of Cambridge, England,

between 1983 and 1985

• Problems with CISC:

memory parts• Slower then

• Clock cycles per instruction

28

3

The History of ARM (2)

• Solution - the Berkeley RISC I:

• Competitive

• Easy to develop (less than a year)

• Cheap

• Pointing the way to the future

29

4

Why learn ARM?

•!• Dominant architecture for embedded systems

•!•32 bits=> powerful & fast

•• Efficient: very low power/MI PS

•!• Regular instruction set with many

features.

advanced

5

A first at ARMlookBeyond MUO -

• Complete instruction set.

• Interrupts: allow external

devices (e.g. mouse, keyboard)

to interrupt the current program

execution

DMA: allows external high•

throughput devices (e.g. display

card) to access memory directly

rather than through processor

Cache: a small amount of

fast memory on the processor

• Larger address

Subroutine call mechanism♦

•!•
• Additional internal registers

• Interrupts, direct memory
access (DMA), and cache
memory. •!•

6

The ARM Instruction Set

•

•

♦

Load-Store architecture

Fixed-length (32-bit) instructions

3-operand instruction format (2 source operand regs, 1

result operand reg): ALU operations very powerful (can

include shifts)

Conditional execution of ALL instructions (v. clever

idea!)

Load-Store multiple registers in one instruction

A single-cycle n-bit shift with ALU operation

"Combines the best of RISC with the best of CISC"

•

•

♦

♦

7

Operating Modes

User mode Supervisor modes

- Normal program

execution mode

- Entered

upon exception

- System resources

unavailable

- Full access

to system resources

- Mode can be

by supervisor

changed

only

- Mode changed freely

33

8

ARM Programmer's Model

9

ARM Programmer's Model

• CPSR is a special register, it cannot be read or written like
other registers

• The result of any data processing instruction can modify status bits (flags)

•!• These flags are read to determine branch conditions

Main status bits (condition codes):

etc

• N

Z

•!• C

· V

(result was negative)

(result was zero)

(result involved a carry-out)

(result overflowed as signed number)

later• Other fields described

10

ARM's memory organization

11

ARM Instruction Set (3)

37

12

Data Processing Instructions

• Arithmetic and logical operations

• 3-address format:

- Two 32-bit operands

(opl is register, op2 is

- 32-bit result placed in

register or immediate)

a register

• Barrel shifter for op2 allows full

within instruction cycle

32-bit shift

38

13

Data Processing Instructions (2)

• Arithmetic operations:

- ADD, ADDC, SUB, SUBC, RSB, RSC

• Bit-wise logical operations:

- AND, EOR, ORR, BIC

• Register movement operations:

- MOV, MVN

• Comparison operations:

- TST, TEQ, CM P, CM N
39

14

Data Processing Instructions (3)

Conditional codes

+

processing instructions

+

Barrel shifter

-

Data

Powerful tools for efficient coded programs
40

15

Data Processing Instructions (4)

Example

if (z==1)

R1=R2+(R34)

compiles to

EQADDS R1,R2,R3, LSL #2

(SINGLE INSTRUCTION !)

41

16

Data Transfer Instructions

• Load/store instructions

• Used to move signed and unsigned

Word, Half Word and Byte to and from registers

• Can be used to load PC

(if target address is beyond branch instruction range)

LDR

LDRH

Load Word

Load Half Word

STR

STRH

Store Word

Store Half Word

LDRSH Load Signed Half Word STRSH Store Signed Half Word

LDRB Load Byte STRB Store Byte

LDRSB Load Signed Byte STRSB Store Signed Byte
L

17

Block Transfer Instructions

• Load/Store Multiple instructions

(LDM/STM)

• Whole register bank or a subset

copied to memory or restored

with single instruction

18

Swap Instruction

• Exchanges a word

between registers

• Two cycles

but

single atomic action

• Support for RT

semaphores

19

Modifying the Status Registers

• Only indirectly

• MSR

fram

moves contents

CPSR/SPSR to

selected GPR

• MRS moves contents

from selected GPR

CPSR/SPSR

to

• Only in privileged

modes

20

Multiply Instructions

• Integer multiplication (32-bit result)

• Long integer multiplication (64-bit result)

• Built in Multiply Accumulate Unit (MAC)

• Multiply and accumulate instructions add product to

running total

46

21

Multiply Instructions

• Instructions:

MUL Multiply 32-bit result

MULA Multiply accumulate 32-bit result

UMULL Unsigned multiply 64-bit result

UMLAL Unsigned multiply accumulate 64-bit result

SMULL Signed multiply 64-bit result

SMILAL Signed multiply accumulate 64-bit result
47

22

Branching Instructions

Branch (B):

jumps forwards/backwards

up to 32 MB

•

Branch link (BL):•

same+ saves (PC+4) in LR

• Suitable for function call/return

• Condition codes for conditional branches

23

Branching Instructions (2)

Branch exchange (BX) and•

Branch link

same

inst ruct ion set

exchange (BLX):

+ exchangeas B/BL

(ARM ++THUMB)

• Only way to swap sets

so

24

Thumb Instruction Set

• Compressed form of ARM

-

-

-

Instructions stored as 16-bit,

Decompressed into ARM instructions and

Executed

•

•

•

Lower performance (ARM 40% faster)

Higher densit y (THUM B saves 30% space)

Opt imal -

"interworking" (combining two sets) -

compiler supported

25

THUMB Instruction Set (2)

• More traditional:

- No condition codes

- Two-address data processing instructions

• Access to RO - R8 restricted to

- MOV, ADD, CMP

• PUSH/POP for stack manipulation

- Descending stack (SP hardwired to R13)

26

THUMB Instruction Set (3)

No MSR and MRS,• must

(changechange to ARM to modif y CPSR

BX or BLX)

using

• ARM entered automatically after RESET or

entering exception

Maximum 255 SWI

mode

calls•

53

27

ARM Assembly Quick Recap

MOV ra, rb

MOV ra, #n

ra

ra

ra

ra

:=

:=

:=

:=

rb

n

rb

rb

·n decimal in range -128 to 127

(other values possible, see later)

ADD

ADD

CMP

CMP

ra,

ra,

ra,

ra,

rb,

rb,

rb

#n

re

#n

+ re

+ n
♦SUB => - instead of+

set

set

status

status

bits

bits

on

on

ra-rb

ra-n

·CMP is like SUB but has no destination
register ans sets status bits

B label

BEQ label

BNE label

BMI label

BPL label

BL label is branch & linkbranch to label

branch
branch

branch

branch

to label if zero Branch conditions apply to the
result of the last instruction to set
status bits
(ADDS/SUBS/MOVS/CMP etc).

if

if

if

not zero

negative

zero or plus

♦LDRB/STRB => byte transfer

♦Other address modes:

[rb,#n] => mem[rb+n]

[rb,#n]! => mem[rb+n], rb := rb+n

[rb],#n => mem[rb], rb:=rb+n

[rb+ri] => mem[rb+ri]

LDR ra, label

STR ra, label

ADR ra, label

LDR ra, [rb]

STR ra, [rb]

ra := mem[label]

mem[label] := ra

ra :=address of

ra := mem[rb]

mem[rb] := ra

label

28

