
Introduction To Embedded C

1

Introduction To Embedded C

-Swarna Prabha Jena

Department Of ECE

C

Have you ever pondered how
-
-
-
-

powerful it is?
efficient it is?
flexible it is?
deep you can explore your system?

2

C
Brief History

Prior to C, most of the computer languages (such as
Algol)

●

Academic oriented, unrealistic and were generally defined by
committees.

Designed having application domain in mind (Non portable)

has lineage starting from CPL

Martin Richards implemented BCPL

Ken Thompson further refined BCPL to a language named as B

Dennis M. Ritchie added types to B and created a language C

–

–

It

–

●

–

–

With just 32 keywords, C established itself in a very wide
base of applications.

●

3

C
Where is it used?

System Software Development

Embedded Software Development

OS Kernel Development

Firmware, Middle-ware and Driver

File System Development

And many more!!

●

●

●

Development●

●

4

C
Important Characteristics

Considered as a middle level language

Can be considered as a pragmatic language.

It is indented to be used by advanced programmers, for

●

●

●

serious use, and not for novices and thus qualify less
an academic language for learning

Gives importance to curt code.

It is widely available in various platforms from
mainframes to palmtops and is known for its wide
availability

as

●

●

5

C
Important Characteristics

It is
and

It is

a general-purpose language, even though it is applied
used effectively in various specific domains

a free-formatted language (and not a strongly-typed

●

●

language)

Efficiency and portability are the important
considerations

Library facilities play an important role

●

●

6

C
Standard

“The C programming language” book served as
primary reference for C programmers and
implementers alike for nearly a decade

However it didn’t define C perfectly and there
were many ambiguous parts in the language

As far as the library was concerned, only the C
implementation in UNIX was close to the
’standard’

a●

●

●

So many dialects existed for C and it was the time the language has●

to be standardized and it was done in 1989 with ANSI C standard

Nearly after a decade another standard, C9X, for C is available that
provides many significant improvements over the previous 1989
ANSI C standard

●

7

C
Keywords

In programming, a keyword is a word that is reserved by
program because the word has a special meaning

Keywords can be commands or parameters

Every programming language has a set of keywords that
cannot be used as variable names

Keywords are sometimes called reserved names

a

●

●

●

●

8

C
Keywords - Categories

Type Keyword

Decision if else
switch
case
default

Storage Class auto
register
static
extern

Derived struct
unions

User defined enums
typedefs

Others void
return
sizeof

Type Keyword

Data Types char
int
float
double

Modifiers signed
unsigned
short
long

Qualifiers const
volatile

Loops for
while
do

Jump goto
break
continue

9

C
Typical C Code Contents

A typical code might contain the
blocks shown on left side

It is generally recommended to
practice writing codes with all
the blocks

●

●

One or many Function(s):

The function body

The Main Code:

Local Declarations
Program Statements
Function Calls

Global Declaration

Preprocessor Statements

Documentation

10

C
Anatomy of a Simple C Code

/* My first C code */

#include <stdio.h>

File Header

Preprocessor Directive

int

{

main() The start of program

/* To display

printf("Hello

Hello world */ Comment

world\n"); Statement

return 0; Program Termination

}

11

C
Compilation

Assuming your code is ready, use the following
to compile the code

On command prompt, type

$ gcc <file_name>.c

This will generate a executable named a.out

commands●

●

●

But it is recommended that you follow proper conversion
even while generating your code, so you could use

$ gcc <file_name>.c -o <file_name>

This will generate a executable named <file_name>

●

●

12

C
Execution

To execute

$./a.out

If you have
then

your code you shall try●

named you output file as your <file_name>●

$./<file_name>

This should the expected result on your system●

13

Embedded
Number Systems

C

Type

Base

Dec

10

Oct

8

Hex

16

Bin

2
A number is generally●

represented as
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 0 0 0

0 0 0

0 0 01 0

0 0

0 01 0 0

0 01 0

0 01 01 0

0

01 0 0 0

01 0 0

01 0 01 0

01 0

01 01 0 0

01 01 0

01 01 01 0

Decimal

Octal

Hexadecimal

Binary

–

–

–

–

Type

Decimal

Octal

Hexadecimal

Binary

Range (8 Bits)

0 - 255

000 - 0377

0x00 - 0xFF

0b00000000 - 0b11111111

14

Embedded C
Data Representation - Bit

Literally computer understand only two states HIGH
LOW making it a binary system

These states are coded as 1 or 0 called binary digits

“Binary Digit” gave birth to the word “Bit”

and●

●

●

Bit is known a basic unit
digital communication

of information in computer and●

Value

0

1

No of Bits

0

1

15

Embedded C
Data Representation - Byte

A unit of digital information

Commonly consist of 8 bits

●

●

Considered
computer

smallest addressable unit of memory in●

Value

0

1

No of Bits

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

16

Embedded C
Data Representation - Character

One byte represents one unique character like 'A', 'b', '1',
'$' ...

●

Its possible to have 256 different combinations of 0s
1s to form a individual character

There are different types of character code
representation like

and●

●

ASCII → American Standard Code for Information
Interchange – 7 Bits (Extended - 8 Bits)

EBCDIC → Extended BCD Interchange Code – 8 Bits

Unicode → Universal Code - 16 Bits and more

–

–

–

17

Embedded C
Data Representation - Character

ASCII is the oldest representation

Please try the following on command
available codes

$ man ascii

●

prompt to know

the

●

Can be represented by char datatype●

Value

0

A

No of Bits

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1

18

Embedded C
Data Representation - Word

Amount of data that a machine can fetch and process at
one time

An integer number of bytes, for example, one, two, four,
or eight

General discussion on the bitness of the system is
references to the word size of a system, i.e., a 32 bit

●

●

●

chip has a 32 bit (4 Bytes) word size

Value

0

1

No of Bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

19

Embedded C
Integer Number - Positive

Integers are like whole numbers, but allow negative
numbers and no fraction

●

An example of 1310 in 32 bit system would be

No of Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1

●

Bit

Position

Value

20

Embedded C
Integer Number - Negative

Negative Integers represented with the 2's complement
the positive number

of●

An example of -1310 in 32 bit system would be

No of Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

●

Bit

Position

Value

7 6 5 4 3 2

0 0 0 0 1 1

1 0

0 1

1's Compli

Add 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1

2's Compli 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

2n
Mathematically : -k ≡ - k●

21

Embedded C
Float Point Number

A formulaic representation which approximates a real
number

Computers are integer machines and are capable of
representing real numbers only by using complex codes

The most popular code for representing real numbers is
called the IEEE Floating-Point Standard

●

●

●

Sign Exponent Mantissa

Float (32 bits) 1 bit 8 bits 23 bits
Single Precision

Double (64 bits) 1 bit 11 bits 52 bits
Double Precision

22

Embedded C
Basic Data Types

char

Integral

int
Data
Types

float

Floating Point

double

23

Embedded C
Data Type Modifiers and Qualifiers

short T

Size long T

long long TModifiers

signed T
Signedness

Tunsigned

Vconst

Qualifiers

Vvolatile

V

T

F

VariablesNotes:
- ANSI says, ensure that: char ≤ short ≤ int ≤ long Data Types

- unsigned float in not supported Functions

24

Embedded C
Data Type and Function storage modification

auto V

static V F

Storage
Modifiers

extern V F

register V

Finline V

T

F

Variables

Data Types

Functions

25

int main()
{

number = 5;

3; +5;

Embedded
Code Statements

C
Simple-

Assignment statement

Valid statement, But smart compilers
might remove it

sum = number
5;

+ 5;
4
;
+

Assignment statement. Result of the
number + 5 will be assigned to sum}

Valid statement, But smart compilers
might remove it

This valid too!!

26

int main()
{

Embedded C
Code Statements - Compound

if
{

(num1 > num2) If conditional statement

if (num1 > num3)
{

Nested if statement

printf(“Hello”);
}
else
{

printf(“World”);
}

}
...

}

27

Embedded C
Conditional Constructs

if and its family

Single iteration

switch case

Conditional
Constructs for

whileMulti iteration

do while

28

Embedded C
Conditional Constructs - if

if
{

(condition) #include <stdio.h>

int
{

main()statement(s);
}

int num1 = 2;

if (num1 < 5)
{

printf(“num1 < 5\n”);
}
printf(“num1 is %d\n”, num1);

true
return 0;

cond?
}

false
code

Flow

ExampleSyntax

29

Embedded C
Conditional Constructs – if else

if (condition)
{

statement(s);
}
else
{

statement(s);
}

true

cond?

false

codecode

FlowSyntax

30

Embedded C
Conditional Constructs – if else

#include <stdio.h>

int main()
{

int num1 = 10;

if (num1 < 5)
{

printf(“num1
}
else
{

printf(“num1
}

< 5\n”);

> 5\n”);

return 0;
}

Example

31

Embedded C
Conditional Constructs – if else if

if (condition1)
{

statement(s);
}
else if (condition2)
{

statement(s);
}
else
{

statement(s);
}

true

cond

false

cond

false

code

1? code

true

2? code

FlowSyntax

32

Embedded C
Conditional Constructs – if else if

#include <stdio.h>

int
{

main()

int num1 = 10;

if (num1 < 5)
{

printf(“num1 <
}
else if (num1 > 5)
{

printf(“num1 >
}
else
{

printf(“num1 =
}

5\n”);

5\n”);

5\n”);

return 0;
}

Example

33

Embedded C
Conditional Constructs – switch

switch (expression)
{

case constant:
statement(s);
break;

case constant:
statement(s);
break;

case constant:
statement(s);
break;

default:
statement(s);

}

expr

true

case1?

false

true

case2?

false

default code

code

break

break

break

code

FlowSyntax

34

Embedded C
Conditional Constructs - switch

#include <stdio.h>

int
{

main()

int option;
printf(“Enter the value\n”);
scanf(“%d”, &option);

switch (option)
{

case 10:
printf(“You
break;

case 20:
printf(“You
break;

default:
printf(“Try

}

entered 10\n”);

entered 20\n”);

again\n”);

return 0;
}

Example

35

Embedded C
Conditional Constructs – while

while
{

(condition)
Controls the loop.●

Evaluated
execution

before each
body

●

statement(s);
of loop}

false
#include <stdio.h>

cond?

int
{

main()

int i;

i = 0;
while (i < 10)
{

printf(“Looped
i++;

}

%d times\n”, i);

return 0;
}

true

code

Example

FlowSyntax

36

Embedded C
Conditional Constructs – do while

do
{ Controls the loop.●

Evaluated
execution

after each●

statement(s);
while (condition); of loop body}

#include <stdio.h>

ue

int
{

main()

int i;

cond?

i =
do
{

0;

false
printf(“Looped
i++;

} while (i < 10);

%d times\n”, i);

return 0;
}

tr

code

Example

Flow

Syntax

37

Embedded C
Conditional Constructs – for

for
{

(init; condition; post evaluation expr)

statement(s); Controls the loop.●

} Evaluated
execution

before
of loop

each
body

●

false

#include <stdio.h>

cond?int
{

main()

int i;

for (i = 0; i <
{

10; i++)

printf(“Looped %d times\n”, i);
}

return 0;
}

true

co

post
ex

de

eval

pr

Example init

Flow

Syntax

38

Embedded C
Conditional Constructs – continue

A continue statement causes a jump
to the loop-continuation portion,
that is, to the end of the loop body

The execution of code appearing
after the continue will be skipped

●

●

true
cond? continue?

Can be used in any type of multi●

iteration loop false

do
{

loop
cond?true

conditional statement
continue;

} while (condition);
false

Syntax

code block

code block

Flow

39

Embedded C
Conditional Constructs – continue

#include <stdio.h>

int
{

main()

int i;

(i = 0; i < 10; i++)for
{

if (i == 5)
{

continue;
}
printf(“%d\n”, i);

}

return 0;
}

Example

40

Embedded C
Conditional Constructs – break

A break statement shall appear
only in “switch body” or “loop
body”

“break” is used to exit the loop,
the statements appearing after

●

●

break in the loop will be skipped
true

cond? break?

ue

do
{

loop
cond?

conditional
break;

statement

} while (condition);

false

false

Syntax

tr

code block

Flow

41

Embedded C
Conditional Constructs – break

#include <stdio.h>

int
{

main()

int i;

for
{

(i = 0; i < 10; i++)

if (i == 5)
{

break;
}
printf(“%d\n”, i);

}

return 0;
}

Example

42

Embedded C
Conditional Constructs – break

#include <stdio.h>

int
{

main()

int i;

for (i = 0; i <
{

if (i == 5)
{

break;
}

10; i++)

printf(“%d\n”, i);
}
printf(“%d\n”, i);

return 0;
}

Example

43

Embedded
Operators

C

Symbols that instructs the compiler to perform specific
arithmetic or logical operation on operands

All C operators do 2 things

●

●

Operates on its Operands

Returns a value

–

–

44

Embedded
Operators

C

unary

Operand binary

ternary

Arithmetic + - * / % ...
Category

Logical ! || && ...

>=Relational > < <= == !=

Operation Assignment = ...

|Bitwise & ^ ~ >> <<

Language sizeof() ...

->Pointers * &

45

Embedded C
Operators – Precedence and Associativity

Note:

post ++ and –-
operators have
higher precedence
than pre ++ and –-
operators

(Rel-99 spec)

Operators Associativity Precedence

() [] -> . L - R HIGH

! ∼ ++ −− - + * & (type) sizeof R - L

/ % * L - R

+ - L - R

<< >> L - R

< <= > >= L - R

== != L - R

& L - R

^ L - R

| L - R

&& L - R

|| L - R

?: R - L

= += -= *= /= %= &= ^= |= <<= >>= R - L

, L - R LOW

46

Embedded C
Operators - Arithmetic

#include <stdio.h>

What will be
the output?

int main()
{

int num1 = 0, num2 = 0;

printf(“sum is %d\n”, num1++ + ++num2);

return 0;
}

Example

Operator Description Associativity

* Multiplication L to R
/ Division
% Modulo

+ Addition R to L

- Subtraction

47

Embedded C
Type Conversion

Implicit

Type
Conversion

Explicit

48

Embedded C
Type Conversion Hierarchy

long double

double

float

unsigned long long

signed long long

unsigned long

signed long

unsigned int

signed int

unsigned short

signed short

unsigned char

signed char

49

Embedded C
Type Conversion - Implicit

Automatic Unary conversions●

The result of + and - are promoted
char and short

The result of ~ and ! is integer

to int if operands are–

–

Automatic Binary conversions●

If one operand is of LOWER RANK (LR) data type & other is
of HIGHER RANK (HR) data type then LOWER RANK will be
converted to HIGHER RANK while evaluating the expression.

Example: LR + HR → LR converted to HR

–

–

50

Embedded C
Type Conversion - Implicit

Type promotion●

LHS type is HR and RHS
to HR while assigning

Type demotion

type is LR → int = char → LR is promoted–

●

LHS is LR and RHS is HR
to LR. Truncated

→ int = float → HR rank will be demoted–

51

Embedded C
Type Conversion – Explicit (Type Casting)

(data type) expression

#include <stdio.h>

int main()
{

int num1 = 5, num2 = 3;

float num3 = (float) num1 / num2;

printf(“num3 is %f\n”, num3);

return 0;
}

Example

Syntax

52

Embedded C
Operators - Logical

#include <stdio.h>

int
{

main()

What will be
int num1 = 1, num2 = 0;

the output?
if (++num1 || num2++)
{

printf(“num1 is %d
}
num1 = 1, num2 = 0;
if (num1++ && ++num2)
{

printf(“num1 is %d
}
else
{

printf(“num1 is %d
}
return 0;

num2 is %d\n”, num1, num2);

num2 is %d\n”, num1, num2);

num2 is %d\n”, num1, num2);

}

Example

Operator Description Associativity

!
&&
||

Logical NOT
Logical AND
Logical OR

R to L
L to R
L to R

53

Embedded C
Operators - Relational

#include <stdio.h>

int
{

main()

float num1 = 0.7;

What will be
the output?

if (num1 == 0.7)
{

printf(“Yes, it is equal\n”);
}
else
{

printf(“No, it is not equal\n”);
}

return 0;
}

Example

Operator Description Associativity

> Greater than L to R
< Lesser than
>= Greater than or equal
<= Lesser than or equal
== Equal to
!= Not Equal to

54

Embedded C
Operators - Assignment

ample

#include <stdio.h> #include <stdio.h>

int
{

main() int
{

main()

int num1 = 1, num2 = 1; float num1 = 1;
float num3 = 1.7, num4 = 1.5;

if (num1 = 1)
{

printf(“Yes, it is equal!!\n”);
}
else
{

printf(“No, it is not equal\n”);
}

num1 += num2 += num3 += num4;

printf(“num1 is %d\n”, num1);

return 0;
}

return 0;
}

ExExample

55

Embedded C
Operators - Bitwise

Bitwise operators perform operations on bits

The operand type shall be integral

Return type is integral value

●

●

●

56

Embedded C
Operators - Bitwise

OVpaelruaend

0Ax60

0Bx13

Value

0x61

0x13

Bitwise ANDing of
all the bits in two
operands

0 1 1 0 0 0 0 1
& Bitwise AND

0 0 0 1 0 0 1 1

A0&x1B3 0x01 0 0 0 0 0 0 0 1

OVpaelruaend

0Ax60

0Bx13

Value

0x61

0x13

Bitwise ORing of
all the bits in two
operands

0

0

1

0

1

0

0

1

0

0

0

0

0

1

1

1| Bitwise OR

A0|x1B3 0x73 0 1 1 1 0 0 1 1

OVpaelruaend

0Ax60

0Bx13

Value

0x61

0x13

Bitwise XORing of
all the bits in two
operands

0

0

1

0

1

0

0

1

0

0

0

0

0

1

1

1^ Bitwise XOR

A0̂ x1B3 0x72 0 1 1 1 0 0 1 0

57

Embedded C
Operators - Bitwise

OVpaelruaend

0Ax60

Value

0x61

Complimenting
all the bits of the
operand

~ Compliment 0 1 1 0 0 0 0 1

0~xA13 0x9E 1 0 0 1 1 1 1 0

Shift all the bits
right n times by
introducing zeros
left

OVpaelruaend Value

>> Right Shift 0Ax60 0x61 0 1 1 0 0 0 0 1

A0>x>123 0x18 0 0 0 1 1 0 0 0

Shift all the bits
left n times by
introducing zeros
right

OVpaelruaend Value

<< Left Shift 0Ax60 0x61 0 1 1 0 0 0 0 1

A0<x<123 0x84 1 0 0 0 0 1 0 0

58

Embedded C
Operators – Bitwise – Left Shift

'Value' << 'Bits Count'

Value : Is shift operand on which bit shifting effect to be
applied

●

Bits count : By how many bit(s) the given “Value” to be shifted●

Say A = 91 A << 2

Original value 0x61 0 1 1 0 0 0 0 1

0 0Resultant value 0x84 1 0 0 0 0 1

Zero filling left shift

59

Embedded C
Operators – Bitwise – Right Shift

'Value' >> 'Bits Count'

operand on which bit shifting effect to beValue : Is shift
applied

●

Bits count : By how many bit(s) the given “Value” to be shifted●

Say A = 91 A >> 2

Original value 0x61 0 1 1 0 0 0 0 1

0 0Resultant value 0x18 0 1 1 0 0 0

Zero filling right shift

60

Embedded C
Operators – Bitwise – Right Shift – Signed Valued

“Signed Value' >> 'Bits Count'

Same operation as mentioned in previous slide.●

But the sign bits gets propagated.●

Say A = -95 A >> 2

Original value 0xA1 1 0 1 0 0 0 0 1

1 1Resultant value 0xE8 1 0 1 0 0 0

61

Embedded C
Operators - Bitwise

#include <stdio.h>

int
{

main()

int count;
unsigned char num = 0xFF;

for (count = 0; num != 0;
{

if (num & 01)
{

count++;
}

}

num >>= 1)

printf(“count is %d\n”, count);

return 0;
}

Example

62

Embedded C
Operators – Language - sizeof()

#include <stdio.h>

int main()
{

int num = 5;

printf(“%u:%u:%u\n”, sizeof(int), sizeof num, sizeof 5);

return 0;
}

#include <stdio.h>

int main()
{

int num1 = 5;
int num2 = sizeof(++num1);

printf(“num1 is %d and num2 is %d\n”, num1, num2);

return 0;
}

Example

Example

63

Embedded C
Operators – Language - sizeof()

3 reasons for why sizeof is not a function●

Any type of operands,

Type as an operand,

No brackets needed across operands

–

–

–

64

Embedded C
Operators – Ternary

Condition ? Expression 1 : Expression 2;

#include <stdio.h>

int
{

main()
#include <stdio.h>

int
int
int

num1
num2
num3;

=
=
10;
20; int

{
main()

int num1 = 10;
int num2 = 20;
int num3;

if (num1
{

num3
}
else
{

num3
}

> num2)

= num1;
num3 = num1 > num2 ? num1 : num2;
printf(“Greater num is %d\n”, num3);

return 0;= num2;
}

printf(“%d\n”, num3);

return 0;
}

Example

Syntax

65

Embedded C
Operators – Comma

The left operand of a comma operator is evaluated as a
void expression: Then the right operand is evaluated, the
result has its type and value

Comma acts as separator (not an operator) in following
cases

●

●

Arguments to functions

Lists of initializers (variable declarations)

–

–

But, can be used with parentheses as function arguments
such as -

●

foo ((x = 2, x + 3)); // final value of argument is 5–

66

Embedded C
Over and Underflow

8-bit Integral types can hold certain ranges of values

boundary?

●

So what happens when we try to traverse this●

Overflow
(127 + 1)

Underflow
(-128 - 1)

67

Embedded
Overflow – Signed

C
Numbers

Say A = +127

0Original value 0x7F 1 1 1 1 1 1 1

0Add 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0Resultant value 0x80

68

Embedded C
Underflow – Signed Numbers

Say A = -128

1Original value 0x80 0 0 0 0 0 0 0

1Add -1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1Resultant value 0x7F

69

Embedded C
ConceptArrays – Know the

A conveyor belt

Starts here

Equally spaced

Defined length

Carry similar items

10thIndex as item

Ends here

70

Embedded C
ConceptArrays – Know the

First Element
Start (Base) address

Total Elements
Fixed size
Contiguous Address
Elements are
accessed by
indexing
Legal access region

●

●

●

●

●

Last Element
End address

71

An Array

Conveyor Belt
Top view

Embedded
Arrays

C

data_type name[SIZE];

Where SIZE is number of elements
The size for the array would be SIZE * <size of data_type>

int age[5] = {10, 20, 30, 40, 50};

b
a
se

 a
d
d
r

b
a
se

 a
d
d
r

+
4

b
a
se

 a
d
d
r

+
8

b
a
se

 a
d
d
r

+
1
2

b
a
se

a
d
d
r

+
1
6

10 20 30 40 50

Example

Syntax

72

Embedded C
Arrays – Point to be noted

An array is a collection of data of same data type.

Addresses are sequential

First element with lowest address and the last element
with highest address

Indexing starts from 0 and should end at array SIZE – 1.
Example say array[5] will have to be indexed from 0 to 4

Any access beyond the boundaries would be illegal access
Example, You should not access array[-1] or array[SIZE]

●

●

●

●

●

73

Embedded
Arrays – Why?

C

#include <stdio.h>

int
{

main()
#include <stdio.h>

int
int
int
int
int

num1
num2
num3
num4
num5

=
=
=
=
=

10;
20;
30;
40;
50;

int
{

main()

int
int

num_array[5] = {10, 20, 30, 40, 50};
index;

for
{

(index = 0; index < 5; index++)
printf(“%d\n”,
printf(“%d\n”,
printf(“%d\n”,
printf(“%d\n”,
printf(“%d\n”,

num1);
num2);
num3);
num4);
num5);

printf(“%d\n”, num_array[index]);
}

return 0;
}

return 0;
}

Example

74

Embedded
Arrays - Reading

C

#include <stdio.h>

int
{

main()

int array[5] =
int index;

{1, 2, 3, 4, 5};

index = 0;
do
{

printf(“Index %d has Element
index++;

} while (index < 5);

%d\n”, index, array[index]);

return 0;
}

Example

75

Embedded C
Arrays - Storing

#include <stdio.h>

int
{

main()

int
int

num_array[5];
index;

for
{

(index = 0; index < 5; index++)

scanf(“%d”, &num_array[index]);
}

return 0;
}

Example

76

Embedded C
Arrays - Initializing

#include <stdio.h>

int
{

main()

int
int
int
int

array1[5] = {1,
array2[5] = {1,

2, 3, 4, 5};
2};

array3[] = {1, 2};
array4[]; /* Invalid */

printf(“%u\n”,
printf(“%u\n”,
printf(“%u\n”,

sizeof(array1));
sizeof(array2));
sizeof(array3));

return 0;
}

Example

77

Embedded
Arrays – Copying

C

Can we copy 2 arrays? If yes how?●

#include <stdio.h>

int
{

main()

int array_org[5] = {1, 2, 3,
int array_bak[5];

4, 5}; Waow!! so simple?
But can I do this?

array_bak = array_org;

if (array_bak == array_org)
{

printf(“Copied\n”);
}

return 0;
}

Example

78

Embedded C
Arrays – Copying

No!! its not so simple to copy two arrays as put in the
previous slide. C doesn't support it!

Then how to copy an array?

It has to be copied element by element

●

●

●

79

Embedded
Pointers – Jargon

C

What's a Jargon?●

Jargon may refer to terminology used in a certain
profession, such as computer jargon, or it may refer to any
nonsensical language that is not understood by most
people.

Speech or writing having unusual or pretentious vocabulary,
convoluted phrasing, and vague meaning.

–

–

Pointer are perceived difficult●

Because of jargonification–

So, let's dejargonify & understand them●

80

Embedded
Pointers – Analogy

C
with Book

A Book System Memory

Contains pages Memory Pages

Front matter Boot Code

Table of Contents Pointer to different programs

Chapters Code Segments

Notes Section Data & Stack

Indexes Pointers to specific memory locations

81

Embedded C
Pointers – Computers

Just like a book analogy, Computers contains different
different sections (Code) in the memory

All sections have different purposes

Every section has a address and we need to point to them
whenever required

In fact everything (Instructions and Data) in a particular
section has a address!!

So the pointer concept plays a big role here

●

●

●

●

●

82

Embedded
Pointers – Why?

C

To have C as a low level language being a high level
language

Returning more than one value from a function

To achieve the similar results as of ”pass by variable”

parameter passing mechanism in function, by passing the
reference

To have the dynamic allocation mechanism

●

●

●

●

●

83

Embedded C
Pointers – The 7 Rules

Rule

Rule

Rule

Rule

Rule

Rule

Rule

1

2

3

4

5

6

7

-

-

-

-

-

-

-

Pointer is an Integer

Referencing and De-referencing

●

●

Pointer

Pointer

Pointer

means Containing

Type

Arithmetic

●

●

●

Pointing to Nothing

Static vs Dynamic Allocation

●

●

84

Embedded C
Pointers – The 7 Rules – Rule 1

i

p

Integer
Pointer
Say:

i;
p;

i = 6;
p = 6;

6

6

RAM

CPU

85

Embedded C
Pointers – The 7 Rules – Rule 1

Whatever we put in data bus is Integer

Whatever we put in address bus is Pointer

So, at concept level both are just numbers.
different sized buses

Rule: “Pointer is an Integer”

Exceptions:

●

●

May be of●

●

●

May not be address and data bus of same size

Rule 2 (Will see why? while discussing it)

–

–

86

Embedded C
Pointers – Rule 1 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx =
ptr

5;
= 5;

return 0;
}

?

?

Example

87

Embedded C
Pointers – Rule 1 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx =
ptr

5;
= 5;

return 0;
}

So pointer is an integer●

But remember the “They

32 bit system = 4 Bytes

64 bit system = 8 Bytes

may not be of same size”●

5

5

Example

88

Embedded C
Pointers – The 7 Rules – Rule 2

Rule : “Referencing and Dereferencing”●

&

*

AddressVariable

89

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx = 5;

return 0;
}

Considering

* 1000

the image, What would the below line mean?●

?

5

Example

90

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx = 5;

return 0;
}

Considering

* 1000

Goto to the

* 1000 → 5

the image, What would the below line mean?●

location 1000 and fetch its value, so●

?

5

Example

91

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx =
ptr

5;
= &x;

return 0;
}

What should
above code?

be the change in the above diagram for the●

?

5

Example

92

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h> x

1000 Say 4 bytesint main()
{

int
int

x;
*ptr; ptr

2000 Say 4 bytesx =
ptr

5;
= &x;

return 0;
}

So pointer should contain the address of a variable●

It should be a valid address●

1000

5

Example

93

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h> x

1000int
{

main()
& *

int
int

x;
*ptr; ptr

2000x =
ptr

5;
= &x;

return 0;
}

“Add a & on variable to store its address in a pointer”

“Add a * on the pointer to extract the value of variable it
pointing to”

is

1000

5

Example

94

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h>

int
{

main()

int
int

number = 10;
*ptr;

ptr = &number;

printf(“Address of number is %p\n”, &number);
printf(“ptr contains %p\n”, ptr);

return 0;
}

Example

95

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h>

int
{

main()

int
int

number = 10;
*ptr;

ptr = &number;

printf(“number contains %d\n”, number);
printf(“*ptr contains %d\n”, *ptr);

return 0;
}

Example

96

Embedded C
Pointers – Rule 2 in detail

#include <stdio.h>

int
{

main()

int
int

number = 10;
*ptr;

ptr = &number;
*ptr = 100;

printf(“number contains %d\n”, number);
printf(“*ptr contains %d\n”, *ptr);

return 0;
}

By compiling and executing the above
conclude

“*ptr = number”

code we can●

Example

97

Embedded C
Pointers – The 7 Rules – Rule 3

Pointer pointing to a Variable = Pointer
Address of the Variable

contains the●

Rule: “Pointing means Containing”●

1000
a#include <stdio.h>

1004
int main()
{

int a = 10;
int *ptr;

1008

1012

ptr = &a;
1016

ptr
return 0;

1020}

1024

10

1000

Example

98

Embedded C
Pointers – Rule 4 in detail

The question is, does address has a type?●

num
#include <stdio.h>

1000 4 bytes

int main()
{

int num = 1234;
char ch;

ch

1004 1 bytes

return 0;
}

So from the above above diagram can we say &num →

4

●

bytes and &ch → 1 byte?

?

1234

Example

99

Embedded C
Pointers – Rule 4 in detail

The answer is no!!, it does●

not depend on the type
the variable

The size of address

of 1000
num

ch
1004

●

1008

remains the same, and it
depends on the system we
use

Then a simple questions
arises is why types to
pointers?

1012

1016

1020
●

1024

100

Embedded C
Pointers – Rule 4 in detail

num

#include <stdio.h> 1000

chint
{

main()

int num = 1234;
char ch; 1004

iptr
int *iptr;
char *cptr;

2000

cptrreturn 0;
}

2004

Lets consider the above examples to understand it●

Say we have a integer and a character pointer●

?

?

?

1234
Example

101

Embedded C
Pointers – Rule 4 in detail

num

#include <stdio.h> 1000

chint
{

main()

int num = 1234;
char ch; 1004

iptr
int *iptr = #
char *cptr = &ch;

2000

cptrreturn 0;
}

2004

Lets consider the above examples to understand it●

Say we have a integer and a character pointer●

1004

1000

?

1234
Example

102

Embedded C
Pointers – Rule 4 in detail

num

With just the address, can
know what data is stored?

How would we know how
much data to fetch for the
address it is pointing to?

Eventually the answer would
be NO!!

So the type of the pointer is
required while

●

1000

ch

●

1004
iptr

2000
●

cptr

2004
●

Dereferencing it

Doing pointer arithmetic

–

–

1004

1000

?

1234

103

Embedded C
Pointers – Rule 4 in detail

num

When we say while
dereferencing, how does the
pointer know how much data
it should fetch at a time

●

1000

ch

1004
iptr

From the diagram
we can say

right side●

2000

cptr

*cptr fetches a single byte
2004

*iptr fetches 4 consecutive
bytes

So as conclusion we can say●

type * → fetch sizeof(type) bytes

1004

1000

?

1234

104

Embedded C
Pointers – Rule 4 in detail - Endianness

Since the discussion is
we have knowledge of

The Endianness of the

What is this now!!?

on the data fetching, its better
storage concept of machines

machine

●

●

●

Its nothing but the
machine

There are two types

byte ordering in a word of the–

●

Little Endian – LSB in Lower Memory Address–

Big Endian – MSB in Lower Memory Address–

105

Embedded C
Pointers – Rule 4 in detail - Endianness

LSB●

The byte of
importance

The change
number

a multi byte number with the least–

in it would have least effect on complete–

MSB●

The byte of
importance

The change

a multi byte number with the most–

in it would have more effect on complete–

change number

106

Embedded C
Pointers – Rule 4 in detail - Endianness

Let us consider the following
example and how it would be

●

#include <stdio.h>

int main()
{

int num =

stored in both machine types
0x12345678;

return 0;
}

1000 1001 1002 1003

1000 num

→Big Endian 1004

1000 1001 1002 1003

1000 num

→Little Endian 1004

78 56 34 1278 56 34 12

12 34 56 7812 34 56 78

Example

107

Embedded C
Pointers – Rule 4 in detail - Endianness

OK Fine. What now? How
modification?

is it going affect to fetch and●

Let us consider
slide

the same example put in the previous● First of all is it possible to
access a integer with character
pointer?

●

#include <stdio.h>

int main()
{

int num = 0x12345678; If yes,
effect

Let us

what should be the
on access?

assume a Litte Endian

●

int *iptr, char *cptr;

iptr =
cptr =

#
#

●

return 0;
system}

Example

108

Embedded C
Pointers – Rule 4 in detail - Endianness

1000 num

2000 iptr

2004 cptr

1000 num 1000 num

2000 iptr 2004 cptr

*iptr = 0x12345678 *cptr = 0x78

So from the above diagram it should be clear that when we do●

cross type accessing, the endianness should be considered

10001000

78 56 34 1278 56 34 12

1000

1000

78 56 34 12

109

Embedded C
Pointers – The 7 Rules – Rule 4

So changing *cptr will change only●

#include <stdio.h>

the byte its pointing toint
{

main()

int num = 0x12345678;
1000 num

int *iptr = #
char *cptr = #

2004 cptr
*cptr = 0x12;

*cptr = 0x12return 0;
}

So *iptr would contain 0x12345612
now!!

●

1000

12 56 34 12

Example

110

Embedded C
Pointers – The 7 Rules – Rule 4

So as a summary the type to the pointer does not say its
type, but the type of the data its pointing to

●

So the size of the pointer for different
same

types remains the●

#include <stdio.h>

int main()
{

if (sizeof(char *) == sizeof(long long *))
{

printf(“Yes its Equal\n”);
}

return 0;
}

Example

111

Embedded C
Pointers – The Rule 5 in detail

Before proceeding further let us understand an array
interpretation

●

Original Big Variable

Constant Pointer to the 1st Small Variable in the Big
Variable

When first interpretation fails than second
interpretation comes to picture.

The following are the case when first interpretation
fails:

–

–

–

–

When we pass array variable as function argument

When we assign a array variable to pointer variable

●

●

112

Embedded C
Pointers – The Rule 5 in detail

array 1000
#include <stdio.h>

1004
int main()
{

int array[5] = {1,
1008

2, 3, 4, 5};
int *ptr = array; 1012

return 0; 1016

}
1020

So,

Address of array = 1000

Base address = 1000

&array[0] = 1 → 1000

&array[1] = 2 → 1004

●

1024
ptr

1

2

3

4

5

1000

Example

113

Embedded C
Pointers – The Rule 5 in detail

array 1000
#include <stdio.h>

1004
int
{

main()

1008
int array[5] = {1,
int *ptr = array;

2, 3, 4, 5};
1012

printf(“%d\n”, *ptr); 1016

return 0; 1020

}
1024

ptr
This code should print 1 as
since its points to the base

output
address

●

Now, what should happen if we do

ptr = ptr + 1;

●

1

2

3

4

5

1000

Example

114

Embedded C
Pointers – The Rule 5 in detail

ptr = ptr +

The above
follows

ptr = ptr +

1;

line

● 1000
array

can be discribed as● 1004

1008

1 * sizeof(data type)●

1012

In this example we have
a
array, so

integer●

1016

1020ptr =

=

=

Here

=

=

ptr

ptr

ptr

ptr

+

+

+

=

1 * sizeof(int)

1 * 4

4

1000 so

+ 4

●

1024
ptr

●

1000

1004

1

2

3

4

5

1004

115

Embedded C
Pointers – The Rule 5 in detail

array array array1000 1000 1000

1004 1004 1004

1008 1008 1008

1012 1012 1012

1016 1016 1016

1020 1020 1020

1024 1024 1024
ptr ptr ptr

ptr = ptr + 2; ptr = ptr + 3; ptr = ptr + 4;

Why does the compiler does this?. Just for convenience●

1

2

3

4

5

1016

1

2

3

4

5

1012

1

2

3

4

5

1008

116

Embedded C
Pointers – The Rule 5 in detail

Relation
as

with array can be explained●

array 1000

ptr +

ptr +

1000

1008

So,

ptr +

*(ptr

2

2 *

+ 2

1004

1008
sizeof(int)

* 4
1012

1016

→ &array[2]1020

●1024
ptr

2 → 1008 → &array[2]

+ 2) → *(1008) → array[2]
ptr = ptr + 2;

1

2

3

4

5

1008

117

Embedded C
Pointers – The Rule 5 in detail

So to access a array element using a pointer

*(ptr + i) → array[i]

This can be written as following too!!

would be●

●

array[i] → *(array + i)

Which results to●

ptr = array

So as summary the below line also
of second array interpretation

becomes valid because●

int *ptr = array;

118

Embedded C
Pointers – The Rule 5 in detail

Wait can I write●

*(ptr + i) → *(i + ptr)

Yes. So than can I write

array[i] → i[array]

Yes. You can index the element in both the ways

●

●

119

Embedded C
Pointers – The 7 Rules – Rule 5 – Size of void

On gcc size of void is 1

Hence pointer arithmetic
pointer

●

can be performed on void●

Its compiler dependent!●

Note: To make standard compliant, compile using gcc -pedantic-errors

120

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

#include <stdio.h>

int
{

main() num

1000 4 bytesint *num;

return 0;
}

Where am I
pointing to?

What does it
Contain?

Can I read or
write wherever
I am pointing?

?

?

?

?

?

?

Example

121

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

Is it pointing to the valid address?

If yes can we read or write in the location where its
pointing?

If no what will happen if we access that location?

So in summary where should we point to avoid all this
questions if we don't have a valid address yet?

The answer is Point to Nothing!!

●

●

●

●

●

122

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

Now what is

A permitted

Point to

location

Nothing?

in the system will always give

●

●

predictable result!

It is possible that we are pointing to some memory location●

within our program limit, which might fail any time! Thus
making it bit difficult to debug.

An act of initializing pointers to 0 (generally, implementation
dependent) at definition.

0??, Is it a value zero? So a pointer contain a value 0?

Yes. On most of the operating systems, programs are not
permitted to access memory at address 0 because that
memory is reserved by the operating system

●

●

●

123

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

So by convention if a pointer is initialized to zero value,
it is logically understood to be point to nothing.

And now, in the pointer context, 0 is called as NULL

So a pointer that is assigned NULL is called a Null Pointer
which is Pointing to Nothing

So dereferencing a NULL pointer is illegal and will always
lead to segment violation, which is better than pointing
to some unknown location and failing randomly!

●

●

●

●

124

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

Need for Pointing to 'Nothing'●

Terminating Linked Lists

Indicating Failure by malloc, ...

–

–

Solution●

Need to reserve one valid value

Which valid value could be most

In wake of OSes sitting from the
good choice

–

useless?

start of memory, 0 is a

–

–

As discussed in previous sides it is implementation
dependent

–

125

Embedded C
Pointers – Rule 6 in detail – NULL Pointer

#include <stdio.h>

int main()
{

int *num;

num = NULL;

return 0;
}

#include <stdio.h>

int main()
{

int *num = NULL;

return 0;
}

Example

Example

126

Embedded C
Pointers – The 7 Rules – Rule 7

Rule: “Static Allocation vs Dynamic Allocation”●

ample

#include <stdio.h> #include <stdio.h>

int main()
{

int num1;
static int
char *ptr;

int main()
{

char *ptr;
num2;

ptr = malloc(5);
char array[5];

return 0;
return 0; }

}

ExExample

127

Embedded C
Pointers – Rule 7 in detail

Unnamed vs named Allocation = Unnamed/named Houses●

Ok, House 1, I should go??? Oops

1 2 3 4 5 6 7 8

Ok, House 1, I should go that side ←

128

Embedded C
Pointers – Rule 7 in detail

Managed by Compiler vs User

Compiler

●

●

The compiler will allocate the required memory
internally

This is done at the time of definition of variables

–

–

User●

The user has
required and

This done by

to allocate the memory whenever
deallocate whenever required

using malloc and free

–

–

129

Embedded C
Pointers – Rule 7 in detail

Static vs Dynamic●

num

1000

#include <stdio.h> num_ptr

2000 4 bytesint main()
{

ptrint num, *num_ptr, *ptr;

2004 4 bytes
num_ptr = #

ptr = malloc(1);

return 0;
}

?

?

Example
?

130

Embedded C
Pointers – Rule 7 in detail

Static vs Dynamic●

num

1000

#include <stdio.h> num_ptr

2000 4 bytesint main()
{

int num, *num_ptr, ptr*ptr;

2004 4 bytes
num_ptr = #

ptr = malloc(1);

return 0;
}

?

1000

Example
?

131

Embedded C
Pointers – Rule 7 in detail

Static vs Dynamic●

num

1000

#include <stdio.h> num_ptr

2000 4 bytesint
{

main()

ptrint num, *num_ptr, *ptr;

2004 4 bytes
num_ptr = #

ptr = malloc(1);

return 0;
}

500

?

?

?

?

?

500

1000

Example
?

132

Embedded C
Pointers – Rule 7 in detail - Dynamic Allocation

The need●

You

You

You

can

can

can

decide size of the memory at run time

resize it whenever required

decide when to create and destroy it.

–

–

–

133

Embedded C
Pointers – Rule 7 – Dynamic Allocation - malloc

void *malloc(size_t size);

Allocates the requested size of memory from

The size is in bytes

Returns the pointer of the allocated memory
else returns NULL pointer

the heap●

●

on success,●

Prototype

134

Embedded C
DynamicPointers – Rule 7 – Allocation - malloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = malloc(5);

return 0;
}

Allocate 5 Bytes

500

?

?

?

?

?

?

?

?

?

?

500

Example

135

Embedded C
DynamicPointers – Rule 7 – Allocation - malloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = malloc(10);

Only 7 Bytes
Available!!
So returns
NULL

return 0;
}

NULL

?

?

?

?

?

?

?

?

?

?

NULL

Example

136

Embedded C
Pointers – Rule 7 – Dynamic Allocation - calloc

void *calloc(size_t nmemb, size_t size);

Allocates memory blocks
elements" of "size" bytes

The allocated memory is

large enough to hold "n
each, from the heap

set with 0's

●

●

Returns the pointer of the allocated memory on success,
else returns NULL pointer

●

Prototype

137

Embedded C
DynamicPointers – Rule 7 – Allocation - calloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = calloc(5, 1);

return 0;
}

Allocate 5 Bytes
and all are set
to zeros

500

?

?

?

0

0

0

0

0

?

?

500

Example

138

Embedded C
Pointers – Rule 7 – Dynamic Allocation - realloc

void *realloc(void *ptr, size_t size);

Changes the size of the already allocated memory by
malloc or calloc.

Returns the pointer of the allocated memory on success,
else returns NULL pointer

●

●

Prototype

139

Embedded C
DynamicPointers – Rule 7 – Allocation - realloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = malloc(5);

ptr
ptr

=
=
realloc(ptr,
realloc(ptr,

7);
2);

return 0;
Allocate 5 Bytes

}

500

?

?

?

?

?

?

?

?

?

?

500

Example

140

Embedded C
DynamicPointers – Rule 7 – Allocation - realloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = malloc(5);

ptr
ptr

=
=
realloc(ptr,
realloc(ptr,

7);
2);

Existing memory
gets extended to
7 bytes

return 0;
}

500

?

?

?

?

?

?

?

?

?

?

500

Example

141

Embedded C
DynamicPointers – Rule 7 – Allocation - realloc

ptr

1000#include <stdio.h>

int
{

main()

char *ptr;

ptr = malloc(5);

ptr
ptr

=
=
realloc(ptr,
realloc(ptr,

7);
2);

Existing memory
gets shrinked to
2 bytes

return 0;
}

500

?

?

?

?

?

?

?

?

?

?

500

Example

142

Embedded C
Pointers – Rule 7 – Dynamic Allocation - realloc

Points to be noted●

Reallocating existing memory will be like deallocating
the allocated memory

If the requested chunk of memory cannot be
extended in the existing block, it would allocate in a
new free block starting from different memory!

–

–

So its always a good idea to store a reallocated
block in pointer, so that we can free the old
pointer.

●

143

Embedded C
Pointers – Rule 7 – Dynamic Deallocation - free

void free(void *ptr);

Frees the allocated memory, which must have been
returned by a previous call to malloc(), calloc() or realloc()

Freeing an already freed block or any other block, would
lead to undefined behaviour

Freeing NULL pointer has no effect.

If free() is called with invalid argument, might collapse the
memory management mechanism

If free is not called after dynamic memory allocation, will
lead to memory leak

●

●

●

●

●

Prototype

144

Embedded C
Pointers – Rule 7 – Dynamic Deallocation - free

ptr

1000#include <stdio.h>

int main()
?

?

?

?

?

?

?

?

?

?

?

Example

{
char *ptr;
int i;

ptr = malloc(5);

for (i = 0; i < 5; i++)
{

ptr[i] = 'A' + i;
}

free(ptr);

return 0;
}

145

Embedded C
DynamicPointers – Rule 7 – Deallocation - free

ptr

1000#include <stdio.h>

int main()

500

?

?

?

?

?

?

?

?

?

?

500

Example

{
char *ptr;
int i;

ptr = malloc(5);

for (i = 0; i < 5; i++)
{

ptr[i] = 'A' + i;
}

free(ptr);

return 0;
}

146

Embedded C
DynamicPointers – Rule 7 – Deallocation - free

ptr

1000#include <stdio.h>

int main()

500

?

?

?

E

D

C

B

A

?

?

500

Example

{
char *ptr;
int i;

ptr = malloc(5);

for (i = 0; i < 5; i++)
{

ptr[i] = 'A' + i;
}

free(ptr);

return 0;
}

147

Embedded C
DynamicPointers – Rule 7 – Deallocation - free

ptr

1000#include <stdio.h>

int main()

500

?

?

?

E

D

C

B

A

?

?

500

Example

{
char *ptr;
int i;

ptr = malloc(5);

for (i = 0; i < 5; i++)
{

ptr[i] = 'A' + i;
}

free(ptr);

return 0;
}

148

Embedded C
Pointers – Rule 7 – Dynamic Deallocation - free

Points to be noted●

Free releases the allocated block, but the pointer
would still be pointing to the same block!!, So
accessing the freed block will have undefined
behaviour.

This type of pointer which are pointing to freed
locations are called as Dangling Pointers

Doesn't clear the memory after freeing

–

–

–

149

Will meet again

150

