Introduction To Embedded C

-Swarna Prabha Jena

Department Of ECE

Have you ever pondered how

- powerful it is?

- efficient it is?

- flexible it is?

- deep you can explore your system?

* Prior to C, most of the computer languages (such as
Algol)

- Academic oriented, unrealistic and were generally defined by
committees.

- Designed having application domain in mind (Non portable)
It has lineage starting from CPL
- Martin Richards implemented BCPL

- Ken Thompson further refined BCPL to a language named as B

- Dennis M. Ritchie added types to B and created a language C

* With just 32 keywords, C established itself in a very wide
base of applications.

* System Software Development

- Embedded Software Development

* 0OS Kernel Development

- Firmware, Middle-ware and Driver Development
- File System Development

And many more!!

* Considered as a middle level language

- Can be considered as a pragmatic language.

- |t is indented to be used by advanced programmers, for
serious use, and not for novices and thus qualify less as
an academic language for learning

- Gives importance to curt code.

- It is widely available in various platforms from
mainframes to palmtops and is known for its wide
availability

* |t is a general-purpose language, even though it is applied
and used effectively in various specific domains

* |t is a free-formatted language (and not a strongly-typed
language)

- Efficiency and portability are the important
considerations

- Library facilities play an important role

“The C programming language” book served as a

primary reference for C programmers and

implementers alike for nearly a decade

However it didn’t define C perfectly and there
were many ambiguous parts in the language

As far as the library was concerned, only the C

implementation in UNIX was close to the
’standard’

So many dialects existed for C and it was the time the language has
to be standardized and it was done in 1989 with ANSI C standard

Nearly after a decade another standard, C9X, for C is available that
provides many significant improvements over the previous 1989
ANSI C standard

* In programming, a keyword is a word that is reserved by
program because the word has a special meaning

* Keywords can be commands or parameters

* Every programming language has a set of keywords that
cannot be used as variable names

* Keywords are sometimes called reserved names

Type
Data Types

Modifiers

Qualifiers

Loops

Jump

Keyword

char
int
float
double

sighed
unsigned
short
long

const
volatile

for
while
do

goto
break
continue

Type
Decision

Storage Class

Derived

User defined

Others

Keyword

if else
switch
case
default

auto
register
static
extern

struct
unions

enums
typedefs

void
return
sizeof

Documentation

Preprocessor Statements

Global Declaration

The Main Code:

Local Declarations
Program Statements
Function Calls

One or many Function(s):

The function body

* A typical code might contain the
blocks shown on left side

* It is generally recommended to
practice writing codes with all
the blocks

/* My firstCcode*/ « File Header

#include <stdio.h>< ~ Ppreprocessor Directive
intmain() « The start of program
{
/* To display Helloworld*/ < Comment
printf("Hello world\n"); <« ~ Statement
reeurn0; « Program Termination

* Assuming your code is ready, use the following commands
to compile the code

* On command prompt, type
S gcc <file_name>.c
* This will generate a executable named a.out

* But it is recommended that you follow proper conversion
even while generating your code, so you could use

S gcc <file_name>.c -o <file_name>

- This will generate a executable named <file_name>

* To execute your code you shall try
S ./a.out

* If you have named you output file as your <file_name>
then

S ./<file_name>

- This should the expected result on your system

* A number is generally
represented as

- Decimal
- Qctal
- Hexadecimal

- Binary

Type
Decimal
Octal
Hexadecimal

Binary

Range (8 Bits)

0 - 255

000 - 0377

0x00 - OxFF

0b00000000 - Ob11111111

Type
Base

Dec
10

O 00 N O U1 A W N = O

_ = e e e e
g h W N = O

Oct

N o U1 AW N - O O

e i N S N |
N O O AW N = O

Hex

N
o

M M O O W > © 0 N 68 Ul A W N = O

Bin
2
00O00O
00O
00010
00
00100
0010
001010
0

01 000
0100
010010
010
010100
01010
0101010

* Literally computer understand only two states HIGH and
LOW making it a binary system

* These states are coded as 1 or 0 called binary digits
+ “Binary Digit” gave birth to the word “Bit”

* Bit is known a basic unit of information in computer and
digital communication

Value No of Bits
0 0
1 1

* A unit of digital information

- Commonly consist of 8 bits

* Considered smallest addressable unit of memory in
computer

Value No of Bits

0 0000O0O0OO0OO
1 000O0O0OO0OO01

* One byte represents one unique character like ‘A, 'b’, '1',

'S ...

* |ts possible to have 256 different combinations of Os and
1s to form a individual character

- There are different types of character code
representation like

- ASCIl - American Standard Code for Information
Interchange - 7 Bits (Extended - 8 Bits)

- EBCDIC — Extended BCD Interchange Code - 8 Bits
- Unicode — Universal Code - 16 Bits and more

Val

0
A

the

* ASCIl is the oldest representation

* Please try the following on command prompt to know

available codes

S man ascii

* Can be represented by char datatype

ue No of Bits

00110000
01000001

* Amount of data that a machine can fetch and process at
one time

* An integer number of bytes, for example, one, two, four,
or eight

* General discussion on the bitness of the system is
references to the word size of a system, i.e., a 32 bit
chip has a 32 bit (4 Bytes) word size

Value No of Bits

0 00000000 O0OD0000O0O0O0O0O0O0OO0O0O0O0O0O0OOO0OO0OO0OOO0OO
0

0000000O0O00000OO0OD0OD0OO0O00O0O0OO0OO0OO0O0OO0OOOOO0ODO0ODO
1

* Integers are like whole numbers, but allow negative
numbers and no fraction

An example of 13,,in 32 bit system would be

Bit No of Bits
Position 313029 2827262524 2322212019181716 1514131211109 8 7 6 5 4 3 2 1 0

Value 00000000 O0O0000O00O0O0O0O0OO0O0O0O0O0O0OUOOO0ODO0OT1TI1TO0
1

- Negative Integers represented with the 2's complement
the positive humber

* An example of -1340in 32 bit system would be

Bit No of Bits

Position 313029 28 27 26 2524 2322212019181716 151413121110 9 8 7 6 5 4 3 2
Value 00000000 O0O0ODO0DO0ODO0ODODOOOODOO0DO0DOO0DOO0OOOODOOOOOT1 1
'sCompli 11111111 11111111 11111111111100
Add 1 0 000O0O0O0O0O0DO0ODO0DOO0O0DO0O0O0O0OO0O0O0OO0DO0O0O0O0OO0O0O0O0OOO0DOO0O00O0ODDO0OD0O

2sCompli 11111111 11111111 11111111111100

* Mathematically : -k = 2" - k

of

* A formulaic representation which approximates a real
number

* Computers are integer machines and are capable of
representing real numbers only by using complex codes

* The most popular code for representing real numbers is
called the IEEE Floating-Point Standard

Sign Exponent Mantissa
Float (32 bits) 1 bit 8 bits 23 bits
Single Precision
Double (64 bits) 1 bit 11 bits 52 bits

Double Precision

Data
Types

/
-
—

\\

v Integral

a Floating Point \

Vad

char

int

float

double

> short > T

d Size - > long > T
Modifiers - > longlong > T
» signed > T
~ Signedness
> unsigned > T
’ COnSt ******************** > V
Qualifiers
>~ volatle Sy

NOUEES V Variables

- ANSI says, ensure that: char < short < int < long T Data Types
- unsigned float in not supported F Functions

g auto >
/
. » static = >
/" /
Storage 4
— >)
Modifiers extern
\ \
. > register >
> inline = >

< < < <

\%
T

F

Variables
Data Types

Functions

int main ()

{
number = 5; - .
3. +5: D Assignment statement
sum = number + 5; < - - .. :]lqzzl.hﬁts:g:negnzn% But smart compilers
4 + 5; < | 18 vel
’ DI . B - . Assignment statement. Result of the
} : number + 5 will be assigned to sum

~ Valid statement, But smart compilers
might remove it

- This valid too!!

int main ()

{
if (numl > num2) R | If conditional statement
{
if (numl > num3) <« Nested if statement
{
printf (“"Hello”) ;
}
else
{
printf ("World”) ;
}

Conditional

Constructs

" if and its family
‘w Single iteration

“» switch case

R for

A Multi iteration > while

e il

Syntax

if (condition)
{

statement (s) ;

}
Flow
?
true
cond? W
false \/

Example

#include <stdio.h>

int main ()

{

int numl = 2;

if (numl < 5)

{
printf (“numl < 5\n”);

}

printf (“numl is %d\n”, numl);

return 0;

Syntax Flow

if (condition)

{
statement (s) ; ’
} Y
else true
{ cond?
statement (s) ;
} false
\/ \J
code code
‘

Example

#include <stdio.h>
int main ()
{

int numl = 10;

if (numl < 5)

{
printf (“numl < 5\n”);
}
else
{

printf (“numl > 5\n”);
}

return O;

Syntax

if (conditionl)

{

statement (s) ;

}

else if (condition2)

{

statement (s) ;

}
else
{
statement (s) ;
}

Flow

O

\/
true

cond1? »

false ¢
true

cond2? »

false |
\

code

code

code

)
.

Exampl

#include <stdio.h>

int main ()

{

int numl = 10;

if (numl < 5)
{
printf (“numl < 5\n”);

}
else i1if (numl > 5)

{
printf (“numl > 5\n”);

}
else
{
printf (“numl = 5\n”);
}

return 0;

Syntax

switch (expression)
{
case constant:
statement (s) ;
break;
case constant:
statement (s) ;
break;
case constant:
statement (s) ;
break;
default:
statement (s) ;

expr
|
\/

true

case1? — »
false |
\

true

case?2? »
false |
\

default »

break

break

break

Exampl

#include <stdio.h>

int main|()

{
int option;
printf (“Enter the value\n”);
scanf ("$d”, &option) ;

switch (option)
{
case 10:
printf (“You entered 10\n”) ;
break;
case 20:
printf (“You entered 20\n”);
break;
default:
printf (“Try again\n”) ;
}

return 0;

while (condition)

{ N * Controls the loop.

statement (s) ; * Evaluated before each
} execution of loop body
Example

#include <stdio.h>

int main ()
{

int i;

i=20;
while (i < 10)
{

printf ("Looped %d times\n”, 1i);
i++;
}

return O;

~—» cond?

true |
\/

code

false

Syntax

?o * Controls the loop.

statement(s); L Evalua’ged after each Flow
} while (condition) ; execution of loop body

Example
#include <stdio.h>

int main ()

{ ~—» code
int i;
true y
i=20;
do cond?

{

printf (“"Looped %d times\n”, 1i);

it+; false
} while (i < 10);

return O; Y

Syntax
for (init,; condition; post evaluation expr)
{ A

DERENIEIE(D) 7 * Controls the loop.
} ~+ Evaluated before each

Example execution of loop body

#include <stdio.h>

int main ()

{
int 1i;
for (i = 0; i < 10; i++)
{
printf (“Looped %d times\n”, 1i);
}
return O;
}

Flow

~» cond?

true |
\/

code

\4

post eval

v

false

* A continue statement causes a jump
to the loop-continuation portion,
that is, to the end of the loop body

- The execution of code appearing
after the continue will be skipped

- Can be used in any type of multi
iteration loop

Syntax

do
{
conditional statement
continue,
} while (condition);

Flow

®

\J
—» code block

v

true

cond? » continue?

false
\J

code block

v

loop

v false

Example

#include <stdio.h>

int main ()
{

int i;

for (1 = 0; 1 < 10; i++4)
{

if (1 == 5H)

{

continue;

}

printf (“%d\n”, 1i);
}

return O;

- A break statement shall appear

only in “switch body” or “loop
body”

- “break” is used to exit the loop,
the statements appearing after
break in the loop will be skipped

Syntax

do
{

conditional statement
break;,

} while (condition) ;

Flow

\J

—» code block

true

true

cond?

false

loop
cond?

false

Example

#include <stdio.h>

int main ()
{

int 1i;

for (1 = 0; i < 10; i++)
{

if (1 == b)

{

break;

}
printf (“%d\n”, 1i);
}

return O;

Example

#include <stdio.h>

int main|()
{

int i;

for (1 = 0; i < 10; i++)
{

if (i == 5)

{

break;

}

printf (“%d\n”, 1i);
}
printf (“%d\n”, 1i);

return 0O;

* Symbols that instructs the compiler to perform specific
arithmetic or logical operation on operands

* All C operators do 2 things

- Operates on its Operands
- Returns a value

unary

v Operand binary
ternary
w Arithmetic >
Category
Logical

» Relational >

N

4 Operation » Assignment >

_—

Bitwise

A Ppointers

&

*

Operators
0[1->.
| ~ ++ —— - + * & (type) sizeof
/% *
+ -
<< >>
< <= > >=
== |=
&
|
&&
| |
?:
= += -=*= /= %= &= "= |= <<= >>=

Associativity Precedence
L-R HIGH
R-L

L-R

L-R

L-R

L-R

L-R

L-R

L-R

L-R

L-R

L-R

R-L

R-L

L-R LOW

Note:

post ++ and --
operators have

higher precedence
than pre ++ and --
operators

(Rel-99 spec)

Example
#include <stdio.h>

int main ()

{

int numl = 0, num2 = 0;

Operator

*

/
%

+

Description Associativity
Multiplication LtoR
Division

Modulo

Addition RtolL

Subtraction

What will be
the output?

printf (“sum is %d\n”, numl++ + ++num2);

return O;

> Implicit

Type
Conversion \\‘

~ Explicit

long double
double
float
unsigned long long
signed long long

sined long
gned long
_' signed int
I - signed int

" | unsigned short
signed short
unsigned char
signed char

* Automatic Unary conversions

- The result of + and - are promoted to int if operands are
char and short

- The result of ~ and ! is integer

* Automatic Binary conversions

- If one operand is of LOWER RANK (LR) data type & other is
of HIGHER RANK (HR) data type then LOWER RANK will be
converted to HIGHER RANK while evaluating the expression.

- Example: LR + HR — LR converted to HR

* Type promotion

- LHS type is HR and RHS type is LR — int = char — LR is promoted
to HR while assigning

- Type demotion

— LHS is LR and RHS is HR — int = float - HR rank will be demoted
to LR. Truncated

Syntax

(data type) expression

Example
#include <stdio.h>

int main ()
{
int numl = 5, num2 = 3;
float num3 = (float) numl / num2;

printf ("num3 is $£f\n”, num3);

return O;

Operator Description Associativity

! Logical NOT R tol
&& Logical AND L to R
Example
P | | Logical OR L toR
#include <stdio.h>
int main ()
t . - What will be
int numl = 1, num2 = 0; the OUtpUt?
if (++numl || num2++)

{
printf ("numl is %d num2 is %d\n”, numl, num2);
}
numl = 1, num2 = 0;
if (numl++ && ++num2)
{
printf (“numl is %d num2 is $d\n”, numl, num2);

}

else

{

printf (“numl is %d num2 is %d\n”, numl, num2);

}

return O;

Example

Operator

ANV ANV
n

#include <stdio.h>

int main ()

{

float numl = 0.7;

if (numl == 0.7)
{
printf (“Yes, it is equal\n”);
}
else

{

printf ('No, it is not equal\n”);

}

return O;

Description Associativity

Greater than L toR
Lesser than

Greater than or equal

Lesser than or equal

Equal to

Not Equal to

What will be
the output?

Example

#include <stdio.h>

int main ()

{

int numl = 1, num2 = 1;
float num3 = 1.7, num4d = 1.5;

numl += num2 += num3 += num4;
printf ("numl is %d\n”, numl) ;

return 0;

Example

#include <stdio.h>

int main ()

{

float numl = 1;

if (numl = 1)
{

printf (“Yes, it is equal!'\n”);
}

else

{
printf ('No, it is not equal\n”);
}

return 0;

* Bitwise operators perform operations on bits

- The operand type shall be integral

- Return type is integral value

& Bitwise AND

A

Bitwise OR

Bitwise XOR

Bitwise ANDing of
all the bits in two
operands

Bitwise ORing of
all the bits in two
operands

Bitwise XORing of
all the bits in two
operands

0Ax60
0Bx13

Value

0x61
0x13

A0ExIB3

0Ax60
0Bx13

0x01

Value

0x61
0x13

AO|XIB3

0Ax60
0Bx13

0x73

Value
0x61
0x13

A0"xiB3

0x72

~ Compliment

>> Right Shift

<< Left Shift

Complimenting
all the bits of the
operand

Shift all the bits
right n times by
introducing zeros
left

Shift all the bits
left n times by
introducing zeros
right

Ofediead Value

0Ax60 0x61
0>A13 Ox9E
Ofediead Value
0Ax60 0x61
A>3 0x18
Ofedtead Value
0Ax60 0x61
Ax<13 0x84

'Value' << 'Bits Count'

* Value : Is shift operand on which bit shifting effect to be
applied

* Bits count : By how many bit(s) the given “Value” to be shifted

Say A = 91 A<<2

Original value Ox61 0 1 1 O 0 O o 1
4/ A A A 4

Resultant value 0x84 1 O 0 O o 1 0O O

Lero filling left shift

'Value' >> 'Bits Count'

- Value : Is shift operand on which bit shifting effect to be
applied

* Bits count : By how many bit(s) the given “Value” to be shifted

Say A = 91 A>>2
Original value 0x61 0 1 1 O 0O 0 o 1
S
A A A A A a
Resultant value 0x18 O O O 1 1 O 0 O

Zero filling right shift

“Signed Value' >> 'Bits Count'

* Same operation as mentioned in previous slide.

* But the sign bits gets propagated.

Say A = -95 A>>2

Original value OxA1 1 0 1 O 0 0 o 1

Resultant value OxES8 1 1 1 0 1 O 0 O

Example

#include <stdio.h>

int main()
{
int count;
unsigned char num = OxFF;

for (count = 0; num '= 0; num >>= 1)
{
if (num & 01)
{
count++;
}
}

printf (“count is %d\n”, count);

return O;

Example

#include <stdio.h>
int main ()
{

int num = 5;

printf (“$u:%u:%u\n”, sizeof(int), sizeof num, sizeof 5);

return O;

}

Example

#include <stdio.h>
int main ()

{

int numl = 5;
int num2 = sizeof (++numl) ;

printf ("numl is %d and num2 is %d\n”, numl, num2);

return 0;

* 3 reasons for why sizeof is not a function

- Any type of operands,
- Type as an operand,
- No brackets needed across operands

Syntax

Condition ? Expression 1 : Expression 2;
Example

#include <stdio.h>

int main()
{ #include <stdio.h>

int numl = 10;

int num2 = 20; int main ()
int num3; {
int numl = 10;
if (numl > num?2) int num2 = 20;
{ int num3;
num3 = numl;
} num3 = numl > num2 ? numl : num2;
else printf (“Greater num is %d\n”, num3);
{ num3 = num2; return O;

} }
printf ("$d\n”, num3);

return O;

* The left operand of a comma operator is evaluated as a
void expression: Then the right operand is evaluated, the
result has its type and value

- Comma acts as separator (not an operator) in following
cases

- Arguments to functions
- Lists of initializers (variable declarations)

* But, can be used with parentheses as function arguments
such as -

- foo ((x = 2, x + 3)); // final value of argument is 5

- 8-bit Integral types can hold certain ranges of values

- So what happens when we try to traverse this boundary?

Overflow
(127 + 1)

Underflow
(-128 - 1)

Say A = +127

Original value

Add

Resultant value

Ox7F

0x80

Say A = -128

Original value

Add

Resultant value

0x80

-1

Ox7F

A conveyor belt

Starts hére

Equally spaced
Defined length
Carry similar items
Index as 10®" item

Ends here = S

Top view ' First Element

An Array ~ Start (Base) address

* Total Elements
* Fixed size
* Contiguous Address
-+ Elements are
accessed by
indexing
* Legal access region

~ Last Element
End address

Syntax

data_ type name[SIZE];

Where SIZE is number of elements

The size for the array would be SIZE * <size of data type>

Example
int age[5]

= {10, 20,

30,

40,

50} ;

10

20

30

40

50

base addr

base addr + 4

base addr + 8

base addr + 12

base addr + 16

* An array is a collection of data of same data type.
- Addresses are sequential

* First element with lowest address and the last element
with highest address

* Indexing starts from 0 and should end at array SIZE - 1.
Example say array[5] will have to be indexed from 0O to 4

+ Any access beyond the boundaries would be illegal access
Example, You should not access array[-1] or array[SIZE]

Example

#include <stdio.h>

int main()

(#include <stdio.h>

int numl = 10; int main ()
int num2 = 20; {
int num3 = 30; int num array[5] = {10, 20, 30, 40, 50};
int num4 = 40; int index;
int num5 = 50;
for (index = 0; index < 5; index++)
printf (“%$d\n”, numl) ; {
printf (“%d\n”, num2) ; printf (“$d\n”, num array[index]);
printf (“%$d\n”, num3) ; }
printf (“%$d\n”, numd) ;
printf (“%$d\n”, num5) ; return 0;

return O;

Example

#include <stdio.h>

int main|()

{
int array[5] = {1, 2, 3, 4, 5};
int index;

index = 0;
do
{

printf (“"Index %d has Element %d\n”, index, array[index]):;
index++;

} while (index < 5);

return O;

Example

#include <stdio.h>

int main|()
{

int num array[5];
int index;

for (index = 0; index < 5; index++)

{

scanf ("%d”, &num array[index]) ;

}

return O;

Example

#include <stdio.h>

int main|()

{
int arrayl|[5]
int array2[5]
int array3[]
int array4l[]:;

printf (“%u\n”
printf (“%u\n”

printf (“%u\n”

return O;

= {1I 2/ 3’ 4/ 5};
= {1, 2};

= {1, 2};

/* Invalid */

, sizeof (arrayl)) ;
, sizeof (array2)) ;
, sizeof (array3)) ;

* Can we copy 2 arrays? If yes how?
Example

#include <stdio.h>

int main|()

{
int array org[5] = {1, 2, 3, 4, 5};
int array bak[5];

array bak = array org;
if (array bak == array orgq)
{

printf (“Copied\n”) ;
}

return O;

P

©

Waow!! so simple?
But can | do this?

* No!! its not so simple to copy two arrays as put in the
previous slide. C doesn't support it!

* Then how to copy an array?

- |t has to be copied element by element

* What's a Jargon?

- Jargon may refer to terminology used in a certain
profession, such as computer jargon, or it may refer to any
nonsensical language that is not understood by most
people.

- Speech or writing having unusual or pretentious vocabulary,
convoluted phrasing, and vague meaning.

Pointer are perceived difficult
- Because of jargonification

* So, let's dejargonify & understand them

A Book . System Memory
Contains pages I o Memory Pages
Front matter I ' Boot Code
Table of Contents ! Pointer tlo different programs
Chapters I I Code Segments
Notes Section | I,,, II Data & Stack

Indexes Pointers to specific memory locations

* Just like a book analogy, Computers contains different
different sections (Code) in the memory

* All sections have different purposes

* Every section has a address and we need to point to them
whenever required

- In fact everything (Instructions and Data) in a particular
section has a address!!

- So the pointer concept plays a big role here

* To have C as a low level language being a high level
language

* Returning more than one value from a function

* To achieve the similar results as of ”pass by variable”

* parameter passing mechanism in function, by passing the
reference

- To have the dynamic allocation mechanism

RU
RU
RU
RU
RU
RU
RU

e 1
e 2 -

e 3 -
e 4 -
e 5 -
e 6 -
e 7/ -

- Pointer is an Integer

Referencing and De-referencing
Pointer means Containing
Pointer Type

Pointer Arithmetic

Pointing to Nothing

Static vs Dynamic Allocation

Integer i;
Pointer p;
Say:

i

6;
6;

P

* Whatever we put in data bus is Integer

- Whatever we put in address bus is Pointer

* So, at concept level both are just numbers. May be of
different sized buses

- Rule: “Pointer is an Integer”

- Exceptions:

- May not be address and data bus of same size
- Rule 2 (Will see why? while discussing it)

Example

#include <stdio.h> X
int main () 1000 ? Say 4 bytes
L S
r int x; .
Titnt vptz: 5 ptr
x = 5- 2000 ? Say 4 bytes
ptr = 5;

Example

#include <stdio.h>

int main () 1000 5 Say 4 bytes
{
int x;
int *ptr; ptr
Six=5; : 2000 5 Say 4 bytes
. ptr = '

-

return 0;

* So pointer is an integer

* But remember the “They may not be of same size”
32 bit system = 4 Bytes

64 bit system = 8 Bytes

* Rule : “Referencing and Dereferencing”

Variable Address

Example

#include <stdio.h> X
int main () 1000 5 Say 4 bytes
{

int x;

int *ptr; ptr

£ = 5: 2000 ? Say 4 bytes

return 0O;

}

* Considering the image, What would the below line mean?
* 1000

Example

#include <stdio.h>

int main () 1000 5 Say 4 bytes
{

int x;

int *ptr; ptr

x =5; 2000 ? Say 4 bytes

return 0;

* Considering the image, What would the below line mean?
* 1000

» Goto to the location 1000 and fetch its value, so
*1000 - 5

Example

#include <stdio.h>

int main() 1000 5 Say 4 bytes
{
int x;
int *ptr; ptr
x = 5¢ 2000 ? Say 4 bytes
ptr = &x;
return O;

}

* What should be the change in the above diagram for the
above code?

Example

#include <stdio.h>

int main ()

{

}

int x;
int *ptr;

x =5;
ptr = &x;

return 0;

1000

2000

5

ptr
1000

Say 4 bytes

Say 4 bytes

* So pointer should contain the address of a variable

It should be a valid address

Example

#include <stdio.h> e X<

int main () - 1000 5 3

{ & i
int x; § 3
int *ptr; e »ptr |
o= O 2000 1000
ptr = &x;

return 0;

“Add a & on variable to store its address in a pointer”

“Add a * on the pointer to extract the value of variable it is
pointing to”

Example

#include <stdio.h>
int main ()
{ int number = 10;
int *ptr;
ptr = &number;

printf ("Address of number is %p\n”, &number) ;
printf (“ptr contains %$p\n”, ptr);

return 0;

Example

#include <stdio.h>
int main ()
{ int number = 10;
int *ptr;
ptr = &number;

printf (“number contains %d\n”, number) ;
printf (“*ptr contains %d\n”, *ptr);

return 0;

Example

#include <stdio.h>

int main ()

{
int number = 10;

int *ptr;

ptr = &number;
*ptr = 100;

printf (“number contains %d\n”, number) ;
printf (“*ptr contains %d\n”, *ptr);

return 0;

}
* By compiling and executing the above code we can
conclude

“*ptr = number”

* Pointer pointing to a Variable = Pointer contains the
Address of the Variable

* Rule: “Pointing means Containing”

Example

#include <stdio.h>

int main ()

{

int a = 10;
int *ptr;

ptr = &a;

return 0;

. e

10

1000

1000

1004

1008

1012

1016

1020

1024

* The question is, does address has a type?

Example
num
#include <stdio.h> 1000 1234 4 bytes
int main ()
S num = 1234; ch
char ch; 1004 ? 1 bytes
return O0;

}

* So from the above above diagram can we say &num —
bytes and &ch — 1 byte?

* The answer is no!!, it does

not depend on the type of
the variable

* The size of address

remains the same, and it
depends on the system we
use

- Then a simple questions
arises is why types to
pointers?

1000

1004

1008

1012

1016

1020

1024

num

ch

num

Example 1234
#include <stdio.h> 1000
int main() ch
{ ?
int num = 1234;
char ch; 1004 :
1ptr
int *iptr; ?
char *cptr; 2000
return O; Cptr
} ?
2004

* Lets consider the above examples to understand it

* Say we have a integer and a character pointer

num

Example > 1234
#include <stdio.h> /7 1000
int main () j ch
{ ? <«
int num = 1234; : N
char ch; 1004 . ‘
1ptr
int *iptr = # 1000
h * = ;
char *cptr &ch 2000
return 0; cptr
} 1004
2004

* Lets consider the above examples to understand it

* Say we have a integer and a character pointer

* With just the address, can
know what data is stored?

* How would we know how

much data to fetch for the
address it is pointing to?

* Eventually the answer would
be NO!!

* So the type of the pointer is
required while

- Dereferencing it
- Doing pointer arithmetic

1234
1000

? <«

1004 -
iptr

1000
2000
cptr
1004
2004

* When we say while
dereferencing, how does the
pointer know how much data
it should fetch at a time

* From the diagram right side
we can say

*cptr fetches a single byte

*iptr fetches 4 consecutive
bytes

- So as conclusion we can say

> 1234

1000
ch

1004 .
iptr
1000
2000
cptr
1004
2004

type * — fetch sizeof(type) bytes

* Since the discussion is on the data fetching, its better
we have knowledge of storage concept of machines

* The Endianness of the machine

* What is this now!!?

- Its nothing but the byte ordering in a word of the
machine

- There are two types
- Little Endian - LSB in Lower Memory Address
- Big Endian - MSB in Lower Memory Address

* LSB

- The byte of a multi byte number with the least
importance

- The change in it would have least effect on complete
number

* MSB

- The byte of a multi byte number with the most
importance

- The change in it would have more effect on complete
change number

Example * Let us consider the following

#include <stdio.h>

example and how it would be

o maind) stored in both machine types
int num = 0x12345678;

return 0;

1000 1001 1002 1003
1000 num

12 34 56 78 12 34 56 78

Big Endian 1004 -
1000 1001 1002 1003
1000 2 56 34 12 MM 78 56 34 12

Little Endian ;04 —

* OK Fine. What now? How is it going affect to fetch and
modification?

- Let us consider the same &Ehpleabhuis ity BRSSHPLS fSUs

slide

Example

#include <stdio.h>

int main ()

{

int num = 0x12345678;
int *iptr, char *cptr;

iptr
cptr

return

#
#

0;

access a integer with character
pointer?

If yes, what should be the
effect on access?

Let us assume a Litte Endian
system

1000
P

78 56 34 12 num

e 2000 1000 iptr
1008 78 56 34 12 Pum 190G 78 56 34 12 Pum
*iptr = 0x12345678 *cptr = 0x78

* So from the above diagram it should be clear that when we do
cross type accessing, the endianness should be considered

Example . .
finclude <stdio.h> So changing *cptr will change only

the byte its pointing to

int main ()

{
int num = 0x12345678;

1000 num
int *iptr = #) - > 12 .56 34 12
char *cptr = # S 2004
*cptr = 0x12; iy
return O; *cptr==0x12

So *iptr would contain 0x12345612
now!!

* So as a summary the type to the pointer does not say its
type, but the type of the data its pointing to

* So the size of the pointer for different types remains the
same

Example

#include <stdio.h>

int main ()
{
if (sizeof(char *) == sizeof(long long ¥*))
{
printf (“Yes its Equal\n”) ;
}

return 0O;

* Before proceeding further let us understand an array
interpretation

- Original Big Variable

- Constant Pointer to the 1st Small Variable in the Big
Variable

— When first interpretation fails than second
interpretation comes to picture.

- The following are the case when first interpretation
fails:

- When we pass array variable as function argument
- When we assign a array variable to pointer variable

Example

#include <stdio.h>

int main ()

{

int array[5] = {1, 2,
int *ptr = array;

return O;

So,

Address of array = 1000
Base address = 1000
&array[0] =1 — 1000
&array[1] =2 - 1004

alrra

optr

1000

1000

1004

1008

1012

1016

1020

1024

Example

#include <stdio.h>

int main ()

{

int array[5] = {1, 2, 3, 4, 5};

int *ptr = array;
printf (“%d\n”, *ptr);

return O;

This code should print 1 as output
since its points to the base address

Now, what should happen if we do

ptr = ptr + 1;

alrra

- ptr

Y

1000

1000

1004

1008

1012

1016

1020

1024

ptr = ptr + 1;

array 1
The above line can be discribed as e
follows
ptr = ptr + 1 * sizeof(data type) 3
In this example we have integer 5)
a 5
array, so , , |
ptr =yptr + 1 * sizeof(int)

= ptr +1* 4 Cptr 1004

=ptr +4

Here ptr = 1000 so
=1000 + 4
= 1004

1000

1004

1008

1012

1016

1020

1024

array 1 1000 alray 1 1000 alray 1 1000

, 1004 , 1004 , 1004
1008 1008 1008
» 3 3 3
. 1012 4 1012 . 1012
s 1016 s 1016 e s 1016
1020 1020 1020
1024 1024 1024
- ptr 1008 - ptr 1012 - optr 1016
ptr = ptr + 2; ptr = ptr + 3; ptr = ptr + 4;

* Why does the compiler does this?. Just for convenience

array 1000

1004

1008
1012
1016

1020

1024
- ptr 1008

ptr = ptr + 2;

* Relation with array can be explained
as

ptr + 2

ptr + 2 * sizeof (int)
1000 + 2 * 4

1008 — &array[2]

- So,

ptr + 2 - 1008 — &array[2]
*(ptr + 2) - *(1008) — array[2]

* So to access a array element using a pointer would be

*(ptr + 1) — array[i]
- This can be written as following too!!
array[i] — *(array + 1)
* Which results to
ptr = array

* So as summary the below line also becomes valid because
of second array interpretation

int *ptr = array;

* Wait can | write

*(ptr +1) = *(1 + ptr)
* Yes. So than can | write
array[i] — i[array]

* Yes. You can index the element in both the ways

* On gcc size of void is 1

* Hence pointer arithmetic can be performed on void
pointer

* Its compiler dependent!

Note: To make standard compliant, compile using gcc -pedantic-errors

Example

#include <stdio.h>

int main()

{

int *num;

return 0;

1000

Where am | A
pointing to?

What does it
Contain?

Can |l read or
write wherever
| am pointing?

num
4

4 bytes

s it pointing to the valid address?

f yes can we read or write in the location where its
pointing?

f no what will happen if we access that location?

* So in summary where should we point to avoid all this
questions if we don't have a valid address yet?

- The answer is Point to Nothing!!

* Now what is Point to Nothing?

- A permitted location in the system will always give
predictable result!

It is possible that we are pointing to some memory location
within our program limit, which might fail any time! Thus
making it bit difficult to debug.

* An act of initializing pointers to 0 (generally, implementation
dependent) at definition.

- 0?2, Is it a value zero? So a pointer contain a value 0?

- Yes. On most of the operating systems, programs are not
permitted to access memory at address 0 because that
memory is reserved by the operating system

* So by convention if a pointer is initialized to zero value,
it is logically understood to be point to nothing.

* And now, in the pointer context, 0 is called as NULL

* So a pointer that is assigned NULL is called a Null Pointer
which is Pointing to Nothing

- So dereferencing a NULL pointer is illegal and will always
lead to segment violation, which is better than pointing
to some unknown location and failing randomly!

* Need for Pointing to ‘Nothing’

- Terminating Linked Lists
- Indicating Failure by mallog, ...

* Solution

— Need to reserve one valid value
- Which valid value could be most useless?

- In wake of OSes sitting from the start of memory, 0 is a
good choice

- As discussed in previous sides it is implementation
dependent

Example

#include <stdio.h>

int main ()

{

int *num;
num = NULL;

return 0O;

}

Example

#include <stdio.h>
int main ()
{

int *num = NULL;

return 0;

Rule: “Static Allocation vs Dynamic Allocation”

Example

#include <stdio.h>

int main ()

{

int numl;

static int num2;
char *ptr;

char array([5];

return 0O;

Example
#include <stdio.h>
int main ()
{
char *ptr;

ptr = malloc(5);

return 0;

* Unnamed vs hamed Allocation = Unnamed/named Houses

AL UL UL YA YA A YA YA
B B B R R R R LR

Ok, House 1, | should go??? Oops

UAL U U WAL WA
B B B R LR

1 2 3 4 5

+>'

Ut
N

7

by

Ok, House 1, | should go that side «

* Managed by Compiler vs User

- Compiler

- The compiler will allocate the required memory
internally

- This is done at the time of definition of variables

* User

- The user has to allocate the memory whenever
required and deallocate whenever required

- This done by using malloc and free

* Static vs Dynamic

Example

#include <stdio.h>

int main ()

U e |

num ptr = #
ptr = malloc(1l) ;

return 0;

num
1000 ?
num_ptr
2000 ? 4 bytes
ptr
2004 ? 4 bytes

* Static vs Dynamic

Example
#include <stdio.h>
int main ()

{

int num, *num ptr, *ptr;

ptr = malloc(1l);

return O;

~» 1000

2000

2004

num

num_ptr
1000

ptr
?

4 bytes

4 bytes

* Static vs Dynamic

Example
#include <stdio.h>

int main ()

{

int num, *num ptr, *ptr;

return 0;

~» 1000

2000

2004

> 500

num

num_ptr
1000

ptr
500

4 bytes

4 bytes

* The need

- You can decide size of the memory at run time

- You can resize it whenever required
- You can decide when to create and destroy it.

Prototype

void *malloc(size t size);

* Allocates the requested size of memory from the heap
- The size is in bytes

* Returns the pointer of the allocated memory on success,
else returns NULL pointer

ptr

Example
#include <stdio.h> //”1000 500

int main ()

{ char *ptr; ﬁ ?

ptr = malloc(5) ; ?
return 0; ‘ ? h

} ?

?

, ?

A 500 ?

Y

Allocate 5 Bytes

Example
#include <stdio.h>
int main ()
{
char *ptr;

ptr = malloc(10) ;

return 0O;

- 1000

ptr
NULL

NULL

Only 7 Bytes
Available!!

So returns
NULL

Prototype

void *calloc(size t nmemb, size t size);

* Allocates memory blocks large enough to hold "n
elements” of "size" bytes each, from the heap

- The allocated memory is set with O's

* Returns the pointer of the allocated memory on success,
else returns NULL pointer

Example
#include <stdio.h>
int main ()
{
char *ptr;

ptr = calloc(5,

return 0;

1);

1000

A 500

ptr
500

0
0
0
0
0

Allocate 5 Bytes
and all are set
to zeros

Prototype

void *realloc(void *ptr, size t size);

* Changes the size of the already allocated memory by
malloc or calloc.

* Returns the pointer of the allocated memory on success,
else returns NULL pointer

ptr

Example
#include <stdio.h> 1000 500
int main ()
{ |
char *ptr; ‘j ?
~ »iptr =malloc(5); ?
ptr = realloc(ptr, 7); ‘ 4
ptr = realloc(ptr, 2); x“t ?
return O; ? \
} (
, ?
A 500 ?

Allocate 5 Bytes

ptr

Example
#include <stdio.h> /~’1000 500

int main ()

{ , ;
char *ptr; j 2 N
ptr = malloc(5); ?
- »! ptr = realloc(ptr, 7); : ?
‘ptr = realloc(ptr, 2); 2 oo
: . Existing memory
return 0; ? gets extended to
} , 7 bytes
A 500 ?

ptr

Example

#include <stdio.h> o 1000 500

int main ()

{ . ,
char *ptr; | ? A
ptr = malloc(5); ?
ptr = realloc(ptr, 7); !

e ptr = realloc(ptr, 2); :“ 2 L
-- : . Existing memory
return O; ? gets shrinked to

} , 2 bytes

A 500 ?

- Points to be noted

- Reallocating existing memory will be like deallocating
the allocated memory

- If the requested chunk of memory cannot be
extended in the existing block, it would allocate in a
new free block starting from different memory!

* So its always a good idea to store a reallocated
block in pointer, so that we can free the old
pointer.

Prototype

void free (void *ptr);

* Frees the allocated memory, which must have been
returned by a previous call to malloc(), calloc() or realloc()

- Freeing an already freed block or any other block, would
lead to undefined behaviour

* Freeing NULL pointer has no effect.

* If free() is called with invalid argument, might collapse the
memory management mechanism

* If free is not called after dynamic memory allocation, will
lead to memory leak

Example

#include <stdio.h>

int main ()

{

..

ptr = malloc(5);

for (i =0; i < 5; i++)
{

ptr[i] = 'A' + i;
}

free (ptr) ;

return 0;

1000

ptr

Example

#include <stdio.h>
int main ()
{

char *ptr;

int 1i;

A

free (ptr) ;

return 0;

1000

> 500

ptr
500

Example

#include <stdio.h>

int main ()

{ char *ptr;
int 1i;
ptr = malloc(5);
©o»ifor (1=0;1<5;i+0)
{ ptr[i] = 'A' + 1i;
}

free (ptr) ;

return 0;

1000

» 500

ptr
500

E
D
C
B
A

Example

#include <stdio.h>

int main ()

{

char *ptr;
int 1i;

ptr = malloc(5);
for (1 = 0; i < 5; i++)

{
ptr[i] = 'A' + i;

A

return 0;

1000

> 500

ptr
500

E
D
C
B
A

- Points to be noted

- Free releases the allocated block, but the pointer
would still be pointing to the same block!!, So
accessing the freed block will have undefined
behaviour.

- This type of pointer which are pointing to freed
locations are called as Dangling Pointers

- Doesn't clear the memory after freeing

150

Will meet again

