Epigenetics

Through epigenetics, crop abundance and failure can have health effects that persist for several generations

Oragter 21 Opener Genetics: A Conceptual Approach. Fifth Edition © 2014 W.H. Freeman and Company Dr. N K Chaurasia MSSSoA, CUTM

21.1 What is Epigenetics?

- How, through the process of development, a genotype produces a phenotype
- "epigenesis"-how an embryo develops
- "genetics"-the study of genes and heredity
- Changes that are heritable

Figure 21.1 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

- Changes in chromatin structure, which alter gene expression
- Molecular mechanisms that alter chromatin structure:
 - Changes in patterns of DNA methylation
 - Chemical modification of histone proteins
 - RNA molecules that affect chromatin structure and gene expression

- **DNA methylation:** addition of methyl groups to nucleotide bases
- **Most common:** methylation of cytosine to produce 5-methylcytosine

Figure 21.2 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Figure 21.4 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

- Histone modifications: more than 100 different posttranslational modifications of histone proteins
- Modifications include addition of:
 - Phosphates
 - Methyl groups
 - Acetyl groups
 - ubiquitin

Epigenetic effects by RNA molecules

• Examples:

- X inactivation by Xist
- Paramutation in corn by siRNAs

• **Paramutation:** an interaction between two alleles that leads to a heritable change in expression of one of the alleles

• Examples:

- Paramutation in corn
- Paramutation in mice

Figure 21.5 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Conclusion: A cross between $Kit^+ Kit^+$ and $Kit^+ Kit^+$ produces $1/_2 Kit^+ Kit^+$ and $1/_2 Kit^+ Kit^+$ progeny, but some $Kit^+ Kit^+$ develop the phenotype of heterozygotes.

Figure 21.7 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Table 21.1	Effects of injection of different types of RNA into wild-type mice (<i>Kit</i> ⁺ <i>Kit</i> ⁺)	
		Presence of White Tail
Type of RNA Injected		Tips and Feet
<i>Kit[≤] Kit[≤]</i> mRNA		Uncommon
<i>Kit[≤] Kit</i> ⁺ mRNA		More common
miRNA to <i>Kit</i> mRNA		More common
nonspecific miRNA		Uncommon

Table 21.1

Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

- Behavioral epigenetics: life experiences, especially early in life, have long-lasting effects on behavior
- Epigenetic changes induced by maternal behavior
- Epigenetic effects of early stress in humans
- Epigenetics in cognition

Figure 21.8 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

- Epigenetic effects of environmental chemicals
- Transgenerational epigenetic effects on metabolism
- Epigenetic effects in monozygotic twins
- X inactivation

© 2014 W. H. Freeman and Company

Table 21.2	Major genes involved in X inactivation	
Gene	Encodes	Action of Gene
Xist	IncRNA	Coats inactive X chromosome and leads to silencing of transcription of many genes on the inactive X
Tsix	IncRNA	Inhibits transcription of <i>Xist</i> on active X chromosome
Јрх	IncRNA	Stimulates transcription of <i>Xist</i> on inactive X chromosome
Xite	IncRNA	Sustains <i>Tsix</i> expression on active X, which inhibits <i>Xist</i> and maintains transcription of genes on active X chromosome

Table 21.2 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

- Epigenetic Changes Associated with Cell Differentiation
- Genomic Imprinting
- Epigenetic effects in monozygotic twins

Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Figure 21.12 Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

21.4 The Epigenome

• Epigenome: overall pattern of chromatin modifications possessed by each individual organism

Detecting DNA methylation

- Restriction endonucleases
- Bisulfate sequencing
- Detecting histone modifications
 - ChIP
- Genome-wide epigenetic marks

Figure 21.13

Genetics: A Conceptual Approach, Fifth Edition © 2014 W. H. Freeman and Company

Thank You..