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In agricultural experimentation every research worker is interested in ascertaining the 
relative worth of a set of treatments with reasonable confidence. The simple procedure of 
trying these treatments each in a different field or plot does not seem to adequate to 
ascertain their relative worth with reasonable confidence. For even after discovering from 
such a trail that some treatments have given a better performance than others the 
experimenter is left wondering whether the differences observed are due to treatments, to 
inherent fertility differences in the soil or some other accidental factors. Ideally the 
research worker would like to try the treatments under identical conditions but even with 
the most uniform land that he can select, he finds that the inherent variation in the soil is 
quite considerable and the simple procedure of trying out different treatments on single 
plots side by side in the same field does not suffice for assessing the intrinsic worth of the 
treatments. A good idea of the nature and extent of fertility variation in land can be 
obtained from the results of what are known as uniformity trials. In other words 
uniformity trial is planned to determine suitable size and shape of the plot and the number 
of plots in a block.  
 
Uniformity trial involves growing a particular crop on a field or piece of land with 
uniform conditions. All sources of variation except that due to a native soil differences, 
are kept constant. At the time of harvest the entire field is divided into smaller units of 
same size and shape and the produce from each such units is recorded separately. The 
smallest the basic units, the more detailed is the measurement of soil heterogeneity. In the 
past, large number of research workers has attempted to study the soil fertility variation 
through various methods. Some of the methods for soil fertility variation/plot size are 
given below: 

1.  Fertility Contour Map 
An approach to describe the heterogeneity of land is to construct the fertility contour 
map.  This is constructed by taking the moving averages of yields of unit plots and 
demarcating the regions of same fertility by considering those areas, which have yield of 
same magnitude.  This approach of describing the variation in fertility has been adopted 
by large number of workers in India and abroad.  

2. Maximum Curvature Method 
In this method basic units of uniformity trials are combined to form new units. The new 
units are formed by combining columns, rows or both. Combination of columns and rows 
be done in such a way that no columns or rows is left out. For each set of units, the 
coefficient of variation (CV) is computed. A curve is plotted by taking the plot size (in 
terms of basic units) on X-axis and the CV values on the Y-axis of graph sheet. The point 
at which the curve takes a turn, i.e., the point of maximum curvature is located by 
inspection. The value corresponding to the point of maximum curvature will be optimum 
plot size. 
 



Uniformity Trials 

Harris (1915, 1920) has shown that adjacent areas are correlated, as such the hypothesis 
of no correlation is not tenable.  He utilizes these criteria for subdividing the field into 
uniform areas.  He suggested use of intra-class correlation as a measure of heterogeneity.  
If this correlation coefficient is in the neighbourhood of zero then field could be 
considered as homogenous field and whatever plot size is adopted, it will not lead to a 
large experimental error.  These correlation coefficients do not give any idea of plot size. 
 
3.  Fairfield Smith’s Variance Law   
Keeping in view of drawbacks of various methods given above, Smith (1938) gave a 
empirical relations between variance and plot size. He developed an empirical model 
representing the relationship between plot size and variance of mean per plot. This model 
is given by the equation   

  
x

V
 = V b

1
x or log Vx = log V1 - b log x. 

where x is number of basic units in a plot, Vx is the variance of mean per plot of x units, 
V1 is the variance of mean per plot of one unit, and b is the characteristics of soil and 
measure of correlation among contiguous units if  b=1,   

x
V = V 1

x and the units making up 

the plots of x unit are not correlated at all. On the other hand, if b=0, the x units are 
perfectly correlated and Vx = V1 so there is no gain due to the larger size of plot. In 
general, b will be between 0 and 1 so that the larger plot gives more information with the 
same number of plots.  In that case, larger area for the purpose of experiment will be 
used. The values of V1 and b are determined by the principle of least squares. 
 
Example: 
Table-1 Grain yield (g/m2) of Rice Variety IR8 from Uniformity Test covering an 
area 18x 36 m. 
    Column     
Row 1 2 3 4 5 6 7 8 
1 842 844 808 822 979 954 965 906 
2 803 841 870 970 943 914 916 836 
3 773 782 860 822 932 971 765 875 
4 912 887 815 937 844 661 841 844 
5 874 792 803 793 818 799 767 855 
6 908 875 899 788 867 790 831 757 
7 875 907 921 963 875 880 898 802 
8 891 928 871 875 865 777 738 796 
9 823 784 754 873 764 775 752 753 
10 785 794 764 822 714 748 724 717 
11 785 808 823 826 801 712 826 665 
12 829 895 774 891 841 815 834 778 
13 861 883 739 762 725 717 746 766 
14 906 885 790 655 690 769 765 719 
15 819 911 788 654 742 786 791 779 
16 893 862 769 727 725 721 739 736 
17 813 750 742 872 746 812 705 724 
18 816 758 811 702 728 741 757 732 
19 676 783 734 626 782 704 782 707 
20 813 809 695 707 753 680 720 683 
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 1 2 3 4 5 6 7 8 
21 801 764 701 716 753 680 706 665 
22 718 784 730 750 733 705 728 667 
23 756 725 821 685 681 738 630 599 
24 789 681 732 669 681 698 689 622 
25 652 622 695 677 698 666 691 688 
26 729 650 700 764 680 681 645 622 
27 698 713 714 734 651 649 675 614 
28 745 677 685 711 688 614 585 534 
29 964 727 648 664 623 629 616 594 
30 671 729 690 687 705 622 523 526 
31 717 694 727 719 669 630 701 645 
32 652 713 656 584 517 572 574 539 
33 605 708 684 715 659 629 632 596 
34 559 722 726 705 571 637 637 577 
35 589 681 690 570 619 624 580 570 
36 614 633 619 658 678 673 652 602 
 
9 10 11 12 13 14 15 16 17 18 
898 856 808 920 808 889 943 894 968 917 
858 926 922 910 872 805 775 846 947 965 
853 936 927 779 865 720 566 893 914 861 
809 778 945 876 901 802 836 778 923 949 
792 858 912 839 813 740 730 632 813 914 
751 774 863 902 771 747 819 699 670 934 
874 928 872 834 892 760 753 720 751 894 
855 901 792 752 722 781 739 733 783 786 
820 798 847 858 811 875 659 661 759 767 
736 724 838 769 819 823 724 750 764 764 
759 738 867 725 794 755 730 638 724 734 
760 822 803 754 703 743 728 692 748 671 
662 634 743 719 710 682 694 675 709 720 
743 770 728 740 691 767 648 715 655 665 
645 810 816 746 729 814 718 721 708 722 
672 814 756 748 714 718 694 704 915 705 
640 757 708 750 767 638 754 767 763 685 
623 786 805 786 739 727 767 738 659 695 
672 703 698 758 762 625 623 699 662 613 
757 782 789 811 789 769 751 648 680 696 
680 650 690 699 768 751 701 665 603 680 
703 684 777 747 713 696 717 732 712 679 
629 703 780 720 709 697 731 661 627 644 
672 704 705 625 677 704 648 605 585 651 
682 713 670 708 707 695 681 716 626 637 
661 728 715 775 690 726 669 766 709 645 
634 635 639 690 694 637 590 640 658 609 
533 671 600 647 592 595 563 634 666 644 
619 631 628 591 675 654 640 718 667 649 
661 683 619 709 620 651 676 728 547 682 
638 714 633 670 649 665 557 734 674 727 
545 629 636 580 607 654 585 674 608 612 
627 644 661 682 690 636 665 731 753 640 
561 590 646 639 672 636 651 684 584 622 
568 589 550 622 623 706 725 738 669 636 
590 605 538 682 651 653 680 696 633 660 
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Smith's Index of Soil Heterogeneity 
Step-1 Combine the r x c basic units to simulate plots of different sizes and shapes. Use 
only combinations that fit exactly into the whole area, i.e. the product of simulated plots 
and the number of basic units per plot must equal to the total number of basic units.  
Step-2 For each of the simulated plots constructed in Step-1, compute the yield total T as 
the sum of basic units to construct that plot and compute V(x) , Vx.  
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Step-3 For each plot size having more than one shape, test the homogeneity of between-
plot variance V(x) , to determine the significance of plot-orientation (plot shape) effect, by 
using F test or the Chi-square test. For each plot size whose plot shape effect is non-
significant, compute the average of Vx values over all plot shapes. For others, use the 
lowest value. 
For plot of size 2 m2 there are two shapes only. So,   F = 31,370/31,309 = 1.00 (NS).  
 
Step-4 Using the values of the variance per unit are Vx computed in Step 3, estimate the 
regression coefficient between Vx and plot size x. We fit the equation 

  
x

V
 = V b

1
x or log Vx = log V1 - b log x  or Y=cx  

where Y=log Vx - log V1 , c=-b and X=log x 
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c = -0.1376 or b=0.1376. 
 
Here wI is the number of plot shapes used in computing the average variance per unit area 
of the ith plot and m is the total number of plots of different sizes.  

Thus the Fairfield Smith’s equation is 1376.0
041,9ˆ

x
Vx = . 
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Table-2 Between-plot variance [V(x)], variance per unit area (Vx) and 
coefficient of variability (CV) of plots of various sizes and shapes, 
calculated from Rice Uniformity Data in Table-1 

Plot Size and  Shape     
Size 
m2

Width 
m 

Length 
m 

Plot 
numbers 

V(x) Vx CV % 

1 1 1 648 9,041 9,041 13.0 
2 2 1 324 31,370 7,842 12.1 
3 3 1 216 66,396 7,377 11.7 
6 6 1 108 235,112 6,531 11.0 
9 9 1 72 494,497 6,105 10.7 
2 1 2 324 31,301 7,827 12.1 
4 2 2 162 114,515 7,157 11.5 
6 3 2 108 247,140 6,865 11.3 
12 6 2 54 908,174 6,307 10.8 
18 9 2 36 1,928,177 5,951 10.5 
3 1 3 216 66,330 7,370 11.7 
6 2 3 108 247,657 6,879 11.3 
9 3 3 72 537,201 6,632 11.1 
18 6 3 36 1,981,408 6,115 10.7 
27 9 3 24 4,231,622 5,805 10.4 
4 1 4 162 113,272 7,080 11.5 
8 2 4 81 427,709 6,683 11.1 
12 3 4 54 943,047 6,549 11.0 
24 6 4 27 3,526,179 6,121 10.7 
36 9 4 18 7,586,647 5,854 10.4 
6 1 6 108 238,384 6,622 11.1 
12 2 6 54 913,966 6,347 10.9 
18 3 6 36 2,021,308 6,239 10.8 
36 6 6 18 7,757,823 5,986 10.5 
9 1 9 72 514,710 6,354 10.9 
18 2 9 36 2,017,537 6,227 10.8 
27 3 9 24 4,513,900 6,192 10.7 
 
This law can further be used for arriving at an optimum plot size.  He has recommended 
the cost function C = C1+C2 X where C1 = overhead cost which is independent of plot 
size and C2 is the consideration of cost by a unit increase in the plot size.  Optimum value 
of plot size is one which minimises the cost per unit of information viz. (C1+C2 X)  
 
Assuming that variance is given by 

 
2

1
opt C

C 
b-1
 b = X    

The optimum plot size had been worked out for different cost ratio and for values of b. 
 
Optimum Plot Size  
The optimum or recommended size of an experimental unit (plot) cannot be given 
without first considering several factors: 

i)  Practical Consideration: Certain practical aspects may dictate the size of 
experimental unit.  In animal experiments the pen’s or cages may be already 
constructed and not easily changed.  The pasture or paddocks size may be 
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determined by those already available and fenced. If grain combined and other 
power equipment are used, a fairly large plot may be essential.  In green house 
studies, the experimental unit may have to be small.  Experimental resources 
available would also determine the plot size. 

ii)   Nature of experimental material : The plot size is different for oat and for corn, 
pen or cages size for chicken and cattle are also different. 

iii)  Number of treatment per block or per incomplete block: For large number 
treatments to be tested, an incomplete blocks design may be used. 

iv)  Variability among individual or units within the experimental unit (Vs) relative to 
variability among experimental unit (Vp) treated alike.  The variance of treatment 
mean is proportional to [Vp + Vs/k].  The relative size of the Vp and Vs has 
considerable effects on optimum size. 

v)  Cost: Let Cs  be cost of an individual item within experimental unit which is 
independent of cost of experimental units.  Cp be the cost of experimental unit, 
independent of individuals in the unit.  Then the cost per treatment with a single 
replication is kCs + Cp = Ct and the total cost of experiment is a random variable 
Ct (v treatment, r replications) the optimum size thus depends on the ratio of Cs  
and Cp.   

 
Shape of  Plots 
Cochran (1940) has also considered the problem of shape of plots for various types of 
fields.  His results can very well understand by the following example. Suppose we have 
v=9 treatment to compare and we wish to select the plot shape with the smallest average 
experimental error variance when the direction of fertility gradient is unknown.  The two 
extreme shapes selected are rectangular [plan (a)] and Square [plan(b)] as shown in 
Figure A.  Let us consider the Case for which a linear fertility, gradient exists.  Suppose it 
is parallel to AB (Fig. A) so that plots lie perpendicular to the gradient.  The sum of 
squares among the 9 plots would be 8σi

2 + 60g2.  If fertility to the gradient was parallel to 
AC, the plots would be parallel to the gradient and all the plots would be equally affected 
by the gradient.  In this case the sum of squares of the 9 plots would be 8σI

2

A          B   A    B 
     

-3g 0 3g 
 

     
-3g 0 3g 

 

 

         

    
-3g 0 3g 

 

C          D   C    D 
 -4g -3g -2g -1g 0 g 2g 3g 4g         

 
        Plan (a)                     Plan (b) 

Fig. A  
If σI

2 is the random variance within blocks, independent of shape of plot, the mean 
squares as affected by the two plot shapes, rectangular and square as shown in Fig. A are 
given below: 
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Fertility Gradient d f       Average value of  Mean Square  
    Plan (a)                        Plan (b) 

 
 Parallel to AC  8   σI

2   σI
2 + (54/8)g2  

 Parallel to AB  8   σI
2 +(60/8)g2   σI

2 +(54/8)g2

 
 Average  8   σI

2 +(30/8)g2  σI
2 +(54/8)g2

 
If the plots were square as in plan (b) the sum of squares among plots would be the same 
for both cases.  The average mean square for long narrow plots is smaller than that of the 
square plots. 
 
As in the experimental design, the plots are generally arranged within blocks.  Therefore, 
for the efficient planning the information on the efficiency of different block size is also 
of great importance.  For working out the relative efficiency block sizes the ratio of error 
variance of a particular block arrangement to that without block arrangement can be 
worked out.  This ratio is expressed as percentage and was taken as efficiency for that 
block arrangement. 
 
In many a uniformity trials reported, it is observed that while the Fairfield Smith law 
explains the relationship between the plot size and average variation  (or coefficient of 
variation) very well, the variation for different shapes of the same plot are not of the same 
order. In such situation, while the law can be used for arriving optimum plot size, the 
shape of the plot need to be arrived after examining the variation associated with the 
shapes. Studies have revealed that the relationship between the block size (for a fixed plot 
size and shape) and variation also follow a similar law viz. Y=axb where Y is the 
variation (coefficient of variation) and x is the block size.  
 
The repeated analysis of uniformity trial data by super imposing different sizes and shape 
of plots and blocks and studying the variances or coefficient of variation can be work out 
and studied with the help of the relationship to arrive the optimum plot/block size/shape. 
This data can also be used to study the relative efficiency of various experimental design 
like Completely Randomised Design, Randomised Block  Design, Incomplete Block  
Design, Confounded Factorials, Latin Square. 
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Chapter 4 

Experimental Designs and Their Analysis 

 
Design of experiment means how to design an experiment in the sense that how the observations or 

measurements should be obtained to answer a query in a valid, efficient and economical way.  The designing 

of the experiment and the analysis of obtained data are inseparable.  If the experiment is designed properly 

keeping in mind the question, then the data generated is valid and proper analysis of data provides the valid 

statistical inferences. If the experiment  is not well designed, the validity of the statistical inferences is 

questionable and may be invalid. 

It is important to understand first the basic terminologies used in the experimental design. 

 

Experimental unit: 

For conducting an experiment, the experimental material is divided into smaller parts and each part is 

referred to as an experimental unit.  The experimental unit is randomly assigned to treatment is the 

experimental unit. The phrase “randomly assigned” is very important in this definition. 

 

Experiment: 

A way of getting an answer to a question which the experimenter wants to know. 

 

Treatment 

Different objects or procedures which are to be compared in an experiment are called treatments. 

 

Sampling unit: 

The object that is measured in an experiment is called the sampling unit. This may be different from the 

experimental unit. 

 

Factor: 

A factor is a variable defining a categorization. A factor can be fixed or random in nature. A factor is termed 

as a fixed factor if all the levels of interest are included in the experiment. 

A factor is termed as a random factor if all the levels of interest are not included in the experiment and those 

that are can be considered to be randomly chosen from all the levels of interest. 

 

Replication: 

It is the repetition of the experimental situation by replicating the experimental unit. 
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Experimental error: 

The unexplained random part of the variation in any experiment is termed as experimental error.  An 

estimate of experimental error can be obtained by replication. 

 

Treatment design: 

A treatment design is the manner in which the levels of treatments are arranged in an experiment.   

 

Example:  (Ref.: Statistical Design, G. Casella, Chapman and Hall, 2008) 

Suppose some varieties of fish food is to be investigated on some species of fishes.  The food is placed in the 

water tanks containing the fishes. The response is the increase in the weight of fish.  The experimental unit is 

the tank, as the treatment is applied to the tank, not to the fish. Note that if the experimenter had taken the 

fish in hand and placed the food in the mouth of fish, then the fish would have been the experimental unit as 

long as each of the fish got an independent scoop of food. 

 

Design of experiment: 

One of the main objectives of designing an experiment is how to verify the hypothesis in an efficient and 

economical way.  In the contest of the null hypothesis of equality of several means of normal populations 

having the same variances,  the analysis of variance technique can be used. Note that such techniques are 

based on certain statistical assumptions. If these assumptions are violated, the outcome of the test of a 

hypothesis then may also be faulty and the analysis of data may be meaningless.  So the main question is 

how to obtain the data such that the assumptions are met and the data is readily available for the application 

of tools like analysis of variance. The designing of such a mechanism to obtain such data is achieved by the 

design of the experiment. After obtaining the sufficient experimental unit, the treatments are allocated to the 

experimental units in a  random fashion. Design of experiment provides a method by which the treatments 

are placed at random on the experimental units in such a way that the responses are estimated with the 

utmost precision possible. 

 

Principles of experimental design: 

There are three basic principles of design which were developed by  Sir Ronald A. Fisher. 

(i) Randomization  

(ii) Replication 

(iii) Local control 
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(i) Randomization 

 The principle of randomization involves the allocation of treatment to experimental units at random to 

avoid any bias in the experiment resulting from the influence of some extraneous unknown factor that 

may affect the experiment. In the development of analysis of variance, we assume that the errors  are 

random and independent. In turn, the observations also become random. The principle of randomization 

ensures this. 

 

The random assignment of experimental units to treatments results in the following outcomes. 

a) It eliminates systematic bias. 

b) It is needed to obtain a  representative sample from the population. 

c) It helps in distributing the unknown variation due to  confounded variables throughout the 

experiment and breaks the confounding influence.   

 

Randomization forms a basis of a valid experiment but replication is also needed for the validity of the 

experiment. 

 

If the randomization process is such that every experimental unit has an equal chance of receiving each 

treatment, it is called complete randomization. 

 

(ii)    Replication:  

In the replication principle, any treatment is repeated a number of times to obtain a valid and more 

reliable estimate than which is possible with one observation only. Replication provides an efficient way 

of increasing the precision of an experiment. The precision increases with the increase in the number of 

observations. Replication provides more observations when the same treatment is used, so it increases 

precision. For example, if the variance of x is  2  than variance  of the sample mean x  based on n 

observation is  
2

.
n


  So as n increases,  ( )Var x  decreases. 

 

(ii)    Local control (error control) 

The replication is used with local control to reduce the experimental error. For example, if the 

experimental units are divided into different groups such that they are homogeneous within the blocks, 

then the variation among the blocks is eliminated and ideally, the error component will contain the 

variation due to the treatments only. This will, in turn, increase the efficiency. 
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Complete and incomplete block designs: 

In most of the experiments, the available experimental units are grouped into blocks having more or less 

identical characteristics to remove the blocking effect from the experimental error. Such design is termed as 

block designs. 

 

The number of experimental units in a block is called the block size. 

If 

size of block =  number of treatments 

and 

each treatment in each block is randomly allocated,  

then it is a full replication and the design is called a complete block design. 

 

In case, the number of treatments is so large that a full replication in each block makes it too heterogeneous 

with respect to the characteristic under study, then smaller but homogeneous blocks can be used. In such a 

case, the blocks do not contain a full replicate of the treatments. Experimental designs with blocks containing 

an incomplete replication of the treatments are called incomplete block designs. 

 

Completely randomized design (CRD) 

The CRD is the simplest design. Suppose there are v treatments to be compared. 

 All experimental units are considered the same and no division or grouping among them exist.  

 In CRD, the v treatments are allocated randomly to the whole set of experimental units, without 

making any effort to group the experimental units in any way for more homogeneity. 

 Design is entirely flexible in the sense that any number of treatments or replications may be used. 

 The number of replications for different treatments need not be equal and may vary from treatment to 

treatment depending on the knowledge  (if any) on the variability of the observations on individual 

treatments  as well as on the accuracy required for the estimate of individual treatment effect. 

 

 Example: Suppose there are 4 treatments and 20 experimental units, then  

- the treatment 1 is replicated, say 3  times and is given to 3 experimental units, 

- the treatment 2 is replicated, say 5 times  and is given to 5 experimental units, 

- the treatment 3 is replicated, say 6 times  and is given to 6 experimental units 

 and 

- finally, the  treatment 4 is replicated [20-(6+5+3)=]6 times and is given to the remaining 6 

experimental units. 



Analysis of Variance | Chapter 4 | Experimental Designs & Their Analysis | Shalabh, IIT Kanpur 

 55

 All the variability among the experimental units goes into experimented error. 

 CRD is used when the experimental material is homogeneous. 

 CRD is often inefficient. 

 CRD is more useful when the experiments are conducted inside the lab. 

 CRD is well suited for the small number of treatments and for the homogeneous experimental 

material. 

 

Layout of  CRD 

 Following steps are needed to design a CRD: 

 Divide the entire experimental material or area into a number of experimental units, say n. 

 Fix the number of replications for different treatments in advance  (for given total number of 

available experimental units). 

 No local control measure is provided as such except that the error variance can be reduced by 

choosing a homogeneous set of experimental units. 

 

Procedure 

Let the v treatments are numbered from 1,2,...,v and  in  be the number of replications required for  ith   

treatment such that  
1

.
v

i
i

n n


    

 Select 1n  units out of n units randomly and apply treatment 1 to these 1n  units. 

(Note: This is how the randomization principle is utilized is CRD.)   

 Select 2n  units out of ( 1)n n   units randomly and apply treatment 2 to these  2n  units.   

 Continue with this procedure until all the treatments have been utilized.   

 Generally, the equal number of treatments are allocated to all the experimental units unless no 

practical limitation dictates or some treatments are more variable or/and of more interest. 

 

Analysis 

There is only one factor which is affecting the outcome – treatment effect. So the set-up of one-way analysis 

of variance is to be used. 

:ijy
 
Individual measurement of jth  experimental units for ith treatment i = 1,2,...,v , j = 1,2,..., in . 

:ijy  Independently distributed following 2( , )iN     with 
1

0
v

i i
i

n


 . 

 :    overall mean 

i :    ith treatment effect 
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0 1 2: ... 0vH         

1 :H All  '
i s  are not equal. 

The data set  is arranged  as follows: 

  

1 2

11 21 1

12 22 2

1 2

1 2

_____________

Treatments

_____________

1       2      ...    

_____________

 ...

 ...

 

...

_____________

...  

_____________

v

v

v

n n vn

v

v

y y y

y y y

y y y

T T T

   

 

where 
1

in

i ij
j

T y


  is the treatment total due to ith effect, 

1 1 1

inv v

i ij
i i j

G T y
  

        is the grand total of all the observations. 

In order to derive the test for 0H , we can use either the likelihood ratio test or the principle of least squares. 

Since the likelihood ratio test has already been derived earlier, so we choose to demonstrate the use of the 

least-squares principle. 

 

The linear model under consideration is 

,    1,2,..., , 1,2,...,ij i ij iy i v j n        

where 'ij s  are identically and independently distributed random errors with mean 0 and variance 2 . The 

normality assumption of  s   is not needed for the estimation of parameters but will be needed for deriving 

the distribution of various involved statistics and in deriving the test statistics. 

Let  2 2

1 1 1 1

( ) .  
   

    
i in nv v

ij ij i
i j i j

S y  

Minimizing S with respect to     and i , the  normal equations are obtained as 

1

1

0 0

0 1,2,.., .
i

v

i i
i

n

i i i ij
ji

S
n n

S
n n y i v

 


 







   




    






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Solving them using 
1

0
v

i i
i

n


 , we get 

ˆ

ˆ
oo

i io oo

y

y y




 

 

where 
1

1 in

io ij
ji

y y
n 

   is the mean of observation receiving the ith treatment and 
1 1

1 inv

oo ij
i j

y y
n  

 
 
is the mean 

of all the observations. 

 

The fitted model is obtained after substituting the estimate  ̂  and ˆ
i  in the linear model. Using the fitted 

model, we can write 

( ) ( )

or ( ) ( ) ( ).

ij oo io oo ij io

ij oo io oo ij

y y y y y y

y y y y y y

    

    
 

Squaring both sides and summing over all the observation, we have  

2 2 2

1 1 1 1 1

    ( ) ( ) ( )

                                                                   

Sum of squares
Total sum

or      = due to treatment
of squares

effects

i in nv v v

ij oo i io oo ij io
i j i i j

y y n y y y y
    

    

  

 
 
 

  

Sum of squares
+

due to error

or                                                  TSS SSTr SSE

 
  
     

 
 

 

 

 Since 
1 1

( ) 0,
inv

ij oo
i j

y y
 

   so  TSS  is based on the sum of  ( 1)n  squared quantities. The TSS 

carries only ( 1)n  degrees of freedom. 
 

 Since  
1

( ) 0,


 
v

i io oo
i

n y y   so  SSTr  is based only on the sum of   (v -1) squared quantities. The  

SSTr  carries only (v -1) degrees of freedom. 

 Since  
1

( ) 0
in

i ij io
i

n y y


    for all i = 1,2,...,v,  so SSE is based on the sum of squaring n quantities like 

( )ij ioy y  with v constraints  
1

( ) 0,


 
in

ij io
j

y y  So SSE  carries  (n – v)  degrees of freedom. 

 Using the Fisher-Cochran theorem,  

 TSS = SSTr + SSE 

 with degrees of freedom partitioned as  

 (n – 1) = (v - 1)  + (n – v). 
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Moreover, equality in TSS = SSTr + SSE  has to hold exactly. To ensure that the equality holds exactly, we 

find one of the sums of squares through subtraction.  Generally, it is recommended to find SSE  by 

subtraction as 

SSE = TSS - SSTr  

2

1 1

2
2

1 1

( )
i

i

nv

ij io
i j

nv

ij
i j

TSS y y

G
y

n

 

 

 

 




 

 where 

 1 1

.
inv

ij
i j

G y
 


 

 

2

1

2 2

1

1

( )

where 

i

i

n

i io oo
j

v
i

i i

n

i ij
j

SSTr n y y

T G

n n

T y







 

 
  

 









 

2

: correction factor
G

n
. 

 
Now under  0 1 2: ... 0     vH ,  the model become 

 ,ij ijY     

and minimizing 2

1 1

inv

ij
i j

S 
 

  

with respect to    gives 

ˆ0 .oo

S G
y

n





   


 

The  SSE  under  0H  becomes 

 2

1 1

( )
inv

ij oo
i j

SSE y y
 

   

and thus  .TSS SSE  This TSS   under  0H  contains the variation only due to the random error whereas the 

earlier  TSS SSTr SSE   contains the variation due to treatments and errors both. The difference between 

the two will provides the effect  of treatments in terms of the sum of  squares as 

 2

1

( )
v

i i oo
i

SSTr n y y


   
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Distributions and decision rules: 

Using the normal distribution property of ' ,ij s  we find that 'ijy s  are also normal as they are the linear 

combination of ' .ij s  

2
02

2
02

0

0 *; 1, .

 ~ ( 1) under

 ~ ( ) under

  and  are independently distributed

 ~ ( 1, ) under .

   Reject   at  *  level of significance if  v n v

SSTr
v H

SSE
n v H

SSTr SSE

MStr
F v n v H

MSE
H F F







  

 

 



  

 

 
 

[Note: We denote the level of significance  here by *  because   has been used for denoting the factor]  

The analysis of  variance table is as follows 

 
Source of  Degrees Sum of  Mean sum    F 

variation  of freedom squares of squares 

 

Between treatments v - 1  SSTr   MSTr   
MSTr

MSE
 

Errors   n - v  SSE   MSE  

Total   n - 1           TSS  

 

Expectations 

2

1 1

2

1 1

2 2
.

1 1 1

2
2

1

2

( ) ( )

( )

( ) ( )

( )

 

 

  



 

 

 

 

 





 



i

i

i

nv

ij io
i j

nv

ij io
i j

nv v

ij i io
i j i

v

i
i i

E SSE E y y

E n E

n n
n

n v

 

 





 

 

2( )
SSE

E MSE E
n v

    
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2

1

2

1

2 2 2

1 1

2 2
2

1 1

2 2

1

( ) ( )

  ( )

  

  

  ( 1)





 

 



 

  

 
    

 
   

 

  





 

 



v

i io oo
i

v

i i io oo
i

v v

i i i io oo
i i

v v

i i i
i i i

v

i i
i

E SSTr n E y y

n E

n n n

n n n
n n

n v

  

  

 

 

 

 

2 2

1

1
( ) .

1 1

v

i i
i

SStr
E MSTr E n

v v
 



      
  

 

In general   2E MSTr   but under 0 ,H  all 0i   and so 2( )E MSTr  . 

 

Randomized Block Design 

If a large number of treatments are to be compared, then a large number of experimental units are required. 

This will increase the variation among the responses and CRD  may not be appropriate to use.   In such a 

case when the experimental material  is not homogeneous and there are v treatments to be compared, then it 

may be possible to 

 group the experimental material into blocks of sizes v units. 

 Blocks are constructed such that the experimental units within a block are relatively homogeneous 

and resemble to each other more closely than the units in the different blocks. 

 If there are b such blocks, we say that the blocks are at b levels. Similarly, if there are v treatments, 

we say that the treatments are at v levels. The responses from the b levels of blocks and v levels of 

treatments can be arranged in a two-way layout. The observed data set is arranged  as follows: 
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Treatments (Factor B) Block totals

 
1 2  

 
j v 

   
   

   
   

   
   

  B
lo

ck
s 

(F
ac

to
r 

A
) 

1  y11 y12 … y1j … y1v B1 

2  y21 y22 … y2j … y2v B2 

. 

. 

.  

. 

. 

. 

. 

. 

.  

 
.
. 
. 

.

. 

. 

. 

. 

.  
i  yi1 yi2 … yij … yiv Bi 

. 

. 

.  

. 

. 

.  

.

. 

. 

.

. 

. 

. 

. 

. 
b  yb1 yb2 … ybj … ybv Bb 

Treatment totals  T1 T2 … Tj … Tv Grand total  (G)

 

Layout:  

A two-way layout is called a randomized block design (RBD) or a randomized complete block design (RCB)  

if, within each block, the  v treatments are randomly assigned to v experimental units such that each of the v! 

ways of assigning the treatments to the units has the same probability of being adopted in the experiment and 

the assignment in different blocks are statistically independent. 

 

The RBD utilizes the principles of design -  randomization, replication and local control - in the following 

way: 

 

1. Randomization: 

- Number the v treatments 1,2,…,v. 

- Number the units in each block as 1, 2,...,v. 

- Randomly allocate the v treatments to v experimental units in each block. 

 

2. Replication 

Since each treatment is appearing in each block, so every treatment will appear in all the blocks.  So each 

treatment can be considered as if replicated the number of times as the number of blocks. Thus in RBD, the 

number of blocks and the number of replications are same. 
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3. Local control 

Local control is adopted in RBD in the following way: 

- First form the homogeneous blocks of the experimental units. 

- Then allocate each treatment randomly in each block. 

 

The error variance now will be smaller because of homogeneous blocks and some variance will be parted 

away from the error variance due to the difference among the blocks. 

 

 

Example:   

Suppose there are 7 treatments denoted as 1 2 7, ,..,T T T  corresponding to 7 levels of a factor to be included in 4 

blocks. So one possible layout of the assignment  of 7 treatments to 4 different  blocks in an RBD is as  

follows 

 

 

 

Analysis 

Let 

:ijy  Individual measurements of  jth treatment in ith block, i = 1,2,...,b,  j = 1,2,...,v. 

ijy ’s are independently distributed following 2( , )i jN        

where  :  overall mean effect 

             i :  ith block effect 

   j :  jth treatment effect 

such that 
1 1

0, 0
b v

i j
i j

 
 

   . 

 

 

 

Block 1 
2T  7T  3T  5T  1T  4T  6T  

Block 2 
1T  6T  7T  4T  5T  3T  2T  

Block 3 
7T  5T  1T  6T  4T  2T  3T  

Block 4 
4T  1T  5T  6T  2T  7T  3T  
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There are two null hypotheses to be tested. 

- related to the block effects 

 0 1 2: .... 0.B bH        

- related to the treatment effects 

 0 1 2: .... 0.T vH        

The linear model, in this case, is a two-way model as 

, 1,2,.., ; 1,2,..,ij i j ijy i b j v          

where ij  are identically and independently distributed random errors following a normal distribution with 

mean 0 and variance  2 . 

 

The tests of hypothesis can be derived using the likelihood ratio test or the principle of least squares. The use 

of likelihood ratio test has already been demonstrated earlier, so we now use the principle of least squares. 

 

2 2

1 1 1 1

Minimizing ( )
b v b v

ij ij i j
i j i j

S y   
   

       

and solving the normal equation 

0, 0, 0 for all 1, 2,.., , 1, 2,.., .
i j

S S S
i b j v

  
  

    
  

 

the least squares estimators are obtained as 

 

ˆ ,

ˆ ,

ˆ .

oo

i io oo

j oj oo

y

y y

y y








 

 
 

Using the fitted model (obtained after substituting the estimated values of the parameters in the model), we 

can write 

  = ( ) ( ) ( ).ij oo io oo oj oo ij io oj ooy y y y y y y y y y         

Squaring both sides and summing over i and j gives  

2 2 2 2

1 1 1 1 1 1

( ) ( ) ( ) ( )

or

b v b v b v

ij oo io oo oj oo ij io oj oo
i j i j i j

y y v y y b y y y y y y

TSS SSBl SSTr SSE

     

        

  

   
 

with degrees of freedom partitioned as 

1 ( 1) ( 1) ( 1)( 1).bv b v b v         

The reason for the number of degrees of freedom for different sums of squares is the same as in the case of 

CRD. 
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2

1 1

2
2

1 1

Here ( )
b v

ij oo
i j

b v

ij
i j

TSS y y

G
y

bv

 

 

 

 




 

2

:
G

bv
 correction factor. 

1 1

b v

ij
i j

G y
 

  :  Grand total of all the observation. 

2

1

2 2

1

1

( )

: block total

b

io oo
i

b
i

i

v
th

i ij
j

SSBl v y y

B G

v bv

B y i







 

 









 

2

1

2 2

1

( )
v

oj oo
j

v
j

j

SSTr b y y

T G

b bv





 

 




 

1

2

1 1

: treatment total

( ) .

b
th

j ij
i

b v

ij io oj oo
i j

T y j

SSE y y y y



 



   




 

The expectations of mean squares are 

2 2

1

2 2

1

2

( )
1 1

( )
1 1

( ) .
( 1)( 1)

b

i
i

v

j
j

SSBl v
E MSBl E

b b

SSTr b
E MSTr E

v v

SSE
E MSE E

b v

 

 







      
      

 
    



  

Moreover,      

                    

2
2

2
2

2
2

( 1) ~ ( 1)

( 1) ~ ( 1)

( 1)( 1) ~ ( 1)( 1).

SSBl
b b

SSTr
v v

SSE
b v b v










 

 

   

 

  
0 1 2Under : ... 0,

( ) ( )
B bH

E MSBl E MSE

     

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and    SSBl and SSE are independent , so  

 ~ (( 1, ( 1)( 1)).bl

MSBl
F F b b v

MSE
     

Similarly, under  0 1 2: ... 0,T vH        so 

 ( ) ( )E MSTr E MSE  

and  SSTr  and SSE  are independent, so  

 ~ ( 1), ( 1)( 1)).Tr

MSTr
F F v b v

MSE
     

Reject  0 (( 1),( 1)( 1)B beH if F F b b v     

Reject  0 (( 1),( 1)( 1))T TrH if F F v b v     

 

If   0BH  is accepted, then it indicates that the blocking is not necessary for future experimentation. 

If   0TH  is rejected then it indicates that the treatments are different. Then the multiple comparison tests are 

used to divide the entire set of treatments into different subgroup such that the treatments in the same 

subgroup have the same treatment effect and those in the different subgroups have different treatment 

effects. 

 

The analysis of variance table is as follows 

 
 
Source of Degrees Sum of   Mean    F 
variation of freedom squares  squares 
 
Blocks  b  - 1  SSBl   MSBl   BlF  

 
Treatments v - 1  SSTr   MSTr   TrF  

 
Errors  (b - 1)(v - 1) SSE   MSE 
 
 
Total  bv - 1  TSS 
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Latin Square Design 

The treatments in the RBD are randomly assigned to b blocks such that each treatment must occur in each 

block rather than assigning them at random over the entire set of experimental units as in the CRD. There are 

only two factors – block and treatment effects – which are taken into account and the total number of 

experimental units needed for complete replication are bv where  b and v are the numbers of blocks and 

treatments respectively. 

 

If there are three factors and suppose there are b, v and k levels of each factor,  then the total number of 

experimental units needed for a complete replication are bvk. This increases the cost of experimentation and 

the required number of experimental units over RBD. 

In Latin square design (LSD), the experimental material is divided into rows and columns, each having the 

same number of experimental units which is equal to the number of treatments. The treatments are allocated 

to the rows and the columns such that each treatment occurs once and only once in each row and in each 

column. 

 

In order to allocate the treatment to the experimental units in rows and columns, we take help from Latin 

squares. 

 

Latin Square: 

A Latin square of order  p is an arrangement of p symbols in  2p  cells arranged in p rows and p columns 

such that each symbol occurs once and only once in each row and in each column. For example, to write a 

Latin square of order 4, choose four symbols – A, B, C and D.  These letters are Latin letters which are used 

as symbols. Write them in a way such that each of the letters out of A, B, C and D occurs once and only once 

in each row and each column. For example, as 

 

   A     B    C    D 

   B     C    D    A 

   C     D    A    B 

   D     A    B    C 

 

This is a Latin square. 

We consider first the following example to illustrate how a Latin square is used to allocate the treatments and 

in getting the response. 
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Example:  

Suppose different brands of petrol are to be compared with respect to the mileage per litre achieved in motor 

cars. 

Important factors responsible for the variation in mileage are 

- the difference between individual cars. 

- the difference in the driving habits of drivers. 

 
We have three factors – cars, drivers and petrol brands. Suppose we  have 

- 4 types of cars denoted as 1, 2, 3, 4. 

- 4 drivers that are represented by  a, b, c, d. 

- 4 brands of petrol are indicated as A, B, C, D. 

Now the complete replication will require 4 4 4 64    the number of experiments. We choose only 16 

experiments. To choose such 16 experiments, we take the help of the Latin square. Suppose we choose the 

following Latin square: 

  A    B   C   D 

  B    C   D   A 

  C    D   A   B 

  D    A   B   C 

Write them in rows and columns and choose rows for drivers, columns for cars and letter for petrol brands. 

Thus 16 observations are recorded as per this plan of treatment combination (as shown in the next figure) 

and further analysis is carried out. Since such design is based on Latin square, so  it is called as a Latin 

square design. 
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Another choice of a Latin square of order 4 is 

  C   B   A   D 

  B   C   D   A 

  A   D   C   B 

  D   A   B   C 

This will again give a design different from the previous one. The  16 observations will be recorded again 

but based on different treatment combinations. 

 

Since we use only 16 out of 64 possible observations, so it is an incomplete 3-way layout in which each of 

the 3 factors – cars, drivers and petrol brands are at 4 levels and the observations are recorded only on 16 of 

the 64 possible treatment combinations. 

Thus in an LSD,  

 the treatments are grouped into replication in two-ways  

 once in rows and 

 and in columns, 

 rows and columns variations are eliminated from the within treatment variation. 

 In RBD, the experimental units are divided into homogeneous blocks according to the 

blocking factor. Hence it eliminates the difference among blocks from the experimental 

error. 

 In LSD, the experimental units are grouped according to two factors. Hence two effects  

(like as two block effects)  are removed from the experimental error.  

 So the error variance can be considerably reduced in LSD. 

 

The LSD is an incomplete three-way layout in which each of the three factors, viz, rows,  columns and 

treatments, is at v levels each and observations only on  2v  of the 3v  possible treatment combinations are 

taken. Each treatment combination contains one level of each factor. 

 

The analysis of data in an LSD is conditional in the sense it depends on which Latin square is used for 

allocating the treatments. If the Latin square changes, the conclusions may also change. 

 

We note that Latin squares play an important role is an LSD, so first we study more about these Latin 

squares before describing the analysis of variance. 
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Standard form of Latin square 

A Latin square is in the standard form if the symbols in the first row and first columns are in the natural 

order (Natural order means the order of alphabets like A, B, C, D,…). 

 

Given a Latin square, it is possible to rearrange the columns so that the first row and first column remain in a 

natural order. 

 

Example: Four standard forms of 4 4  Latin square are as follows. 

 
A  B  C  D 

B  A  D  C 

C  D  B  A 

D  C  A  B 

A  B  C  D 

B  C  D  A 

C  D  A  B 

D  A  B  C 

A  B  C  D 

B  D  A  C 

C  A  D  B 

D  C  B  A 

A  B  C  D 

B  A  D  C 

C  D  A  B 

D  C  B  A 

 

For each standard Latin square of order p, the p rows can be permuted in p! ways. Keeping a row fixed, vary 

and permute (p - 1) columns in (p - 1)! ways.  So there are p!(p - 1)! different Latin squares. 

 

For illustration 

Size of  square Number of  

Standard squares 

Value of  

p!(1 - p)! 

Total number of 

different squares 

3 x 3 1 12 12 

4 x 4 4 144 576 

5 x 5 56 2880 161280 

6 x 6 9408 86400 812851250 

 
Conjugate: 

Two standard Latin squares are called conjugate if the rows of one are the columns of other. 

For example 

 A  B  C  D   A  B  C  D 

 B  C  D  A              and B  C  D  A 

C  D  A  B   C  D  A  B 

D  A  B  C   D  A  B  C 

are conjugate. In fact, they are self conjugate. 

 

A Latin square is called self conjugate if its arrangement in rows and columns are the same. 
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Transformation set: 

A set of all Latin squares obtained from a single Latin square by permuting its rows, columns and symbols is 

called a transformation set. 

 

From a Latin square of order p, p!(p - 1)! different Latin squares can be obtained by making p! permutations 

of columns and (p  - 1)! permutations  of rows which leaves the first row in place. Thus 

 

Number of different   p!(p - 1)!  X number of standard Latin 

Latin squares of  order =  squares in the set 

p in a transformation set  

 

Orthogonal Latin squares 

If two Latin squares of the same order but with different symbols are such that when they are superimposed 

on each other, every ordered pair of symbols (different)  occurs exactly once in the  Latin square, then they 

are called orthogonal. 

 

Graeco-Latin square: 

A pair of orthogonal Latin squares, one with Latin symbols and the other with Greek symbols form a 

Graeco-Latin square. 

For example 

    

A   B  C  D       

B   A   D   C       

C   D   A   B       

D   C   B   A       

   
   
   
   

 

is a Graeco-Latin square of order 4. 

     

Graeco Latin squares design enables to consider one more factor than the factors in Latin square design. For 

example, in the earlier example, if there are four drivers, four cars, four petrol and each petrol has four 

varieties, as , , and    ,  then Graeco-Latin square helps in deciding the treatment  combination as 

follows: 
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Drivers 

Cars 

 1 2 3 4 

a A  B  C  D  

b B  A  D  C  

c C  D  A  B  

d D  C  B  A  

 

Now 

A  means: Driver ‘a’ will use the   variant of petrol A in Car 1. 

B  means: Driver ‘c’ will use the   variant of petrol B in Car 4 

and so on. 

  

Mutually orthogonal Latin square 

A set of Latin squares of the same order is called a set of mutually orthogonal Latin square (or a hyper 

Graeco-Latin square) if every pair in the set is orthogonal. The total number of mutually orthogonal Latin 

squares of order p is at most (p - 1). 

 

Analysis of LSD (one observation per cell) 

In designing an LSD of order p,  

 choose one Latin square at random from the set of all possible Latin squares of order p. 

 Select a standard Latin square from the set of all standard Latin squares with equal probability. 

 Randomize all the rows and columns as follows: 

- Choose a random number, less than p,  say  1n  and then 2nd row is the 1n th  row. 

- Choose another random number less than p, say  2n  and then  3rd row is the 2
thn  row and so on. 

- Then do the same for the column. 

 For Latin squares of the order less than 5, fix the first row and then randomize rows and then 

randomize columns. In Latin squares of order 5 or more, need not to fix even the first row. Just 

randomize all rows and columns. 
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Example:  

Suppose following Latin square is chosen 

    A  B  C  D  E 

                B  C  D  E  A 

       D  E  A  B  C 

     E  A  B  C  D 

     C  D  E  A  B 

 

Now randomize rows, e.g., 3rd row becomes 5th row and 5th row  becomes 3rd row  . The Latin square 

becomes 

   A  B  C  D  E 

               B  C  D  E  A 

   C  D  E  A  B  

   E  A  B  C  D 

   D  E  A  B  C. 

 

Now randomize columns, say  5th column becomes  1st column, 1st  column becomes 4th column and  4th 

column becomes 5th column 

   E  B  C  A  D 

             A  C  D  B  E 

              D  A  B  E  C 

               C  E  A  D  B 

               B  D  E  C  A  

 

Now use this Latin square for the assignment of treatments. 

 

:ijky  Observation on kth treatment in ith row and  jth  block, i = 1,2,...,v,  j = 1,2,...,v,  k = 1,2,...,v.   

Triplets (I ,j, k) take on only the  2v  values indicated by the chosen particular Latin square selected for the 

experiment. 

ijky ’s are independently distributed as 2( , )i j kN        . 
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Linear model is 

 , 1,2,..., ; 1,2,..., ; 1,2,...,
ijkijk i j ky i v j v k v             

where  ijk  are random errors which are identically and independently distributed following  2(0, )N  . 

with  
1 1 1

0, 0, 0,
v v v

i i k
i j k

  
  

      

:i  main effect of rows 

:j main effect of  columns 

:k main effect of treatments. 

 

The null hypothesis under consideration are 

0 1 2

0 1 2

0 1 2

: .... 0

: .... 0

: .... 0

  
  
  

   

   

   

R v

C v

T v

H

H

H

 

The analysis of variance can be developed on the same lines as earlier. 

2

1 1 1

Minimizing
v v v

ijk
i j k

S 
  

   with respect to , ,i j    and  k  given the least-squares estimate as 

ˆ  

ˆ 1,2,...,

ˆ 1,2,...,

ˆ 1,2,..., .

ooo

i ioo ooo

j ojo ooo

k ook ooo

y

y y i v

y y j v

y y k v










  

  

  

 

 

Using the fitted model based on these estimators, the total sum of squares can be partitioned into the 

mutually orthogonal sum of squares  SSR, SSC, SSTr and  SSE as 

TSS SSR SSC SSTr SSE     

where 

TSS: Total sum of squares = 
2

2 2
2

1 1 1 1 1 1

( )
v v v v v v

ijk ooo ijk
i j k i j k

G
y y y

v     

     

SSR: Sum of squares due to rows = 

2
2

2 1
2

1

( ) ;

v

iv
i

ioo ooo
i

R
G

v y y
v v





  


  where 
1 1

v v

i ijk
j k

R y
 

   

SSC: Sum of squares due to column =  

2
2

2 1
2

1

( ) ;

v

jv
i

ojo ooo
j

C
G

v y y
v v





  


  where  
1 1

v v

j ijk
i k

C y
 

  

SSTr : Sum of squares due to treatment = 

2
2

2 1
2

1

( ) ;

v

kv
i

ook ooo
k

T
G

v y y
v v





  


 where 
1 1

v v

k ijk
i j

T y
 

   
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Degrees of freedom carried by SSR, SSC and  SSTr are  (v - 1) each. 

Degrees of freedom carried by TSS is 2 1.v    

Degree of freedom carried by SSE is (v - 1) (v - 2). 

 

The expectations of mean squares are obtained as  

            

2

1

2 2

1

2 2

1

2

( )
1 1

( )
1 1

( )
1 1

( ) .
( 1)( 2)

 

 

 









      
      

      
 

    







v

i
i

v

j
j

v

k
k

SSR v
E MSR E

v v

SSC v
E MSC E

v v

SSTr v
E MSTr E

v v

SSE
E MSE E

v v

 

Thus  

  

0

0

0

- under , ~ (( 1), ( 1)( 2))

- under , ~ (( 1), ( 1)( 2))

- under , ~ (( 1), ( 1)( 2)).

   

   

   

R R

C C

T T

MSR
H F F v v v

MSE
MSC

H F F v v v
MSE
MSTr

H F F v v v
MSE

 

Decision rules: 

0 1 ; ( 1),( 1)( 2)

0 1 ;( 1),( 1)( 2)

0 1 ;( 1),( 1)( 2)

Reject   at level  if 

Reject   at level  if 

Reject   at level  if .

R R v v v

C C v v v

T T v v v

H F F

H F F

H F F













   

   

   






 

If any null hypothesis is rejected, then use multiple comparison test. 

The analysis of variance table is as follows 

______________________________________________________________________________________ 
Source of Degrees Sum of  Mean sum   F 
variation of freedom squares of squares 
 
Rows  v - 1  SSR  MSR   RF  

 
Columns v - 1  SSC  MSC   CF  

 
Treatments v - 1  SSTr  MSTr   TF  

 
Error  (v - 1)(v - 2) SSE  MSE 
 
Total  2 1v    TSS 
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Missing plot techniques: 
It happens many time in conducting the experiments that some observation are missed. This may happen due 

to several reasons.  For example, in a clinical trial, suppose the readings of blood pressure are to be recorded 

after three days of giving the medicine to the patients. Suppose the medicine is given to 20 patients and one 

of the patients doesn’t turn up for providing the blood pressure reading. Similarly, in an agricultural 

experiment, the seeds are sown and yields are to be recorded after few months. Suppose some cattle destroy 

the crop of any plot or the crop of any plot is destroyed due to storm, insects etc. 

 
In such cases, one option is to  

- somehow estimate the missing value on the basis of available data,   

- replace it back in the data and make the data set complete. 

 
Now conduct the statistical analysis on the basis of completed data set as if no value was missing by making 

necessary adjustments in the statistical tools to be applied.  Such an area comes under the purview of  

“missing data models” and a lot of development has taken place. Several books on this issue have appeared, 

e.g., 

 Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd edition,  New 

York: John Wiley. 

 Schafer, J.L. (1997).  Analysis of Incomplete Multivariate Data. Chapman & Hall, London etc. 

We discuss here the classical missing plot technique proposed by Yates which involve the following steps: 

 Estimate the missing observations by the values which makes the error sum of squares to be 

minimum. 

 Substitute the unknown values by the missing observations. 

 Express the error sum of squares as a function of these unknown values. 

 Minimize the error sum of squares using the principle of maxima/minima, i.e., differentiating it with 

respect to the missing value and put it to zero and form a linear equation. 

 Form as much linear equation as the number of unknown values (i.e., differentiate the error sum of 

squares with respect to each unknown value). 

 Solve all the linear equations simultaneously and solutions will provide the missing values. 

 Impute the missing values with the estimated values and complete the data. 

 Apply analysis of variance tools. 

 The error sum of squares thus obtained is corrected but the treatment  sum of squares is not corrected. 

 The number of degrees of freedom associated with the total sum of squares is subtracted by the 

number of missing values and adjusted in the error sum of squares. No change in the degrees of 

freedom of sum of squares due to treatment is needed. 
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Missing observations in RBD 
One missing observation: 

Suppose one observation in (i, j)th  cell is missing and let this be x. The arrangement of observations 

in  RBD then will look like as follows: 

 
 

Treatments (Factor B) Block totals

 
1  2  j v 

   
   

   
   

   
   

  B
lo

ck
s 

(F
ac

to
r 

A
) 

1  y11 y12 … y1j … y1v B1= y1o

2  y21 y22 … y2j … y2v B2= y2o

. 

. 

.  

. 

. 

.  

. 

. 

.  

.

. 

. 

.

. 

. 

. 

. 

.  
i  yi1 yi2 … yij=x … yiv Bi=

'
ioy  + x

. 

. 

.  

. 

. 

.  

.

. 

. 

.

. 

. 

. 

. 

. 
b  yb1 yb2 … ybj … ybv Bb 

Treatment 
totals  

T1= yo1 T2= yo2 … Tj=
'
ojy   + x … Tv= yob Grand total  

(G) = '
ooy  + x 

 
 
where  '

ooy : total of known observations 

            '
ioy : total of known observations in  ith  block 

            '
ojy : total of known observations in jth treatment 

' 22

2

1 1

2

' 2

( )( ')
Correction factor ( )

        (  terms which are constant with respect to )  

1
[( )  terms which are constant with respect to ]  

1
[(

oo

b v

ij
i j

io

y xG
CF

n bv

TSS y CF

x x CF

SSBl y x x CF
v

SSTr
b

 


 

 

  

   





' 2)  terms which are constant with respect to ]  ojy x x CF   

               

' 2
2 ' 2 ' 2 ( )1 1

( ) ( )  (terms which are constant with respect to )  .oo
io oj

SSE TSS SSBl SSTr

y x
x y x y x x CF

v b bv

  


       
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Find x such that SSE is minimum 

'' '

' ' '

2( )2( ) 2( )( )
0 2 0

or   
( 1)( 1)

ojio oo

oj io oo

y xy x y xSSE
x

x v b bv

vy by y
x

b v

 
     


 


 

                                

The second-order derivative condition for x to provide minimum SSE can be easily verified. 

 
Two missing observations: 
 
If there are two missing observation, then let they be x and y. 
 
- Let the corresponding row sums (block totals) are 1 2( ) and ( ).R x R y   

- Column sums (treatment totals) are  1 2( ) and ( ).C x C y   

- Total of known observations is S. 
 
Then 
 

2 2 2 2 2 2 2
1 2 1 2

1 1 1
[( ) ( ) ] [( ) ( ) ] ( )

            terms independent of  and .

SSE x y R x R y C x C y S x y
v b bv

x y

            


 

 
Now differentiate SSE with respect to x and y, as 
 

1 1

2 2

( )
0 0

( )
0 0.

R x C xSSE S x y
x

x v b bv
R y C ySSE S x y

y
y v b bv

   
     


   

     


 

Thus solving the following two linear equations in x  and y, we obtain the estimated missing values 
 

1 1

2 2

( 1)( 1)

( 1)( 1) .

b v x bR vC S y

b v y bR vC S x

     
     

 

 
 

Adjustments to be done in analysis of variance 

(i) Obtain the within block sum of squares from incomplete data. 

(ii) Subtract correct error sum of squares from (i). This gives the correct treatment sum of 

squares. 

(iii) Reduce the degrees of freedom of error sum of squares by the number of missing 

observations.                                                                

(iv) No adjustments in other sums of squares are required. 
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Missing observations in LSD 

Let 

- x be the missing observation in (i, j, k)th cell, i.e.,  

, 1,2,.., , 1,2,.., , 1,2,.., .ijky i v j v k v    

- R: Total of known observations in ith row 

- C: Total of known observations in jth column  

- T: Total of known observation receiving the kth treatment. 

- S:  Total of known observations 

Now  

2

2

2

2

( )
Correction factor ( )

Total sum of squares ( ) + term which are constant with respect to   - 

( )
Row sum of squares ( ) + term which are constant with respect to   - 

Column sum

S x
CF

v

TSS x x CF

R x
SSR x CF

v









2

2

( )
 of squares ( ) + term which are constant with respect to   - 

( )
Treatment sum of squares( ) + term which are constant with respect to   - 

Sum of squares due to error ( )   

C x
SSC x CF

v

T x
SSTr x CF

v

SSE TS








2

2 2 2 2
2

 -   -   -  

1 2( )
                                                          = ( ) ( ) ( )

S SSR SSC SSTr

S x
x R x C x T x

v v

        
  

Choose x such that SSE is minimum.  So 

  2

( )
0

2 4( )
2 3 ) 0

( ) 2
or

( 1)( 2)

d SSE

dx
S x

x R C T x
v v

V R C T S
x

v v




      

  


 

 

 

 

 

 



Analysis of Variance | Chapter 4 | Experimental Designs & Their Analysis | Shalabh, IIT Kanpur 

 2929

Adjustment to be done in analysis of variance: 

Do all the steps as in the case of RBD. 

 

To get the correct treatment sum of squares, proceed as follows: 

- Ignore the treatment classification and consider only row and column 

classification. 

- Substitute the estimated values at the place of missing observation. 

- Obtain the error sum of squares from complete data, say SSE1 . 

- Let  2SSE  be the error sum of squares based on LSD obtained earlier. 

- Find the corrected treatment sum of squares = 2 1SSE SSE . 

- Reduce of degrees of freedom of error sum of squares by the number of missing 

values. 
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Chapter 8 

Factorial Experiments 

 

Factorial experiments involve simultaneously more than one factor and each factor is at two or more 

levels. Several factors affect simultaneously the characteristic under study in factorial experiments and 

the experimenter is interested in the main effects and the interaction effects among different factors. 

 

First, we consider an example to understand the utility of factorial experiments. 

 

Example: Suppose the yield from different plots in an agricultural experiment depends upon 

1. (i) variety of crop and  

            (ii)       type of fertilizer.  

Both the factors are in the control of the experimenter. 

 

2. (iii)     Soil fertility. This factor is not in the control of the experimenter. 

 

In order to compare different crop varieties 

- assign it to different plots keeping other factors like irrigation, fertilizer,  etc.  fixed and the same 

for all the plots. 

- The conclusions for this will be valid only for the crops grown under similar conditions with 

respect to the factors like fertilizer, irrigation etc. 

 

In order to compare different fertilizers (or different dosage of fertilizers) 

- sow single crop on all the plots and vary the quantity of fertilizer from plot to plot. 

- The conclusions will become invalid if different varieties of the crop are sown. 

- It is quite possible that one variety may respond differently than another to a particular type of 

fertilizer. 

 

Suppose we wish to compare 

- two crop varieties – a and b, keeping the fertilizer fixed and 

- three varieties of fertilizers – A, B and C. 

 

This can be accomplished with two randomized block designs ( RBD ) by assigning the treatments at 

random to three plots in any block and two crop varieties at random. 
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The possible arrangement of the treatments may appear can be as follows. 

 

                                                                                                                                                                                       

 

                  

With these two RBDs , 

- the difference among two fertilizers can be estimated 

- but the difference among the crop varieties cannot be estimated. The difference among the crop 

varieties is  entangled with the difference in blocks. 

                   

On the other hand, if we use three sets of three blocks each and each block  having two plots, then 

- randomize the varieties inside each block and 

- assign treatments at random to three sets. 

 

The possible arrangement of treatment combinations in blocks can be as follows: 

 

 

  

 

Here the difference between crop varieties is estimable but the difference between fertilizer treatment is 

not estimable. 

 

Factorial experiments overcome this difficulty and combine each crop with each fertilizer treatment. 

There are six treatment  combinations as 

 aA, aB,  aC,  bA,  bB,  bC. 

Keeping the total  number of observations to be 18 (as earlier), we can use RBD   with three blocks with 

six plots each, e.g. 

 

 

 

Now we can estimate  

- the difference between crop varieties and 

- the difference between fertilizer treatments. Factorial experiments involve simultaneously more 

than one factor each at two or more levels. 

 

bB    bA    bC 
bC    bB    bA 
bA    bC    bB 

and 

bB     aB 
aB     bB 
bB     aB 

and 

bA    aC     aB    bB     aA    bC 
aA    aC     bC   aB     bB    bA 
bB    aB     bA   aC     aA    bC 

aA    aB    aC 
aC    aA    aB 
aB    aC    aA 

aC      bC 
bC      aC  
aC      bC 

aA     bA 
bA     aA 
bA     aA 

, 
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If the number of levels for each factor is the same, we call it is a symmetrical factorial experiment. 

If the number of levels of each factor is not the same, then we call it as a symmetrical or mixed 

factorial experiment. 

 

We consider only symmetrical factorial experiments. 

 

Through the factorial experiments, we can study  

- the individual effect of each factor and  

- interaction effect. 

 

Now we consider a 22  factorial experiment with an example and try to develop and understand the theory 

and notations through this example. 

 

General notation for representing the factors is to use capital letters, e.g., A, B, C etc. and levels of a 

factor are represented in small letters. For example, if there are two levels of  A, they are denoted as 0a  

and  1a .  Similarly, the two levels of B  are represented  as 0b   and  1b . Another alternative representation 

to indicate the two levels of A is 0 (for 0a ) and 1 (for 1a ).  The factors of B  are then 0  (for  0b )  and  1 

(for 1b ). 

 

Note: An important point to remember is that the factorial experiments are conducted in the design of an 

experiment. For example, the factorial experiment is conducted as an RBD. 

 

Factorial experiments with factors at two levels ( 22  factorial experiment): 

Suppose in an experiment, the values of current and voltage in an experiment affect the rotation per 

minutes ( )rpm  of fan speed. Suppose there are two levels of current. 

- 5 Ampere, call it as level 1 1( )C  and denote it as 0a  

- 10 Ampere, call it as level 2 1( )C  and denote it as 1a . 

 

Similarly, the two levels of voltage are  

- 200 volts, call it as level 1 0( )V  and denote it as 0b  

- 220 volts, call it as level 2  1( )V  and denote it as 1b . 

 

The two factors are denoted as ,A  say for current and  ,B  say for voltage. 
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In order to make an experiment, there are 4 different combinations of values of current and  voltage. 

1. Current = 5 Ampere and Voltage = 200 Volts, denoted as  0 0 0 0C V a b  

2. Current = 5 Ampere and Voltage = 220 Volts, denoted as  0 1 0 1C V a b . 

3. Current = 10 Ampere and Voltage = 200 Volts, denoted as   1 0 1 0C V a b  

4. Current = 10 Ampere and Voltage = 220 Volts, denoted as  1 1 1 1C V a b  

 

The responses from those treatment combinations are represented by 0 0 0 1(1), ( ) ( ),a b a b b   

1 0( ) ( )a b a   and 1 1( ) ( )a b ab ,  respectively. 

 

Now consider the following:  

I. 1( ) ( )

2
o o oC V C V

: Average effect of voltage for the current level  0C  

    : 1( ) ( ) (1) ( )

2 2
o o oa b a b b 

  

II. 1 1 1( ) ( )
:

2
oC V C V

Average effect of voltage for the current level C1  

    : 1 1 1( ) ( ) ( ) ( )

2 2
oa b a b a ab 

  

Compare these two group means (or totals) as follows: 

 

Average effect of 1V  level – Average effect at 0V  level 

   

( ) ( ) (1) ( )

2 2
Main effect of voltage

= Main effect of .

b ab a

B

 
 

  

  

 

Comparison like 

(CoV1) - (CoVo)   (a) - (1):  indicate the effect of voltage at current level Co 

and    

(C 1 V1) - (C 1 V0)   (ab) - (b):  indicate the effect of voltage at current level C1. 
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The average interaction effect of voltage and current can be obtained as 

  

1

1 1 1 1

Average effect of voltage Average effect of voltage

at current level at current level

  Average effect of voltage at different levels of current.

( ) ( ) ( ) ( )

2 2
( ) ( ) ( ) (1)

2 2
A

o

o o o o

I I

C V C V C V C V

ab b a

   
   
  


 

 

 
 

 verage interaction effect.

 

Similarly 

1
0

1 1 1
1

( ) ( ) (1) ( )
:Average effect of current at voltage level .

2 2
( ) ( ) ( ) ( )

: Average effect of current at voltage level 
2 2

o o o

o

C V C V b
V

C V C V a ab
V

 


 


   

 Comparison of these two as 

 

0 1

0 1 1 1 0 0 1 0

Average effect of current Average effect of current

at voltage level at voltage level

( ) ( ) ( ) ( )

2 2
( ) ( ) (1) ( )

2 2
Main effect of current

= Main effect of .

V V

C V C V C V C V

a ab b

A

   
   
  

 
 

 
 



 

Comparison like 

1 0 0 0 0

1 1 0 1 1

( ) ( ) ( ) (1) : Effect of current at voltage level 

( ) ( ) ( ) ( ) : Effect of current at voltage level 

C V C V b V

C V C V ab a V

  
  

:  

 

The average interact effect of current and voltage can be obtained as 

 

0 1

1 1 0 1 1 0 0 0

Average effect of current Average effect of current

at voltage level at voltage level

Average effect of current at different levels of voltage

( ) ( ) ( ) ( )

2 2
( ) ( ) ( ) (1)

2 2
 Ave

V V

C V C V C V C V

ab a b

   
   
  


 

 

 
 

 rage interaction effect

 Same as average effects of voltage at different levels of current. 

   (It is expected the interaction effect of current and voltage is same as the

     interaction effect of voltage and cu

that



rrent).
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The quantity 

0 0 1 0 0 1 1 1( ) ( ) ( ) ( ) (1) ( ) ( ) ( )

4 4

C V C V C V C V a b ab     
  

gives the general mean effect of all the treatment combination. 

 

Treating ( )ab  as ( )( )a b  symbolically (mathematically and conceptually, it is incorrect), we can now 

express  all the main effects, interaction effect and  general mean effect as follows: 

 

  

 

 

 

( ) ( ) (1) ( ) 1 ( 1)( 1)
Main effect of ( ) ( ) ( ) (1)

2 2 2 2
( ) ( ) (1) ( ) 1 ( 1)( 1)

Main effect of ( ) ( ) ( ) (1)
2 2 2 2

( ) ( ) ( ) (1) 1
Interaction effect of   and ( ) ( ) (1) ( )

2 2 2

a ab b a b
A ab b a

b ab a a b
B ab a b

ab b a
A B ab a b

   
      

   
      

 
      

 

( 1)( 1)

2
(1) ( ) ( ) ( ) 1 ( 1)( 1)

General mean effect ( ) (1) ( ) ( ) ( )
4 4 4

a b

a b ab a b
M a b ab

 

    
     

  

 

Notice the roles of + and – signs as well as the divisor.   

• There are two effects related to A and B.   

• To obtain the effect of a factor, write the corresponding factor with – sign and others with +  sign.  

For example, in the main effect of A, a occurs with – sign as in  (a  - 1) and b occurs with + sign 

as in (b  + 1).   

• In AB,  both the effects are present so a and b both occur with + signs as in (a + 1)(b + 1).  

• Also note that the main and interaction effects are obtained by considering the typical differences 

of averages, so they have divisor 2 whereas the general mean effect is based on all the treatment 

combinations and so it has divisor 4.   

• There is a well defined statistical theory behind this logic but this logic helps in writing the final 

treatment combination easily. This is demonstrated later with appropriate reasoning.  

 

Other popular notations of treatment combinations are as follows: 

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1 .

a b I

a b a

a b b

a b ab

 
 
 
 

 

Sometimes 0 is referred to as ‘low level’ and 1 is referred to ‘high level’. 

Here I denote that both factors are at lower levels 0 0( or 00).a b  This is called as the control treatment. 

These effects can be represented in the following table 
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Factorial effects Treatment combinations     Divisor 

(1)       (a)       (b)        (ab) 

M 

A 

B 

AB 

+           +          +           + 

-            +          -            + 

-            -            +          + 

+           -            -           +  

4 

2 

2 

2 

 

The model corresponding to 22  factorial experiment is 

 ( ) , 1, 2, 1,2, 1,2,...,ijk i j ij ijky A B AB i j k n          

where n  observations are obtained for each treatment combinations. 

 

When the experiments are conducted factor by factor, then much more resources are required in 

comparison to the factorial experiment.  For example, if we conduct RBD  for three-levels of voltage 

0 1,V V  and 2V  and  two levels of current 0I  and 1I , then to have 10 degrees of freedom for the error 

variance, we need 

- 6 replications on voltage 

- 11 replications on current. 

So the total number of fans needed is 40. 

For the factorial experiment with 6 combinations of 2 factors, the total number of fans needed are 18 for 

the same precision. 

 

We have considered the situation up to now by assuming only one observation for each treatment 

combination, i.e.,  no replication. If r  replicated observations for each of the treatment combinations are 

obtained, then the expressions for the main and interaction effects can be expressed as 

 

 

 

 

1
( ) ( ) (1)

2
1

( ) ( ) (1)
2

1
( ) (1) ( )

2
1

( ) ( ) ( ) (1) .
4

A ab a b
r

B ab b a
r

AB ab a b
r

M ab a b
r

   

   

   

   

 

 

Now we detail the statistical theory and concepts related to these  expressions. 
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Let * ((1),  ,  ,  ) 'Y a b ab  be the vector of total response values. Then 

 

'
* *

'
* *

'
* *

1 1
( 1  1 1 1)

2 2
1 1

( 1 1 1 1)
2 2

1 1
(1 1 1 1) .

2 2

A

B

AB

A Y Y
r r

B Y Y
r r

AB Y Y
r r

   

   

   







 

 

Note that  A, B and  AB are the linear contrasts. Recall that a linear parametric function is estimable only 

when it is in the form of  linear contrast. Moreover,   A, B and  AB are the linear orthogonal contrasts in 

the total response values (1),  ,  ,  a b ab    except for the factor 1/2r. 

 

The sum of squares of a linear parametric function ' y  is given by 
2( ' )

'

y
 

.  If there are r  replicates, 

then the sum of squares is  
2( ' )

'

y

r


 

.   It may also be recalled under the normality of  y’s, this sum of 

squares has a Chi-square distribution with one degree of freedom 2
1( ) . Thus the various associated  sum 

of squares due to , andA B AB are  given by the following: 

 

' 2
2*

'

' 2
2*

'

' 2
2*

'

( ) 1
( (1))

4

( ) 1
( (1))

4

( ) 1
( (1) ) .

4

A

A A

B

B B

AB

AB AB

Y
SSA ab a b

r r

Y
SSB ab b a

r r

Y
SSAB ab a b

r r

    

    

    


 

 

 

 

Each of  SSA, SSB and SSAB has 2
1  under normality of  *.Y  

The sum of squares due to total is computed as usual 

 
22 2

2

1 1 1 4

r

ijk
i j k

G
TSS y

r  

   

where  

 
2 2

1 1 1

r

ijk
i j k

G y
  

  

is the grand total of all the observations. 

 

The TSS  has 2  distribution with 2(2 1)r   degrees of freedom. 
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The sum of squares due to error is also computed as usual as 

SSE TSS SSA SSB SSAB     

which has 2  distribution with 

(4 1) 1 1 1 4( 1)r r       

degrees of freedom. 

 

The mean squares are  

 

,
1

,
1

,
1

.
4( 1)

SSA
MSA

SSB
MSB

SSAB
MSAB

SSA
MSE

r










 

The F -statistic corresponding to ,A B  and  AB  are 

 

0

0

0

~ (1,4( 1) ,

~ (1,4( 1) ,

~ (1,4( 1) .

under

under

under

A

B

AB

MSA
F F r H

MSE

MSB
F F r H

MSE

MSAB
F F r H

MSE

 

 

 

 

 

The ANOVA table is case of  22  factorial experiment is given as follows: 

Source Sum of  

squares 

Degrees of 

freedom 

Mean squares        F  

A

B

AB

Error

 

SSA

SSB

SSAB

SSE

 

1

1

1

4( 1)r 

 

MSA

MSB

MSAB

MSE

 
A

B

AB

MSA
F

MSE
MSB

F
MSE
MSAB

F
MSE







 

Total TSS  4 1r     

 

The decision rule is to reject the concerned null hypothesis when the value of the concerned F  statistic 

 effect 1 (1, 4( 1)).F F r   
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32  Factorial experiment: 

Suppose that in a complete factorial experiment, there are three factors - ,A B  and C , each at two levels, 

viz., 0 1 0 1, ; ,a a b b   and  0 1,c c  respectively.  There are a total of eight  number of combinations: 

 0 0 0 0 0 1 0 1 0 0 1 1

1 0 0 1 0 1 1 1 0 1 1 1

, , , ,

, , , .

a b c a b c a b c a b c

a b c a b c a b c a b c
 

Each treatment combination has  r  replicates, so  the total number of observations are 32 8N r r   that 

are to be  analyzed for their influence on the response. 

 

Assume the total response values are 

  * (1), , , , , , , 'Y a b ab c ac bc abc . 

The response values can be arranged in a three-dimensional contingency table. The effects are determined 

by the linear contrasts  

 ' '
* (1), , , , , , ,effect effectY a b ab c ac bc abc   

using the following table: 

Factorial  effect                     Treatment combinations 

(1) a b ab c ac bc abc  

I 

A 

B 

AB 

C 

AC 

BC 

ABC 

 +      +     +     +     +    +     +        + 

 -       +      -     +     -     +     -         + 

 -        -     +     +     -      -     +        + 

+        -     -     +      +     -     -         + 

-        -      -     -      +     +    +        + 

+       -      +     -      -     +     -         + 

+       +     -      -      -     -      +        + 

-        +      +    -      +    -      -         + 

Note that once a few rows have been determined in this table, rest can be obtained by simple 

multiplication of the symbols. For example, consider the column corresponding to a, we note that A  has 

+ sign, B  has – sign , so AB  has – sign (sign of A  sign of )B . Once AB  has  - sign, C  has – sign then 

ABC  has (sign of AB X  sign of  )C  which is + sign and so on. 

 

The first row is a basic element. With this *1'a Y  can be computed where 1 is a column vector of all 

elements unity. If other rows are multiplied with the first row, they stay unchanged  (therefore we call it 

as identity and denoted as ).I  Every other row has the same number of + and – signs. If + is replaced  by 

1 and – is replaced by -1, we  obtain the vectors of orthogonal  contrasts with the norm 38( 2 ).  
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If each row is multiplied by itself, we obtain I  (first row). The product of any two rows leads to a  

different row in the table. For example  

 2

2

.

.

. . .

A B AB

AB B AB A

AC BC AC BB AB



 

 

 

 

The structure in the table helps in estimating the average effect. 

For example, the average effect of  A  is  

 1
( ) (1) ( ) ( ) ( ) ( ) ( ) ( )

4
A a ab b ac c abc bc

r
          

which has the following explanation. 

(i) 
 

1 0 0 0 0 0

( ) (1)
Average effect of   at low level of   and ( ) ( )

a
A B C a b c a b c

r


   . 

(ii) 
 

1 1 0 0 1 0

( ) ( )
Average effect of   at high level of  and low level of ( ) ( )

ab b
A B C a b c a b c

r


    

(iii) 
 

1 0 1 0 0 1

( ) ( )
Average effect of   at low level of  and high level of ( ) ( )

ac c
A B C a b c a b c

r


   . 

(iv) 
 

1 1 1 0 1 1

( ) ( )
Average effect of   at high level of   and ( ) ( ) .

abc bc
A B C a b c a b c

r


    

Hence for all combinations of B  and  ,C  the average effect of  A  is the average of all the average effects 

in (i)-(iv). 

 

Similarly, other main and  interaction effects are as follows: 

 

 

 

1 ( 1)( 1)( 1)
( ) ( ) ( ) ( ) (1) ( ) ( ) ( )

4 4
1 ( 1)( 1)( 1)

( ) ( ) ( ) (1) ( ) ( ) ( )
4 4

1 ( 1)( 1)( 1)
(1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4
1

(1) ( ) ( ) ( )
4

a b c
B b ab bc abc a c ac

r r
a b c

C c ac bc abc a b ab
r r

a b c
AB ab c abc a b ac bc

r r

AC b ac abc
r

  
        

  
        

  
        

    

 

 

( 1)( 1)( 1)
( ) ( ) ( ) ( )

4
1 ( 1)( 1)( 1)

(1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 4

1 ( 1)( 1)( 1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) (1) .

4 4

a b c
a ab c bc

r
a b c

BC a bc abc b ab c ac
r r

a b c
ABC abc ab b c ab ac bc

r r

  
    

  
        

  
        

 

 

Various sum of squares in the 32  factorial experiment are obtained as 
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 2'2
effect *

'
effect effect

(linear contrast)
(Effect)

8

Y
SS

r r
 


 

 

which follow a Chi-square distribution with one degree of freedom under normality of  *Y .  The 

corresponding mean sum of squares is obtained as 

 
(Effect)

(Effect)
Degrees of freedom

SS
MS  . 

 

The corresponding F -statistics are obtained by 

 Effect

(Effect)

(Error)

MS
F

MS
  

which follows an F distribution with degrees of freedoms 1 and error degrees of freedom under the 

respective null hypothesis. The decision rule is  to reject the corresponding null hypothesis at the   level 

of significance  whenever  

 1 error(1, )effectF F df . 

 

These outcomes are  presented in the following ANOVA table 

 

Sources Sum of squares Degrees of 

freedom 

Mean sum of  

squares 

F  

Error

A

B

AB

C

AC

BC

ABC

 

( )

SSA

SSB

SSAB

SSC

SSAC

SSBC

SSABC

SS Error

 

1

1

1

1

1

1

1

8( 1)r 

 

/1

/1

/1

/1

/1

/1

/1

( ) ( ) /{8( 1)}

MSA SSA

MSB SSB

MSAB SSAB

MSC SSC

MSAC SSAC

MSBC SSBC

MSABC SSABC

MS Error SS Error r









 

 

A

B

AB

C

AC

BC

ABC

F

F

F

F

F

F

F

 

Total TSS 8 1r     
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2n  Factorial experiment: 

Based on the theory developed for  2 32 and 2  factorial experiments, we now extend them for the 2n   

factorial experiment. 

 Capital letters , , ,...A B C  denote the factors.  They are the main effect contrast for the factors 

, , ,...A B C  

 , , ,...AB AC BC  denote the first order or  2-factor interactions 

 , , ,...ABC ABD BCD  denote the second-order or 3-factor interactions and so on. 

 Each of the main effect and interaction effect carries one degree of freedom. 

 Total number of main effects = .
1

n
n

 
 

 
 

 Total number of first-order interactions = 
2

n 
 
 

. 

 Total number of second-order interactions = 
3

n 
 
 

 

and so on. 

 

Standard order for treatment combinations: 

The list of treatments can be expressed in a standard order. 

 For one factor A , the standard order is  (1), a . 

 For two factors A and B,  the standard  order is obtained by adding b and ab in the standard order 

of one factor A.  This is derived by multiplying (1)  and a by b , i.e. 

       {(1), } (1),  ,  ,  b a a b ab  . 

 For three factors, add  ,  ,c ac bc  and  abc  which are derived by multiplying  the standard order of 

A and B by c, i.e. 

       {(1,   ,   ,   } (1),   ,   ,   ,   ,   ,   ,   c a b ab a b ab c ac bc abc  . 

Thus the standard order of any factor is obtained step by step by multiplying it with an additional letter to 

preceding standard order. 

 

For example, the standard order of A, B, C and D is  42  factorial experiment is  

(1),   ,   ,   ,   ,   ,   ,   ,   {(1),   ,   ,   ,   ,   ,   ,   }

(1),   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,  ,   ,   .

a b ab c ac bc abc d a b ab c ac bc abc

a b ab c ac bc abc d ad bd abd cd acd bcd abcd



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How to find the contrasts for main effects and interaction effect:  

Recall that earlier, we had illustrated the concept in writing the contrasts for main and interaction effects. 

For example, in a  22  factorial  experiment, we had expressed 

 

 

1 1
( 1)( 1) ( 1) ( ) ( ) ( )

2 2
1 1

( 1)( 1) (1) ( ) ( ) ( ) .
2 2

A a b a b ab

AB a b a b ab

       

      
 

Note that each effect has two component -  divisor and contrast. When the order of factorial increases, it 

is cumbersome to derive such expressions.  Some methods have been suggested to write the expressions 

for factorial effects.  First, we detail how to write divisor and then illustrate the methods for obtaining the 

contrasts. 

 

How to write divisor: 

In a 2n  factorial experiment,  

- the general mean effect has divisor 2n  and 

- any effect (main or interaction) has divisor 12n . 

For example, in a 62  factorial experiment,  the general mean effect has divisor 62   and any main effect or 

interaction effect of any order has divisor 6 1 52 2  . 

 

If  r  replicates of each effect are available, then 

- the general mean effect has divisor 2nr  and  

- any main effect or interaction effect of  any order has a divisor  12 .nr   

 

How to write contrasts: 

Method 1: 

Contrast belonging to the main effects and the interaction effects are written as follows: 

( 1)( 1)( 1)...( 1)

( 1)( 1)( 1)...( 1)

( 1)( 1)( 1)...( 1)

( 1)( 1)( 1)...( 1)

( 1)( 1)( 1)...( 1)

( 1)( 1)( 1)...( 1).

... ( 1)( 1)( 1)...( 1)

A a b c z

B a b c z

C a b c z

AB a b c z

BC a b c z

ABC a b c z

ABC Z a b c z

    
    
    

    
    

    

    



 


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Look at the pattern of assigning + and – signs on the right-hand side. The letters common on left and right 

hand sides of the equality (=) sign (irrespective of small or capital letters) contain – sign and rest contain 

+ sign. 

 

The expression on right-hand side when simplified algebraically give the contrasts in terms of treatment 

combination.  For example, in a 32  factorial 

 

 

3 1

3

1
( 1)( 1)( 1)

2
1

(1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4

1
( 1)( 1)( 1)

2
1

(1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
8

A a b c

a b ab c ac bc abc

M a b c

a b ab c ac bc abc

   

        

   

       

 

 

Method 2 

 Form a table such that  

- rows correspond to the main or interaction effect and 

- columns correspond to treatment combinations (or another way round) 

 +  and – signs in the table indicate the sign of the treatment combinations of main and 

interaction effects.  

 Signs are determined by the  “rule of  odds and evens” given as follows: 

- if the interaction has an even number of letters ( , ,...)AB ABCD , a  treatment combination 

having an even number of letters common with the interaction enters with a  + sign and one 

with an odd number of letters common enters with a – sign. 

- if the interaction has an odd number of letters ( , ,...),A ABC  the rule is reversed. 

 Once few rows are filled up, others can be obtained through multiplication rule. For example, 

the sign of ABCD  is obtained as 

(sign of  A  sign of BCD )      or      (sign of  AB sign of CD ). 

 Treatment combination (1) is taken to have an even number (zero) of letters common with 

every interaction. 

This rule of assignment of + or – is illustrated in the following flow diagram: 
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For example, in  a 32  factorial experiment, write  

- rows for main and interaction effects and 

- columns for treatment combinations in standard order. 

- Take treatment combination (1) to have an even number (zero) of letter common with every 

interaction. 

This gives the following table 

 

 

 

 

 

 

 

 

 

 

 

 

Factorial  effect                     Treatment combinations 

(1) a b ab c ac bc abc  

I 

A 

B 

AB 

C 

AC 

BC 

ABC 

 +      +     +     +     +    +     +        + 

 -       +      -     +     -     +     -         + 

 -        -     +     +     -      -     +        + 

+        -     -     +      +     -     -         + 

-        -      -     -      +     +    +        + 

+       -      +     -      -     +     -         + 

+       +     -      -      -     -      +        + 

-        +      +    -      +    -      -         + 

Interaction 

Even number of letters 
(AB, ABCD,…) 

Count the number of letters 
common between treatment 
combinations and 
interactions 

Count the number of letters 
common between treatment 
combinations and 
interactions 

Even number  
of letters 

+ sign 

Odd number 
of letters 

- sign 

Even number  
of letters 

- sign 

Odd number  
of letters

+ sign 

Odd number of letters 
(A, ABC,…) 
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Sums of squares: 

Suppose 2n  factorial experiment is carried out in a randomized block design with r  replicates. 

Denote the total yield (output) from r  plots (experimental units) receiving a  particular treatment 

combination by the same symbol within a square bracket. For example,  [ab] denotes the total yield from 

the  plots receiving the treatment combination ( ).ab  

 

In a 22  factorial experiment, the factorial effect totals are 

         1A ab b a     

 ab = treatment total, i.e. the sum of r  observations in which both the factors A  and B    are at the 

second level. 

 a  = treatment total, i.e., the sum of  r  observations in which factor A   is at the second level and factor 

B  is at the first level 

 b  = treatment total, i.e., the sum of  r  observations in which factor A  is at the first level and factor B  

is at the second level. 

 1   =   treatment total, i.e. the sum of  r  observations in which both the factors A  and B are at the first 

level. 

  ( ) ( ) ( ) (1)
1

' (say).

r

i ab i b i a i
i

A A

A y y y y

y



     






  

where  A  is a vector of +1 and =1 and Ay  is a vector denoting the responses from ab, b, a and 1. 

Similarly, other effects can also be found. 

 

Similarly, other effects can also be found. 

The sum of squares due to a particular effect is obtained as 

 
 2
Total yield

Total number of observations
. 

In a 22  factorial experiment in an RBD, the  sum of squares due to  A  is 

 
' 2

2

( )

2
A Ay

SSA
r




. 

In a 2n  factorial experiment in an RBD, the divisor will be .2nr .  If  Latin square design is used based on 

2 2n n  Latin square, then r  is replaced by 2n . 
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Yates method of computation of the sum of squares: 

Yates method gives a systematic approach to find the sum of squares. We are not presenting here the 

complete method. Only the part which is used for computing only the sum of squares is presented and the 

method to verify them is not presented. 

It has the following steps 

1. First, write the treatment combinations in the standard order in the column at the beginning of the 

table, called a treatment column. 

2. Find the total yield for each treatment. Write this as the second column of the table, called a yield 

column. 

3. Obtain columns (1),(2),…,( n ) successively 

            - (i) obtain column (1) from yield column 

(a) upper half is obtained by adding yields in pairs. 

(b) the second half is obtained by taking differences in pairs, the difference obtained by 

subtracting the first term of pairs from the second term. 

(ii) The columns (2),(3),…,(n) are obtained from preceding ones in the same manner as used for 

getting (1)  from the yield columns. 

4. This process of finding columns is repeated n  times in  2n  factorial experiment. 

5. Sum of squares due to interaction 
 2
column( )

Total number of observations

n
  

Example: Yates procedure for a  22  factorial experiment 

 

Treatment  Combination  Yield (total from all r

 replicates) 

(1) (2) 

(1) 

a 

b 

ab 

(1) 

(a) 

(b) 

(ab)  

(1) + (a) 

(b) + (ab) 

(a) - (1) 

(ab) - (b) 

(1) + (a) + (b )+ (ab) = [ M ] 

-(1) + (a) - (b) + (ab) = [A] 

-(1) - (a) + (b) + (ab) = [B] 

(1) - (a) - (b) + (ab) = [AB] 

Note: The columns are repeatedly obtained 2 times due to 22  factorial experiment.  

     2 2 2

Now ;        ;         
4 4 4

A B AB
SSA SSB SSAB

r r r
    
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Example: Yates procedure for 32  factorial experiment. 

Treatment        Yield (total from all r  replicates)  
(1) (2) (3) (4) (5) (6) 

1 (1) 
1 (1) ( )u a   1 1 2v u u  1 1 2w v v   [ ]M  

a  ( )a  
2 ( ) ( )u b ab   

2 3 4v u u   2 3 4w v v   [ ]A  

b  (b) 
3 ( ) ( )u c ac   3 5 6v u u   3 5 6w v v   [ ]B  

ab  ( )ab  
4 ( ) ( )u bc abc  4 7 8v u u   4 7 8w v v   [ ]AB  

c  ( )ac  
5 ( ) (1)u a   5 2 7v u u   5 2 1w v v   [ ]C  

ac  (ac ) 
6 ( ) ( )u ab b   6 4 3v u u   6 4 3w v v   [ ]AC  

bc  ( )bc  
7 ( ) ( )u ac c   7 6 5v v u   7 6 5w v v   [ ]BC  

abc  ( )abc  
8 ( ) ( )u abc bc  8 8 7v u u   8 8 7w v v   [ ]ABC  

The sum of squares are obtained as follows when the design is RBD. 

 
 2

3

Effect
( )

.2
SS Effect

r
 . 

For analysis of  2n  factorial experiment, the analysis of variance involves the partitioning of treatment 

sum of squares so as to obtain sum of  squares due to main and interaction effects of factors. These sum 

of squares are mutually orthogonal,  so 

 Treatment SS  = Total of  SS  due to main and interaction effects. 

 
For example: 

In  22  factorial experiment in an RBD with  r  replications, the division of  degrees of freedom and the 

treatment sum of squares are as follows: 
 

Source    Degree of  Sum of squares 
                                                freedom 

 
Replications   1r   
Treatments   4 1 3   

- A      1    2
/ 4A r  

- B      1    2
/ 4B r  

- AB      1    2
/ 4AB r  

 
Error    3( 1)r   

Total    4 1r   

 

The decision rule is to reject the concerned null hypothesis when the related F -statistic 

1 (1,3( 1)).effectF F r   
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Chapter 9 

Confounding 

 

If the number of factors or levels increase in a factorial experiment, then the number of treatment 

combinations increases  rapidly. When the number of treatment combinations is large, then it may 

be difficult to get the blocks  of sufficiently large size  to accommodate all the treatment 

combinations.  Under such situations, one may use either connected incomplete block designs, e.g., 

balanced incomplete block designs (BIBD) where all the main effects and interaction contrasts can  

be estimated or use unconnected designs where not all these contrasts can  be estimated.  

 

Non-estimable contrasts are said to be confounded.  

 

Note that a linear function '   is said to be estimable if there exist a linear function 'l y  of the 

observations on random variable y  such that ( ' ) ' .E l y     Now  there arise two questions. 

Firstly, what does confounding means and secondly, how does it compares to using  BIBD.  

 

In order to understand the confounding, let us consider a simple example of 22  factorial with 

factors a  and b .  The four treatment combinations are  (1), ,a b  and ab . Suppose each batch of 

raw material to be used in the  experiment is enough only for two treatment combinations to be 

tested. So two batches of raw material are required. Thus two out of four treatment combinations 

must be assigned to each block. Suppose this 22  factorial experiment is being conducted in a 

randomized block design. Then the corresponding model is  

 ( ) ,ij i jE y       

then 

 

 

 

 

1
(1) ,

2
1

(1) ,
2

1
(1) .

2

A ab a b
r

B ab b a
r

AB ab a b
r

   

   

   
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Suppose the following block arrangement is opted: 

Block 1   Block 2 

 

 

 

The block effects of blocks  1 and 2 are 1 2and  , respectively, then the average responses 

corresponding to treatment combinations  , ,a b ab  and (1) are 

 

 
 
 
 

2

2

1

1

( ) ( ),

( ) ( ),

( ) ( ),

(1) (1),

E y a a

E y b b

E y ab ab

E y

  

  

  

  

  

  

  

  

 

respectively.  Here ( ),  ( ),  ( ),  (1)y a y b y ab y  and ( ),  ( ),  ( ),  (1)a b ab     denote the responses and 

treatments corresponding to , ,  a b ab  and (1), respectively.  Ignoring the factor 1/ 2r  in , ,A B AB  

and using  [ ( )], [ ( )],  [ ( )],  ( (1)]E y a E y b E y ab E y ,  the  effect A  is expressible as follows : 

 1 2 2 1[ ( )] [ ( )] [ ( )] [ (1)]

( ) ( ) ( ) (1).

A ab a b

ab a b

           
   
           
   

 

 

So the block effect is not present in A  and it is not mixed up with the treatment effects. In this case, 

we say that the main effect A  is not confounded.  Similarly, for the main effect ,B  we have 

 1 2 2 1[ ( )] [ ( )] [ ( )] [ (1)]

( ) ( ) ( ) (1).

B ab b a

ab b a

           
   
           
   

 

So there is no block effect present in B  and thus B  is not confounded. For the interaction effect 

AB , we have 

 1 1 2 2

1 2

[ ( )] [ (1)] [ ( )] [ ( )]

2( ) ( ) (1) ( ) ( ).

AB ab a b

ab a b

           
     

           
     

 

Here the block effects are present in AB. In fact, the block effects are 1  and  2  are mixed up with 

the treatment effects and cannot be separated individually from the treatment effects in AB .  So 

AB  is said to be  confounded (or mixed up) with the blocks. 

 

 

 

 

 

(1) 
ab 

  a 
 b



Analysis of Variance  |  Chapter 9  |  Confounding   |   Shalabh, IIT Kanpur 
 33

Alternatively, if the arrangement of treatments in blocks are as follows: 

Block 1   Block 2 

 

 

then the main effect A  is expressible as 

 1 1 2 2

1 2

[ ( )] [ ( )] [ ( )] [ (1)]

2( ) ( ) ( ) ( ) (1)

A ab a b

ab a b

           
     

           
     

 

Observe that the block effects 1  and 2  are present in this expression. So the main effect  A  is 

confounded with the blocks in this arrangement of treatments. 

So the main effect A  is confounded with the blocks in this arrangement of treatments. 

 

We notice that it is in our control to decide that which of the effect is to be confounded. The order 

in which treatments are run in a block is  determined randomly. The choice of block to be run first 

is also randomly  decided. 

 

The following observation emerges from the allocation of treatments in blocks: 

“For a given effect, when two treatment combinations with the  same signs are assigned to one 

block and the other two treatment combinations with the same but opposite signs are assigned to 

another block, then the effect gets confounded”. 

 

For example, in case AB  is confounded,   then 

 ab  and (1) with + signs are assigned to block 1 whereas 

 a  and b  with – signs are assigned to block 2. 

Similarly, when A  is confounded, then 

 a  and ab   with + signs are assigned to block 1 whereas 

 (1) and b  with – signs are assigned to block 2. 

The reason behind this observation is that if every block has treatment combinations in the form of 

linear contrast, then effects are estimable and thus unconfounded. This is also evident from the 

theory of linear estimation that a linear parametric function is estimable if it is in the form of a 

linear contrast. 

 

The  contrasts which are not estimable are said to be confounded with the differences between 

blocks (or block effects).  The contrasts which are estimable are said to be unconfounded with 

blocks or free from block effects. 

 (1) 
b

ab 
 a 
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Comparison of balanced Incomplete Block design (BIBD versus factorial: 

Now we explain how confounding and BIBD compares together. Consider  a 32  factorial 

experiment which needs the block size to be 8.  Suppose the  raw material available to conduct the 

experiment is sufficient only for a  block of size 4.   One can use BIBD in this case with parameters  

14, 4, 8, 7b k r     and  3   (such BIBD exists). For this BIBD, the efficiency factor is 

 
6

8

v
E

kr


   

and  

 2 2
'

2 2
ˆ ˆ( ) ( ').

6j j BIBD

k
Var j j

v
   


     

Consider now an unconnected design in which 7 out of 14 blocks get treatment combination in 

block 1 as 

  a b c abc  

and remaining  7 blocks get treatment combination in block 2 as 

  (1) ab bc ac  

In this case, all the effects ,  ,  , ,  A B C AB BC  and  AC  are estimable but  ABC  is not estimable 

because the treatment combinations with all + and all – signs in 

 

in block1 in block 2

( 1)( 1)( 1)

( ) ((1) )

ABC a b c

a b c abc ab bc ac

   
        

 

are contained in same blocks.  In this case,  the variance of estimates of unconfounded main effects 

and interactions is  28 / 7.   Note that in case of  RBD, 

 
2 2

'

2 2
ˆ ˆ( ) ( ')

7j j RBDVar j j
r

       

and there are four linear contrasts, so the total variance is  24 (2 / 7)  which gives the factor  

28 / 7  and which is smaller than the variance under  BIBD. 

 

We observe that at the cost of not being able to estimate ,ABC  we have better estimates of  

,  , , ,A B C AB BC  and AC  with the same number  of replicates as in BIBD.  Since higher order 

interactions are difficult to  interpret and are usually not large, so it is much better to use 

confounding arrangements which provide better estimates of the interactions in which we are more 

interested. 
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Note that this example is for understanding only.  As such the concepts behind incomplete block 

design and confounding are different. 

Confounding arrangement: 

The arrangement of treatment combinations in different  blocks, whereby some pre-determined 

effect (either main or interaction) contrasts are confounded is called a confounding arrangement. 

 

For example, when the interaction ABC  is confounded in a 32  factorial experiment, then the 

confounding arrangement consists of dividing the eight treatment combinations into following two 

sets: 

  a b c abc  

and 

  (1) ab bc ac  

With the treatments of each set being assigned to the same block and each of these sets being 

replicated same number of times in the experiment, we say that we have a confounding 

arrangement of a 32  factorial  in two blocks. It may be noted that any confounding arrangement has 

to  be such that only predetermined interactions are confounded and the estimates of interactions  

which are not confounded are orthogonal whenever  the interactions are orthogonal. 

 

Defining  contrast: 

The interactions which are confounded are called the defining  contrasts of the confounding 

arrangement. 

 

A confounded contrast will have treatment combinations with the same signs in each block of the 

confounding arrangement. For example, if  effect ( 1)( 1)( 1)AB a b c     is to be  confounded, 

then  put all factor combinations with + sign, i.e., (1),  ,  ab c  and abc  in one block and  all other 

factor combinations with – sign, i.e., , ,a b ac  and bc  in another block. So the block size reduces to 

4 from 8 when one effect is confounded in 32  factorial experiment. 

 

Suppose  if along with ABC  confounded, we want to confound C  also,.  To obtain such blocks, 

consider the blocks where ABC  is confounded and divide them into further halves. So the block 

  a b c abc  

is divided into following two blocks:  a b  and   c abc  
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and the block  
                 (1) ab bc ac  

is divided into following two blocks:  (1) ab     and   bc ac  

These blocks of 4 treatments are divided into 2 blocks with each having 2 treatments and they are 

obtained in the following way. If only C  is confounded then the block with + sign of treatment 

combinations in  C  is  

  c ac bc abc  

and block with – sign of treatment combinations in  C  is 

  (1) a b ab . 

Now look into the 

(i) following block with + sign when  ( 1)( 1)( 1)ABC a b c     is confounded, 

  a b c abc  

(ii) following block with + sign when ( 1)( 1)( 1)C a b c     is confounded and 

  c ab ac abc  

(iii) table of + and – signs in case of  32  factorial experiment. 

 

Identify the treatment combinations having common - signs in these two blocks in (i) and  (ii). 

These treatment combinations are are c  and .abc   So assign them into one block. The remaining 

treatment combinations out of  ,  ,  a b c  and abc  are a  and  b  which go into another block. 

Similarly look into the  

(a) following block with – sign when ABC  is confounded,  

  (1) ab bc ac  

(b) following block with – sign when C  is confounded and 

  (1) a b ab  

(c) table of + and – signs in case of  2 3  factorial experiment. 

 

Identify the treatment combinations having common – sign in these two  blocks in (a) and (b).  

These treatment combinations are (1) and  ab  which go into one block and the remaining two 

treatment combinations ac  and  bc  out of , ,c ac bc  and abc go into another block.  So the blocks 

where both ABC  and  C  are confounded together are 

 (1) , , andab a b ac bc c abc . 
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While making these assignments of treatment combinations into four blocks, each of size two, we 

notice that another effect,  viz.,  AB  also gets confounded automatically. Thus we see that when 

we confound two factors, a third factor is automatically getting confounded. This situation is quite  

general. The defining contrasts for a confounding arrangement cannot be  chosen arbitrarily.  If 

some defining contrasts are selected then some other will also get confounded. 

 

Now we present some definitions which are useful in describing the confounding arrangements.  

   

Generalized interaction: 

Given any two interactions, the generalized interaction is obtained by multiplying the factors (in 

capital letters) and ignoring all the terms with an even exponent. 

For example, the generalized interaction of the factors ABC  and BCD  is 

2 2ABC BCD AB C D AD    and the generalized interaction of the factors ,AB BC  and ABC is  

2 3 2 .AB BC ABC A B C B     

Independent set : 

A set of main effects and interaction contrasts is called independent if no member of the set can be 

obtained as a generalized interaction of the other members of the set. 

 

For example, the set of factors ,AB BC  and AD  is an independent set but the set of factors 

, ,AB BC CD  and AD  is not an independent set because 2 2AB BC CD AB C D AD     which is 

already contained in the set. 

 

Orthogonal treatment combinations: 

The treatment combination p q ra b c … is said to be orthogonal to the interaction ....x y zA B C   if  

( ....)px qy rz    is divisible by 2. Since , , ,..., , , ,...p q r x y z  are either 0 or 1, so a treatment 

combination is orthogonal to  an interaction if they have an even number of letters in 

common.Treatment combination (1) is orthogonal to every interaction. 

 

If  1 1 1 2 2 12....and ...p q r p q ra b c a b c  are both orthogonal to ...,x y zA B C  then the product 1 2 1 2 1 2 ...p p q q r ra b c    

is also orthogonal to ...x y zA B C  Similarly, if two interactions are orthogonal to a treatment 

combination, then their generalized interaction is also orthogonal to it. 
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Now we give some general results for a confounding arrangement. Suppose we wish to have a 

confounding arrangement in 2 p  blocks of a 2k  factorial experiment. Then we have the following 

observations: 

1. The size of each block is  2 .k p  

2. The number of elements in defining contrasts is  (2 1), . ., (2 1)p pi e   interactions have 

to be confounded. 

 Proof: If  p  factors are to be confounded, then the number of  m th order interaction 

with  p  factors  is  , ( 1, 2,..., ).
p

m p
m

 
 

 
  So the total number of factors to be 

confounded are  1

1

2
p

p

m

p

m




 
 

 
 . 

3. If any two interactions are confounded, then their generalized interactions are  also 

confounded. 

4. The number of independent contrasts out of  (2 1)p   defining contrasts is  p  and rest 

are obtained as generalized interactions. 

5. Number of effects getting confounded automatically is  (2 1).p p   

 

To illustrate this, consider a 52  factorial  ( 5)k   with 5 factors, viz., , , ,A B C D  and E .  The 

factors are to be confounded in  32  blocks ( 3).p    So the size of each block is  5 32 4.    The 

number of defining contrasts is  32 1 7.    The number of independent contrasts which can be 

chosen arbitrarily is 3(i.e., p ) out of 7 defining contrasts. Suppose we choose 3p    following 

independent contrasts as 

(i) ACE  

(ii) CDE  

(iii) ABDE  

and then the remaining 4 out of 7 defining contrasts are obtained as 

(iv) 2 2( ) ( )ACE CDE AC DE AD    

(v) 2 2( ) ( )ACE ABDE A BCDE BCD    

(vi) 2 2( ) ( )CDE ABDE ABCD E ABC    

(vii) 2 2 2 3( ) ( ) ( ) .ACE CDE ABDE A BC D E BE     

 

 



Analysis of Variance  |  Chapter 9  |  Confounding   |   Shalabh, IIT Kanpur 
 99

Alternatively, if we choose another set of 3p   independent contrast as  

(i) ABCD , 

(ii) ACDE , 

(iii) ,ABCDE  

then the defining contrasts are obtained as  

(iv) 2 2 2( ) ( )ABCD ACDE A BC D E BE    

(v) 2 2 2 2( ) ( )ABCD ABCDE A B C D E E    

(vi) 2 2 2 2( ) ( )ACDE ABCDE A BC D E B    

(vii) 3 2 3 3 2( ) ( ) ( ) .ABCD ACDE ABCDE A B C D E ACD     

In this case, the main effects B  and E  also get confounded. 

As a rule, try to confound, as far as possible, higher order interactions only because they are 

difficult to interpret. 

 

After selecting  p  independent defining contrasts, divide the 2k  treatment combinations into  2 p  

groups of  2k p  combinations each, and each group going into one block. 

 

Principal (key) block: 

Group containing the combination (1) is called the principal block or key block.  It contains all the 

treatment combinations which are orthogonal to the chosen independent defining contrasts. 

 

If there are p  independent defining contrasts, then any treatment combination in principal block is 

orthogonal to  p  independent defining contrasts. In order to obtain the principal block, 

- write the treatment combinations in standard order. 

- check each one of them for orthogonality. 

- If two treatment combinations belongs to the principal block, their product also belongs to 

the principal block. 

- When few treatment combinations of the principal block have been determined, other 

treatment combinations can be obtained by multiplication rule. 

 

Now we illustrate these steps in the following example. 
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Example: 

Consider the set up of a  52  factorial experiment in which we want to divide the total treatment 

effects into  32  groups by confounding three effects , andAD BE ABC . The generalized 

interactions in this case  are , ,ADBE BCD ACE  and .CDE  

 

In order to find the principal block, first write the treatment combinations in standard order as 

follows: 

 (1) a  b  ab  c  ac  bc  abc  

 d  ad bd  abd  cd  acd  bcd  abcd  

 e  ae  be  abe  ce  ace  bce  abce  

 de  ade  bde  abde  cde  acde  bcde  abcde . 

 

Place a treatment combination in the principal block if it has an even number of letters in common 

with the confounded effects ,AD BE  and .ABC   The principal block  has (1), ,  acd bce  and 

( )abde acd bce  .  Obtain other blocks of confounding arrangement from principal block by 

multiplying the treatment combinations of the principal block by a treatment combination  not 

occurring in it or in any other block already obtained.  In other words, choose treatment 

combinations not occurring in it  and multiply with them in the principal block. Choose only 

distinct blocks. In this case, obtain  other blocks by multiplying , , , , , ,a b ab c ac bc abc  like as in 

the following .   

 

                    Arrangement of the treatments in blocks when ,AD BE  and ABC  are confounded 

Principal 

Block 1 

Block 

     2 

Block 

     3 

Block 

     4 

Block 

     5 

Block 

    6 

Block 

     7 

Block  

     8 

(1) a  b  ab  c  ac  bc  abc  

acd

bce

abde

 

cd

abce

bde

 

abcd

ce

ade

 

bcd

ace

de

 

ad

be

abcde

 

d

abe

bcde

 

abd

e

acde

 

bd

ae

cde

 

 

 For example, block 2 is obtained by multiplying a  with each factor combination in principal block 

as  2(1) , , ,a a acd a a cd cd bce a abce       2 ;abde a a bde bde   block 3 is obtained by 

multiplying b  with (1), ,acd bce  and abde  and similarly other blocks are obtained. If any other 

treatment combination is chosen to be multiplied with the treatments in principal block, then we get 
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a block which will be one among the blocks 1 to 8. For example, if  ae  is multiplied with the 

treatments in principal  block, then the blocks obtained consists of 

(1) , ,ae ae acd ae cde bce ae abc       and abde ae bd   which is same as the block 8. 

 

Alternatively, if  ,ACD ABCD  and  ABCDE  are to be confounded, then independent defining 

contrasts are ,  ,  ACD ABCD ABCDE  and the principal block has (1), ,ac ad  and  ( ).cd ac ad   

 

Analysis of variance in case of confounded effects 

When an effect is confounded, it means that it is not estimable. The following steps are followed to 

conduct the analysis of variance in case of factorial  experiments with confounded effects: 

 Obtain the sum of squares due to  main and interaction effects in the usual way as if no 

effect is confounded. 

 Drop the sum of squares corresponding to confounded effects and retain only the sum of 

squares due to unconfounded effects. 

 Find the total sum of squares. 

 Obtain the sum of squares due to error and associated degrees of freedom by subtraction. 

 Conduct the test of hypothesis in the usual way. 
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Chapter 6 

Balanced Incomplete Block Design (BIBD) 

 

The designs like CRD and RBD  are the complete block designs. We now discuss the balanced 

incomplete block design (BIBD) and the partially balanced incomplete block design (PBIBD) which 

are the incomplete block designs. 

 

A balanced incomplete block design (BIBD) is an incomplete block design in which 

- b blocks have the same number k of plots each and 

- every treatment is replicated r times in the design. 

- Each treatment occurs at most once in a block, i.e.,  0ijn   or 1  where ijn  is the number of 

times the jth treatment occurs in ith  block, 1,2,..., ; 1, 2,..., .i b j v   

- Every pair of treatments occurs together is    of the b blocks.  

 

Five parameters denote such design as ( , , , ; )D b k v r  . 

The parameters , , , andb k v r   are not chosen arbitrarily. 

They satisfy the following relations: 

( )   

( )  ( 1) ( 1)

( ) (and hence ).

I bk vr

II v r k

III b v r k



  

 
 

 

Hence      for all

for all

ij
j

ij
j

n k i

n r j








 

and  
'1 ' 2 ' ...

j jj ij j ij b bn n n n n n      for all ' 1,2,..., .j j v    Obviously  ijn

r
 cannot be a constant for all 

j.  So the design is not orthogonal. 
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Example of BIBD 

1 10 1 6In the design ( , ; , ; ) : consider 10  ( , ,..., ),  6 ( , ,..., ) ,   3, 5, 2D b k v r b say B B v say T T k r       

1 1 2 5

2 1 2 6

3 1 3 4

4 1 3 6

5 1 4 5

6 2 3 4

7 2 3 5

8 2 4 6

9 3 5 6

10 4 5 6

Blocks  Treatments

B T T T

B T T T

B T T T

B T T T

B T T T

B T T T

B T T T

B T T T

B T T T

B T T T

 

 

Now we see how the conditions of BIBD are satisfied. 

( )    10 3 30 and 6 5 30

  

( )   ( 1) 2 5 10 and ( 1) 5 2 10

  ( 1) ( 1)

( )  10 6

i bk vr

bk vr

ii v r k

v r k

iii b




     
 

       
   
 

 

 

Even if the parameters satisfy the relations, it is not always possible to arrange the treatments in blocks 

to get the corresponding design. 

 

The necessary and sufficient conditions to be satisfied by the parameters for the existence of a BIBD 

are not known. 

 

The conditions (I)-(III)  are some necessary condition only.  The construction of such design depends 

on the actual arrangement of the treatments into blocks and this problem is handled in combinatorial 

mathematics. Tables are available, giving all the designs involving at most 20 replication and their 

method of construction. 

 

Theorem:  

( )

( ) ( 1) ( 1)

( ) .

I bk vr

II v r k

III b v



  
  
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Proof: (I)  

Let ( ) :ijN n b v    the incidence matrix 

Observing that the quantities 1 1 1 1and 'b v v bE NE E N E  are the scalars and the transpose of each other, we 

find their values.  

Consider 

 

11 21 1

12 22 2
1 1

1 2

1

2

1

1

1
(1,1,...,1)

  

1

(1,1,...,1)

(1,1,...,1) = .

b

b
b v

v v bv

j
j

j
j

bj
j

b

n n n

n n n
E NE

n n n

n

n

n

k

k
bk

k



  
  
  
  
  

  
 
 
 
 

  
 
 
 
 

 
 
 
 
 
 










   






 

 Similarly, 

 

11 21 1

12 22 2
1 1

1 2

1

1

' (1,...,1)     
  

1

                =(1,1,...,1) (1,1,...,1)

b

b
v b

v v bv

i
i

v

iv
i

n n n

n n n
E N E

n n n

n
r

vr

rn


  
  
  
  
  

  
 

  
            

 






 

   


 

         

 

1 1 1 1

But

          ' as both are scalars.

Thus  .
b v v bE NE E N E

bk vr


  
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Proof: (II)  

Consider 

11 21 1 11 12 1

12 22 2 21 22 2

1 2 1 2

2
1 1 2 1

2
1 2 2 2

2
1 2

'
    

                           

b v

b v

v v bv b b bv

i i i i iv
i i i

i i i i iv
i i i

iv i iv i iv
i i i

n n n n n n

n n n n n n
N N

n n n n n n

n n n n n

n n n n n

n n n n n

   
   
   
  
  
   



  

  

 

 
 

       
 





   


     . (1)

r

r

r

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





  


 

 

Since  2 1ijn   or 0 as  1ijn   or 0, 

  

2so Number 

     =

of

 for all 1, 2,..., of times occurs in the desi

 times   occurs in the design

gn

ij j
i

n

r j v






  

  
' 'of blocks in which   occurs togetherand Number and

                    = for all '.

ij ij j j
i

n n

j j

 








  

1

1

1

1
'

1

( 1)

( 1)
[ ( 1)] . (2)

( 1)

v

v

r

r
N NE

r

r v

r v
r v E

r v

 
 

 








  
  
  
  
  
  

  
      
 
 

  




  



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Also 

11 12 1

21 22 2
1

1 2

1

2

11 21 1

12 22 2

2 1

1

1
' '

1

'

             

  

v

v
v

b b bv

j
j

j
j

bj
j

b

b

iv v bv b

n n n

n n n
N NE N

n n n

n

n
N

n

n n n k

n n n k

kn n n 

   
   
       
   
    
 
 
 
 

  
 
 
 
 

  
  
  
  
  

  










   










1

2

1

           

             

             (3)

i
i

i
i

iv
i

v

n

n
k

n

r

r
k

r

krE

 
 
 
   
 
 
 
 
 
 
 
 
 
 












 

   
1 1        [ ( 1)]

or    ( 1)

or    ( 1) ( 1)

From 2  and 3

v vr v E krE

r v kr

v r k






  
  
  

  

 

Proof: (III)  

From (I), the determinant of 'N N  is 

        

1

1

1

det ' [ ( 1)]( )

( 1)

( )

0

v

v

v

N N r v r

r r k r

rk r

 











   

   

 


 

because since if  r    from (II) that k  =  v.  This contradicts the incompleteness of the design. 
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Thus 'N N  is a v v  nonsingular matrix. 

Thus  ( ' ) .rank N N v  

We know from matrix theory result 

( ) ( ' )

so ( )

rank N rank N N

rank N v


  

But   ( )rank N b , there being b rows in  N. 

Thus  .v b                                                                    

 

Interpretation of conditions of BIBD 

Interpretation of (I) bk = vr 

This condition is related to the total number of plots in an experiment.  In our settings, there are  k  

plots in each block and there are b  blocks. So the total number of plots are bk . 

Further, there are v  treatments  and each treatment is replicated  r  times such that each treatment 

occurs atmost in one block. So total number of plots containing all the treatments is vr .  Since both 

the statements  counts the total number of plots, hence .bk vr  

 

Interpretation of (II) 

Each block has k  plots. Thus the total pairs of plots in a block = 
( 1)

.
2 2

k k k  
 

 
 

 There are b  blocks. Thus the total pairs of plots such that each pair consists of plots within a block = 

( 1)

2

k k
b


. 

There are v  treatments,  thus the total number of pairs of treatment =  
( 1)

2 2

v v v  
 

 
. 

Each pair of treatment is replicated    times, i.e., each pair of treatment occurs in   blocks.  

Thus the total number of pairs of plots within blocks must be  
( 1)

2

v v 
 . 

Hence  
 1( 1)

2 2

v vk k
b 


  

Using  bk vr  in this relation, we get     1 1 .r k v    

 

Proof of (III) was given by Fisher but quite long, so not needed here. 
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Balancing in designs:   

There are two types of balancing – Variance balanced and efficiency balanced. We discuss the 

variance balancing now and the efficiency balancing later. 

 

Balanced Design (Variance Balanced): 

A  connected design is said to be balanced (variance balanced) if all the elementary contrasts of the 

treatment effects can be estimated with the same precision. This definition does not hold for the 

disconnected design, as all the elementary  contrasts are not estimable in this design. 

 

Proper Design: 

An incomplete block design with  1 2 .... bk k k k     is called a proper design. 

 

Symmetric BIBD: 

A BIBD is called symmetrical if the number of blocks = number of treatments,  i.e.,  .b v  
 

Since ,b v   so  from  bk vr  

      .k r   

Thus the number of pairs of treatments common between any two blocks =  . 

 

The determinant of 'N N  is 

    

1

1

1

' [ ( 1)]( )

1

( ) .

v

v

v

N N r v r

r r k r

rk r

 











   

     
 

 

When BIBD is symmetric, b = v and then using ,bk vr   we have .k r   Thus 

2 2 1

1

2

' ( ) ,

so

( ) .

v

v

N N N r r

N r r









  

  

 

Since  N  is an integer, hence when  v  is an even number,  ( )r   must be a perfect square.  So 

'
1 1

1 1 ' 1

'
1 12

' 1 '
1 12

' ( ) ,

( ' )

1
,

1
.

v v

v v

v v

N N r I E E

N N N N

I E E
r r

N I E E
r r

 







  



  



     
     
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Post-multiplying both sides by  'N , we get 

 '
1 1' ( ) ' .v vNN r I E E N N      

Hence in the case of a symmetric BIBD, any two blocks have    treatment in common. 

 

Since BIBD  is an incomplete block design.  So every pair of treatment can occur at most once is a 

block, we must  have  .v k  

 

If  ,v k  then it means that each treatment occurs once in every block which occurs in case of RBD. 

So in BIBD, always assume  v > k .  

 

Similarly  .r   

[If then ( 1) ( 1)  which means that the design is RBD]r v r k v k         

 

Resolvable design: 

A block design of 

- b blocks in which 

- each of v treatments is replicated  r  times 

is said to be resolvable if  b blocks can be divided into r sets of /b r   blocks each, such that every 

treatment appears in each set precisely once.  Obviously, in a resolvable design, b is a multiple of r. 

 

Theorem:  If in a BIBD  ( , , , , ),D v b r k   b  is divisible  by r, then 

 1.b v r     

 Proof: Let  b nr  (where  1n   is a positive integer). 

 

 

For a BIBD, ( 1) ( 1)

because 
( 1)

or or          
( 1)

or          

( 1)

( 1)

1
.

1

Since 1 and 1, so 1 is an integer. Since has to be an integer.

( 1)
is also a po

1

v r k

vr bk
v

r vr nrk
k

v nk

nk

k

n
n

k

n k n r

n

k







 





  

 
    

  





    
  





sitive integer.
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Now, if  possible, let 

 

      1

1

or ( 1) 1

( 1) ( 1)
or ( 1) (because 1 )

( 1)
1which is a contradiction as integer can not be less than one

1
1 is impossible. Thus the opposite is true.

1 holds correct.

b v r

nr v r

r n v

r k r k
r n v

n

k
b v r

b v r

 


  
   

  
 

   


 


   
   

 

 

Intrablock analysis of BIBD: 

Consider the model 

       ; 1, 2,..., ; 1, 2,..., ,ij i j ijy i b j v          

where 

           is the general mean effect;

           is the fixed additive  block effect;

           is the fixed additive  treatment effect and

           is the i.i.d. random error with ~

th
i

th
j

ij ij

i

j







  2(0, ).N 

  

We don’t need to develop the analysis of BIBD from starting. Since BIBD is also an incomplete block 

design and the analysis of incomplete block design has already been presented in the earlier module, 

so we implement those derived expressions directly under the setup and conditions of BIBD.  Using 

the same notations, we represent the blocks totals by  
1

v

i ij
j

B y


 ,  treatment totals by  
1

b

j ij
i

V y


  ,  

adjusted treatment totals by  jQ  and grand  total by  
1

b v

ij
i j

G y
 

   The normal equations are obtained 

by differentiating the error sum of squares.  Then the block effects are eliminated from the normal 

equations and the normal equations are solved for the treatment effects. The resulting intrablock 

equations of  treatment effects in matrix notations are expressible  as 

 ˆQ C . 

Now we obtain the forms of andC Q    in the case of BIBD. The diagonal elements of  C  are given 
by 

 

2

1 ( 1,2,..., )

.

b

ij
i

jj

n
c r j

k
r

r
k

  

 


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The off-diagonal elements of  C  are given by 

 
' '

1

1
( '; , ' 1, 2,..., )

.

b

jj ij ij
i

c n n j j j j
k

k






   

 


 

The adjusted treatment totals are  obtained as 

 1

( )

1
( 1, 2,..., )

1

b

j j ij i
i

j i
i j

Q V n B j
k

V B
k




  

 




  

where  
( )i j
  denotes the sum over those blocks containing jth treatment.  Denote  

  
( )

, then

.

j i
i j

j
j j

T B

T
Q V

k



 



 

The  C  matrix is simplified as follows: 

 

'
1 1

'
1

'
1

'
1 1

'

1
( )

1
( )

1
( )

.

v v

v vi

v vi

v v

N N
C rI

k

rI r I E E
k

k
r I I E E

k k

v
I I E E

k k

E EV
I

k v

 







 

     

    
 

    
 
 

  
 

 

 

Since  C  is not as a full rank matrix, so its unique inverse does not exist. The generalized inverse of C  

is denoted as  C   which is obtained as 

 
1'

1 1 .v vE E
C C

v



  
  
 

  

Since 

 

'
1 1

'
1 1or ,

v v
v

v v
v

E Ev
C I

k v

E EkC
I

v v





 
  

 

 
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the generalized inverse of  
k

C
v

 is 

 

11 '
1 1

1' '
1 1 1 1

,

.

v v

v v v v
v

v

E Ek
C C

v v

E E E E
I

v v

I








       
   

 
   
 



 

Thus   v

v
C I

k

  . 

Thus an estimate of   is obtained from Q C  as 

 
ˆ

.

C Q

v
Q

k







 

The null hypothesis of our interest is  0 1 2: ... vH       against the alternative hypothesis 1 :H at 

least one pair of  'j s  is different. Now we obtain the various sum of squares involved in the 

development of analysis of variance as follows.  

 

The adjusted treatment sum of squares is 

 

( )

2

1

ˆ '

'

,

Treat adj

v

j
j

SS Q

k
Q Q

k
Q





 





 

 

 

The unadjusted block sum of squares is 

 
2 2

( )
1

b
i

Block unadj
i

B G
SS

k bk

   . 

The total sum of squares is 

 
2

2

1 1

b v

Total ij
i j

G
SS y

bk 

         

The  residual sum of squares is obtained by 

 ( ) ( ) ( )Error t Total Block unadj Treat adjSS SS SS SS   .
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A test for  0 1 2: ... vH       is then based on the statistic 

 

( )

( )

2

1

( )

/( 1)

/( 1)

1
. .

1

Treat adj
Tr

Error t

v

j
j

Error t

SS v
F

SS bk b v

Q
k bk b v

v v SS





  

  





 

 

If  1 , 1, 1; 0( )then is rejected.Tr v bk b v tF F H      

 

This completes the analysis of variance test and is termed as intrablock analysis of variance. This 

analysis can be compiled into the intrablock analysis of variance table for testing the significance of 

the treatment effect given as follows. 

 

          Intrablock analysis of variance table of BIBD for  0 1 2: ... vH       

Source Sum of squares Degrees of  

freedom 

Mean  squares F 

Between treatment 

(adjusted) 

 

Between blocks 

(unadjusted) 

 

Intrablock error 

( )Treat adjSS  

 

 

( )Block unadjSS  

 

( )

(bysubstraction)

Error tSS

 

1v   

 

 

b - 1 

 

 

bk – b – v + 1 

( )

1
Treat adj

treat

SS
MS

v



 

 

 

 

( )

1
Error t

E

SS
MS

bk b v


  
 

Treat

E

MS

MS
 

Total 
2

2

Total

ij
i j

SS

G
y

bk




 

1bk     

     

In case, the null hyperthesis is rejected, then we go for a pairwise comparison of the treatments. For 

that, we need an expression for the variance of the difference of two treatment effects. 
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The variance of an elementary contrast '( , ')j j j j    under the  intrablock analysis is 

'

'

2

'2 2

2
2

' ' '2 2

2
2

2 2

2

ˆ ˆ* ( )

( )

[ ( ) ( ) 2 ( )]

( 2 )

1 2
2 1

2
.

j j

j j

j j j j

jj j j jj

V Var

k
Var Q Q

v

k
Var Q Var Q Cov Q Q

k
c c c

k
r

k k

k

v

 



 


 

 
 




 

   
 

  

  

        


 

This expression depends on 2  which is unknown. So it is unfit for use in the real data applications. 

One solution is to estimate 2  from the given data and use it in the place of 2.   

 

An unbiased estimator of 2σ  is 

  

( )2ˆ .
1

Error tSS

bk b





  
 

Thus an unbiased estimator of  *V  can be obtained by substituting  2̂  in it as 

 ( )
*

2ˆ . .
1

Error tSSk
V

v bk b 


  
 

If  0H   is rejected, then we make pairwise comparison and use the multiple comparison test. To test 

0 ': ( '),j jH j j    a suitable statistic is   

 '

( )

( 1)
. j j

Error t

Q Qk bk b v
t

v SS
  

  

which follows a t-distribution with  ( 1)bk b v    degrees of freedom under 0H . 

A question arises that how a BIBD compares to an RBD. Note that BIBD is an incomplete block 

design whereas RBD is a complete block design. This point should be kept in mind while making such 

restrictive comparison. 

 

We now compare the efficiency of BIBD with a randomized block (complete) design with r  

replicates.  The variance of an elementary contrast  under a randomized block design (RBD) is 

 
2

* 2 *
'

2
ˆ ˆ( )R j j RBDV Var

r

     

where  2
*( )ijVar y   under RBD. 
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Thus the relative  efficiency of BIBD relative to RBD is 

 

2
*

'

2
'

2
*
2

2
ˆ ˆ( )

ˆ ˆ( ) 2

.

j j RBD

j j BIBD

Var r

Var k
v

v

rk


 
  






 
   

  
 
 

 
  

 

   

The factor  
v

E
rk


 (say) is termed as the efficiency factor of BIBD and 

 
1

1

1

1 1
1 1

1 (since ).

v v k
E

rk k v

k v

v k





     

      
  

 

 

The actual efficiency of BIBD over RBD not only depends on the efficiency factor but also on the 

ratio of variances 2 2
* /  .  So BIBD can be more efficient than RBD as 2

*  can  be more than  2  

because   .k v  

 

Efficiency balanced design: 

A block design is said to be efficiency balanced if every contrast of the treatment effects is estimated 

through the design with the same efficiency factor. 

 

If a block design satisfies any two of the following properties: 

(i)  efficiency balanced, 

(ii)  variance balanced and 

(iii) an equal number of replications, 

then the third property also holds true. 

 

Missing observations in BIBD: 

The intrablock estimate of missing  (i, j)th   observation  ijy  is 

 
'( 1) ( 1) ( 1)

( 1)( 1)
i j j

ij

vr k B k v Q v Q
y

k k bk b v

    


   
 

 

' :jQ  the sum of Q value for all other treatment (but not the jth one) which  are present in the 

        ith block. 

All other procedures remain the same. 
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Interblock  analysis and recovery of interblock information in BIBD 

In the intrablock analysis of variance of an incomplete block design or BIBD, the treatment effects 

were estimated after eliminating the block effects from the normal equations. In a way, the block 

effects were assumed to be not marked enough and so they were eliminated.   It is possible in many 

situations that the block effects are influential and marked. In such situations,  the block totals may 

carry information about the treatment combinations also. This information can be used in estimating 

the treatment effects which may provide more efficient results. This is accomplished by an interblock 

analysis of BIBD and used further through the recovery of interblock information. So we first conduct 

the interblock analysis of BIBD. We do not derive the expressions a fresh but we use the assumptions 

and results from the interblock analysis of an incomplete block design. We  additionally  assume that 

the block effects are random with variance 2 .  

 

After estimating the treatment effects under interblock analysis, we use the results for the pooled 

estimation and recovery of interblock information in a BIBD. 

 

In case of BIBD, 

2
1 1 2 1

2
1 2 2 2

2
1 2

'
1 1

'
1 1 1

  
'

       

   

( )

1
( ' )

i i i i iv
i i i

i i i i iv
i i i

iv i iv i iv
i i i

v v v

v v
v

n n n n n

n n n n n
N N

n n n n n

r

r

r

r I E E

E E
N N I

r rk

 
 

 

 






 
 
 
   
 
 
 
 
 
 
 
 
 
 

  

 
    

  

  

  





   





  


 

 

The interblock estimate of    can be obtained by substituting the expression on   1
'N N


 in the earlier 

obtained interblock estimate. 

 1 1( ' ) ' .vGE
N N N B

bk
  

 

 



Analysis of Variance  |  Chapter 6  |  Balanced Incomplete Block Design  |  Shalabh, IIT Kanpur 
 1616

Our next objective is to use the intrablock and interblock estimates of treatment effects together to find 

an improved estimate of treatment effects. 

 

In order to use the interblock and intrablock estimates of     together through pooled estimate, we 

consider the interblock and intrablock estimates of the treatment contrast. 

 

The intrablock estimate of treatment contrast  'l   is 
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The  interblock estimate of treatment contrast 'l   is 
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The variance of  ˆ'l    is  obtained as 

2
2

' '
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ˆ( ' )
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j j j j
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Since 

2

2
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1
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k

Cov Q Q j j
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

 
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so 
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 
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      

   
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Similarly, the variance of ˆ'  is obtained as 

2
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

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The information on ˆ'  and ˆ'  can be used together to obtain a more efficient estimator of '  by 

considering the weighted arithmetic mean of ˆ'  and ' .  This will be the minimum variance 

unbiased and estimator of '  when the weights of the corresponding estimates are chosen such that 

they are inversely proportional to the respective variances of the estimators. Thus the weights to be 

assigned to intrablock and interblock estimates are reciprocal to their variances as  2/( )v k   and  

2( ) / ,fr    respectively. Then the pooled mean of these two estimators is  
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where  1 2*

1 2

ˆ ˆ( )

( )
j j

j

k r

k r

   


  
 


 

, 1 22 2

1 1
, .

f

 
 

 

  

Now we simplify the expression of *
j  so that it becomes more compatible in further analysis. 

Since   ˆ ( / ) and / ( ),j j j jk Q T r      so the numerator of *
j  can be expressed as 

 1 2 1 2ˆ ( )j j j jk r kQ kT           

Similarly, the  denominator of  *
j  can be expressed as 

 
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Let 
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Thus the pooled estimate of the contrast 'l   is 
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The variance of  ' *l   is 

 
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is  called as the effective variance. 

 

Note that the variance of  any elementary contrast based on the  pooled estimates of the  treatment 

effects is  

* * 22
( ) .i j EVar

r
     

The effective variance can be approximately estimated by 

  2ˆ 1 ( ) *E MSE v k     

where MSE is the mean square due to error obtained from the intrablock analysis as 

 ( )

1
Error tSS

MSE
bk b v


  

 

and 

 1 2

1 2

*
( 1) ( )v k k v k

 
 




  
. 

 

The quantity *  depends upon the unknown 2  and 2 .   To obtain an estimate of * , we can 

obtain the unbiased estimates  of 2  and 2
   and then substitute them back in place of 2  and 2

   in 

* .  To do this, we proceed as follows. 
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An estimate of  1  can be obtained by estimating  2  from the intrablock analysis of variance as 

 1
1

2

1
ˆ [ ]

ˆ
MSE


  . 

The estimate of  2  depends on 2 2ˆ ˆand   . To obtain an unbiased estimator of  2
 , consider 

 ( ) ( ) ( ) ( )Block adj Treat adj Block unadj Treat unadjSS SS SS SS    

for which  

 2 2
( )( ) ( ) ( 1) .Block adjE SS bk v b      

 

Thus an unbiased estimator of  2
  is 
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Thus 
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1
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1
.

( 1) ( 1) ( )Block adj Error t

k

v r k b SS v k SS




 





     

 

Recall that our main objective is to develop a test of hypothesis for 0 1 2: ... vH       and we now 

want to develop it using the information based on both interblock and intrablock analysis. 

 

To test the hypothesis related to treatment effects based on the pooled estimate, we proceed as follows. 

 

Consider the adjusted treatment totals based on the intrablock and the interblock estimates as 

 * ** ; 1,2,...,j j jT T W j v  
 

and use it as usual treatment total as in earlier cases. 
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The sum of squares due to  *
jT  is 

 

2

*

12 *2
*

1

.

v

jv
j

T j
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T

S T
v
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

 
 
  


  

 

Note that in the usual analysis of variance technique, the test statistic for such hull hypothesis is 

developed by taking the ratio of the sum of squares due to treatment divided by its degrees of freedom 

and the sum of squares due to error divided by its degrees of freedom. Following the same idea, we 

define the statistics 

 
2

* * / [( 1) ]
ˆ[1 ( ) *]

TS v r
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MSE v k 



 

 

where  ˆ *  is an estimator of  * .  It may be noted that *F  depends on  ˆ *.  The value of  ˆ *  itself 

depends on the estimated variances  2 2ˆ ˆand f  .  So it cannot be ascertained that the statistic *F   

necessary follow the  F  distribution. Since the construction of *F  is based on the earlier approaches 

where the statistic was found to follow the exact F -distribution, so based on this idea, the distribution 

of *F  can be considered to be approximately F  distributed. Thus the approximate distribution of *F  

is considered as F  distribution with  ( 1)v   and ( 1)bk b v    degrees of freedom. Also,  ˆ *  is an 

estimator of  *  which is obtained by substituting the unbiased estimators of  1  and 2 . 

An approximate best pooled estimator of  
1

j j
j

l 
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   is 

 
1

ˆv
j j

j
j

V W
l

r






  

and its variance is approximately estimated by 
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In case of the resolvable BIBD,  2ˆ  can be obtained by using the adjusted block with replications sum 

of squares from the intrablock analysis of variance. If sum of squares due to such block total is *
BlockSS  

and corresponding  mean square is 

 
*

* Block
Block

SS
MS

b r

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then 
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* 2 2

2 2

( )( 1)
( )

( 1)

Block

v k r
E MS

b r
r k

r





 

 

 
 




 
 

and  ( ) ( )k b r r v k    for a resolvable design.  Thus 
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and  hence 
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The analysis of variance table for the recovery of interblock information in BIBD is described in the 

following table: 

 

 

 

Source Sum of squares Degrees of 

freedom 

Mean square *F  
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Between blocks 

(adjusted) 

 

 

 

Intrablock error 
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The increase in the precision using interblock analysis as compared to intrablock analysis is 
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Such an increase may be estimated by 

 2

1

ˆ ( )
ˆ

r k

v

 
 


. 

Although  1 2   but this may not hold true for 1 2ˆ ˆand  .  The estimates  1 2ˆ ˆ and   may be 

negative also and in that case we take 1 2ˆ ˆ .   



 

SPLIT PLOT AND STRIP PLOT DESIGNS 
 

D.K. Sehgal 
I.A.S.R.I., Library Avenue, New Delhi- 110 012 

 
1. Split Plot Design 
 
1.1 Introduction 
In conducting experiments, sometimes some factors have to be applied in larger experimental 
units while some other factors can be applied in comparatively smaller experimental units. 
Further some experimental materials may be rare while the other experimental materials may 
be available in large quantity or when the levels of one (or more) treatment factors are easy 
to change, while the alteration of levels of other treatment factors are costly, or time-
consuming. One more point may be that although two or more different factors are to be 
tested in the experiment, one factor may require to be tested with higher precision than the 
others. In all such situations, a design called the split plot design is adopted. 
 

A split plot design is a design with at least one blocking factor where the experimental units 
within each block are assigned to the treatment factor levels as usual, and in addition, the 
blocks are assigned at random to the levels of a further treatment factor. The designs have a 
nested blocking structure. In a block design, the experimental units are nested within the 
blocks, and a separate random assignment of units to treatments is made within each block. 
In a split plot design, the experimental units are called split-plots (or sub-plots), and are 
nested within whole plots (or main plots). 
     
In split plot design, plot size and precision of measurement of effects are not the same for 
both factors, the assignment of a particular factor to either the main plot or the sub-plot is 
extremely important. To make such a choice, the following guidelines are suggested: 
 

Degree of Precision- For a greater degree of precision for factor B than for factor A, assign 
factor B to the sub-plot and factor A to the main plot e.g. a plant breeder who plans to 
evaluate ten promising rice varieties with three levels of fertilization, would probably wish to 
have greater precision for varietal comparison than for fertilizer response. Thus, he would 
designate variety as the sub-plot factor and fertilizer as the main plot factor. Or, an 
agronomist would assign variety to main plot and fertilizer to sub-plot if he wants greater 
precision for fertilizer response than variety effect. 
 

Relative Size of the Main effects- If the main effect of one factor (A) is expected to be much 
larger and easier to detect than that of the other factor (B), factor A can be assigned to the 
main plot and factor B to the sub-plot. This increases the chance of detecting the difference 
among levels of factor B which has a smaller effect. 
 

Management Practices- The common type of situation when the split plot design is 
automatically suggestive is the difficulties in the execution of other designs, i.e. practical 
execution of plans. The cultural practices required by a factor may dictate the use of large 



Split and Strip Plot Designs 

plots. For practical expediency, such a factor may be assigned to the main plot e.g. in an 
experiment to evaluate water management and variety, it may be desirable to assign water 
management to the main plot to minimize water movement between adjacent plots, facilitate 
the simulation of the water level required, and reduce border effects. Or, if ploughing is one 
of the factors of interest, then one cannot have different depths of ploughing in different plots 
scattered randomly apart. 
       
1.2  Randomization and Layout 
There are two separate randomization processes in a split plot design – one for the main plot 
and another for the sub-plot. In each replication, main plot treatments are first randomly 
assigned to the main plots followed by a random assignment of the sub-plot treatments 
within each main plot. This procedure is followed for all replications. A possible layout of a 
split plot experiment with four main plot treatments (a=4), three sub-plot treatments (b=3), 
and four replications (r=4) is given below: 
 

           Rep. I                             Rep. II                          Rep. III                          Rep. IV  
 

b1

 
b3

 
b2

 
b2

  
b3

 
b1

 
b2

 
b1

  
b3

 
b1

 
b2

 
b3

  
b2

 
b3

 
b3

 
b1

 
b3

 
b2

 
b1  

 
b3

  
b1

 
b2

 
b1

 
b3

  
b2

 
b3

 
b3

 
b2

  
b1

 
b2

 
b1

 
b2

 
b2

 
b1  

 
b3

 
b1

  
b2

 
b3

 
b3

 
b2

  
b1

 
b2

 
b1

 
b1

  
b3

 
b1

 
b2

 
b3

   a4     a2      a 1        a3              a1    a4    a2    a3           a3     a2     a4     a1                a1    a4     a3    a2      
 

The above layout has the following important features –  
• The size of the main plot is b times the size of the sub-plot,  
• Each main plot treatment is tested r times whereas each sub-plot treatment is tested ar 

times, thus the number of times a sub-plot treatment is tested will always be larger than 
that for the main plot and is the primary reason for more precision for the sub-plot 
treatments relative to the main plot treatments. 

  
This concept of splitting each plot may be extended further to accommodate the application 
of additional factors. An extension of this design is called the split-split plot design where the 
sub-plot is further divided to include a third factor in the experiment. The design allows for 3 
different levels of precision associated with the 3 factors. That is, the degree of precision 
associated with the main factor is lowest, while the degree of precision associated with the 
sub-sub plot is the highest.               
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1.3  Model 
The model for simple split plot design is 
        Yijk = µ + ρi + τj + δij + βk + (τβ)jk +  εijk  ∀ i = 1,2, …,r, j = 1,2, …,a, k = 1,2, …b,  
where, 
Yijk        : observation corresponding to kth level of sub-plot factor(B), jth level of main plot   
               factor(A) and the ith replication. 
  µ         : general mean 
  ρi        : ith block effect 
 τj         : jth main plot treatment effect 
 βk        : kth sub-plot treatment effect 
(τβ)jk     : interaction between jth level of main-plot treatment and the kth level of sub-  
              plot treatment  
 
The error components δij and εijk are independently and normally distributed with means zero 
and respective variances σ2

δ and σ2
ε.    

 
1.4.   Analysis 
Whole-Plot analysis: 
This part of the analysis is based on comparisons of whole-plot totals: 

• The levels of A are assigned to the whole plots within blocks according to a randomized 
complete block design, and so the sum of squares for A needs no block adjustment.  
There are a –1 degrees of freedom for A, so the sum of squares is given by  

                rab/yrb/yssA 2

j

2
   j .. .. . −= ∑

      [ The “dot” notation means “add over all values of the subscript replaced with a dot” ]  
 

• There are r –1 degrees of freedom for blocks, giving a block sum of squares of 
         rab/yab/yssR 2

i

2
i .... . −= ∑

• There are a whole plots nested within each of the r blocks, so there are, in total, r(a -1)  
whole-plot degrees of freedom. Of these, a –1 are used to measure the effects of A 
leaving (r –1)(a –1) degrees of freedom for whole-plot error. Equivalently, this can be 
obtained by the subtraction of the block and A degrees of freedom from the whole-plot 
total degrees of freedom  i.e.  (ra –1) –(r –1) –(a –1) = (r –1)(a –1). 

        So, the whole plot error sum of squares, is obtained as 
            ssA  - ssR - rab/yb/yssE 2

j

2
ji

i
 1 ....  −= ∑∑

• The whole plot error mean square msE1 = ssE1 / (r –1)(a –1), is used as the error 
estimate to test the significance of whole plot factor(A). 

 
Sub-plot analysis: 
This part of the analysis is based on the observations arising from the split-plots within 
whole plots: 
• There are rab –1 total degrees of freedom, and the total sum of squares is 
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             rabysstot 2

i j k

2
kj  i .../y−= ∑∑∑

• Due to the fact that all levels of B are observed in every whole plot as in a randomized 
complete block design, the sum of squares for B needs no adjustment for whole plots, 
and is given by - 

        , corresponding to b –1 degrees of freedom. rabra ssB 2

k

2
k .. .. . /y/y −= ∑

• The interaction between the factors A and B is also calculated as part of the split-plot 
analysis. Again, due to the complete block structure of both the whole-plot design and 
the split-plot design, the interaction sum of squares needs no adjustment for blocks. The 
number of interaction degrees of freedom is (a –1)(b –1), and the sum of squares is 

             ssB-  ssA- rabrss(AB) 2.. . .
k

2
kj 

j
/y/y −= ∑∑

• Since there are b split plots nested within the ra whole plots, there are, in total, ra(b –1) 
split-plot degrees of freedom. Of these, b –1 are used to measure the main effect of B, 
and (a –1)(b –1) are used to measure the AB interaction, leaving ra(b–1) – (b–1) – (a–
1)(b–1) = a(r–1)(b–1) degrees of freedom for error. Equivalently, this can be obtained 
by subtraction of the whole plot, B, and AB degrees of freedom from the total  i.e.  

       (rab –1) – (ra – 1) – (b – 1) – (a –1)(b –1) = a(r –1)(b –1). 
         

The split-plot error sum of squares can be calculated by subtraction: 
         ssE2 = sstot – ssR – ssA – ssE1 – ssB – ss(AB). 
 

• The split-plot error mean square msE2 = ssE2 / a(r –1)(b –1) is used as the error 
estimate in testing the significance of split-plot factor(B) and interaction(AB). 

 

• The analysis of variance table is outlined as follows: 
                                                      ANOVA 

Source of Variation Degrees of 
Freedom 

Sum of 
Squares

Mean Square F 

Whole plot analysis    
Replication  r-1 ssR - - 
Main plot treatment(A)  a-1 ssA MsA  msA/msE1
Main plot error(E1) (r-1)(a-1) ssE1 msE1 =Ea  
Sub-plot analysis     
Sub-plot treatment(B) b-1 ssB MsB  msB/msE2
Interaction 
 (AxB) 

(a-1)(b-1)     ss(AB)     ms(AB)              ms(AB)/msE2     

Sub-plot error(E2) a(r-1)(b-1) ssE2 msE2 =Eb  
Total rab-1 sstot   
  
 1.5.   Standard Errors and Critical Differences:                                                                   
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  Estimate of S.E. of difference between two main plot treatment means = 
rb
E2 a  

  Estimate of S.E. of difference between two sub-plot treatment means   = 
ra
E2 b  

  Estimate of S.E. of difference between two sub-plot treatment means at the same level of 

main plot treatment  =   
r
E2 b                                                                                                                    

  Estimate of S.E. of difference between two main plot treatment means at the same or 

different levels of sub-plot treatment  =     
[ ]

rb
E1)E-(b2 ab +

 

 Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error 
d.f. for (i), (ii) & (iii).  For (iv), as the standard error of mean difference involves two error 
terms, we use the following equation to compute the weighted t values: 

                                           t = 
ab

aabb

E1)E-b(
tEt1)E-(b

+
+

   

where ta and tb are t-values at error d.f. (Ea) and error d.f.(Eb) respectively. 
 
Example: In a study carried by agronomists to determine if major differences in yield 
response to N fertilization exist among different varieties of jowar, the main plot treatments 
were three varieties of jowar (V1: CO-18, V2: CO-19 and V3: C0-22), and the sub-plot 
treatments were N rates of 0, 30, and 60 Kg/ha. The study was replicated four times, and the 
data gathered for the experiment are shown in Table 1. 
 

Table 1: Replication-wise yield data. 
  N rate, Kg/ha 
Replication Variety 0 30 60 
  Yield, kg per plot 

I V1 15.5 17.5 20.8 
 V2 20.5 24.5 30.2 
 V3 15.6 18.2 18.5 

II V1 18.9 20.2 24.5 
 V2 15.0 20.5 18.9 
 V3 16.0 15.8 18.3 

III V1 12.9 14.5 13.5 
 V2 20.2 18.5 25.4 
 V3 15.9 20.5 22.5 

IV V1 12.9 13.5 18.5 
 V2 13.5 17.5 14.9 
 V3 12.5 11.9 10.5 

         Analyze the data and draw conclusions. 
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Steps of analysis: Calculate the replication totals(R), and the grand total(G) by first 
constructing a table for the replication × variety totals shown in Table 1.1, and then a second 
table for the variety × nitrogen totals as shown in Table 1.2. 
 
     Table 1.1  Replication × variety (RA) - table of yield totals.                    

 Variety  
Replication   V1   V2   V3 Rep.Total(R) 
I  53.8  75.2  52.3 181.3 
II  63.6  54.4  50.1 168.1 
III  40.9  64.1  58.9 163.9 
IV  44.9  45.9  34.9 125.7 
Variety Total(A) 203.2 239.6 196.2  
Grand Total(G)    639.0 

 
    Table 1.2: Variety  × Nitrogen (AB) - table of yield totals. 

                  Variety  
Nitrogen  V1   V2   V3 Nitrogen 

Total(B) 
N0  60.2  69.2  60.0 189.4 
N1  65.7  81.0  66.4 213.1 
N2  77.3  89.4  69.8 236.5 

        
• Compute the various sums of squares for the main plot analysis by first 

computing the correction factor: 

C.F. = 
334

(639) 
rab
G 22

××
=  = 11342.25 

 
Total S.S. (sstot) =  [ (15.5)2 + (20.5)2 +  …  + (10.5)2 ]  -  C.F. 
                      =  637.97 

Replication S.S. (ssR) = C.F.
ab
R 2

−∑  

                                   = 11342.25
33

(125.7)(163.9)(168.1)(181.3) 2222

−
×

+++    

                                   = 190.08 

S.S. due to Variety (ssA) =  C.F.
rb
A2

−∑    

 

                                        =  11342.25
34

(196.2)(239.6)(203.2) 222

−
×

++  

                                        =  90.487     
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Main plot error S.S. (ssE1) = ssA ssR C.F.
b

(RA)2

−−−∑   

                                   

=  90.487  190.08  11342.25
3

(34.9)  ... (63.6)(53.8) 222

−−−
+++   

                  = 174.103 
 

• Compute the various sums of squares for sub-plot analysis: 
          

S.S. due to Nitrogen (ssB) =  C.F.
ra
B2

−∑    

                                           =  11342.25
34

(236.5)(213.1)(189.4) 222

−
×

++   

                                           =  92.435 

S.S. due to Interaction (A × B) = ssB ssA C.F.
r

(AB)2

−−−∑   

   92.435  90.487  11342.25
4

(69.8)  ... (65.7)(60.2) 222
−−−

+++
=   

  = 9.533 
Sub-plot error S.S. (ssE2) = Total S.S. − All other sum of squares 
                                     =  637.97 − (190.08 + 90.487 + 174.103 + 92.435 +9.533) 
                                     =  81.332 
 

• Calculate the mean square for each source of variation by dividing the S.S. by its 
corresponding degrees of freedom and compute the F value for each effect that 
needs to be tested, by dividing each mean square by the corresponding error mean 
square, as shown in Table 1.3. 

 

Table 1.3   ANOVA results. 
Source of 
variation 

Degrees of 
freedom 

Sum of Squares Mean 
Square 

F 

Replication 3 190.08 63.360  
Variety(A) 2 90.487 45.243 1.56ns

Error(a) 6 174.103 29.017(Ea)  
Nitrogen(B) 2 92.435 46.218 10.23**

Variety×Nitroge
n 
    (A×B) 

4 9.533 2.383 <1 

Error(b) 18 81.332 4.518 (Eb)  
Total 35 637.97   

                   ns – not significant,   ** - significant at 1% level. 
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• Compute the coefficient of variation for the main plot and sub-plot as: 

cv(a) = 100
G.M.

Ea × , and    cv(b) = 100
G.M.

E b ×   respectively.  

• Compute standard errors and to make specific comparisons among treatment 
means compute respective critical differences only when F-tests show 
significance differences and interpret. 

 

• Conclusion: There was no significant difference among variety means. Yield was 
significantly affected by nitrogen. However, the interaction between N rate and 
variety was not significant. All the varieties gave significant response to 30 kg 
N/ha as well as to 60 kg N/ha. 

 
2. Strip Plot Design 
 
2.1 Introduction 
Sometimes situation arises when two factors each requiring larger experimental units are to 
be tested in the same experiment, e.g., suppose four levels of spacing and three levels of 
methods of ploughing are to be tested in the same experiment. Here both the factors require 
large experimental units. If the combination of the two factors at all possible levels are 
allotted in a R.B.D. in the normal way, the experimental plots shall have to be very large 
thereby bringing heterogeneity. So, it will not be appropriate. On the other hand if one 
factor(spacing) is taken in main plots and other factor(methods of ploughing) is taken in sub-
plots within main plots, the sub-plots shall have to be large enough. Hence split plot design 
also will not be appropriate. In such situations a design called Strip plot design is adopted. 
 

The strip plot is a 2-factor design that allows for greater precision in the measurement of the 
interaction effect while sacrificing the degree of precision on the main effects. The 
experimental area is divided into three plots, namely the vertical-strip plot, the horizontal-
strip plot, and the intersection plot. We allocate factors A and B, respectively, to the vertical 
and horizontal-strip plots, and allow the intersection plot to accommodate the interaction 
between these two factors. As in the split plot design, the vertical and the horizontal plots are 
perpendicular to each other. However, in the strip plot design the relationship between the 
vertical and horizontal plot sizes is not as distinct as the main and sub-plots were in the split 
plot design. The sub-plot treatments instead of being randomized independently within each 
main plot as in the case of split plot design are arranged in strips across each replication.  The 
intersection plot, which is one of the characteristics of the design, is the smallest in size. 
 
2.2. Randomization and Layout: 
In this design each block is divided into number of vertical and horizontal strips depending 
on the levels of the respective factors. Let A represent the vertical factor with a levels, B 
represent the horizontal factor with b levels and r represent the number of replications. To 
layout the experiment, the experimental area is divided into r blocks. Each block is divided 
into b horizontal strips and b treatments are randomly assigned to these strips in each of the r 
blocks separately and independently. Then each block is divided into a vertical strips and a 
treatments are randomly assigned to these strips in each of the r blocks separately and 
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independently. A possible layout of a strip plot experiment with a =5 (a1, a2, a3, a4, and a5)  , b 
=3 (b1, b2, and b3)  and four replications is given below: 
    
             Rep. I                            Rep. II                             Rep. III                            Rep. IV     
B2        b1         b3        b2       

B1        b3         b1        b3       

B3        b2         b2        b1       

      a4   a1  a2  a5  a3                a2  a4  a3   a1  a5                a5   a4  a1  a3   a2                a3   a1  a4  a5  
a2        
        
The strip plot design sacrifices precision on the main effects of both the factors in order to 
provide higher precision on the interaction which will generally be more accurately 
determined than in either randomized blocks or simple split plot design. Consequently this 
design is not recommended unless practical considerations necessitate its use or unless the 
interaction is the principle object of study. 
 
2.3. Model  
The model for strip plot design is 
 Yijk = µ + ρi + αj + (ρα)ij + βk + (ρβ)ik + (αβ)jk +  εijk ∀ i = 1,2, …,r, j = 1,2, …,a, k = 1,2, 
…b 
where, 
Yijk      : observation corresponding to kth level of factor A, jth level of factor B and ith   
              replication. 
  µ         : general mean 
  ρi        : ith block effect 
 αj            : effect of jth level of factor A 
 βk        : effect of kth level of factor B 
(αβ)jk     : interaction between jth level of factor A and the kth level of factor B  
The error components (ρα)ij, (ρβ)ik  and εijk are independently and normally distributed with 
means zero and respective variances σ2

a,  σ2
b,  and σ2

ε.  
 
2.4. Analysis 
In statistical analysis separate estimates of error are obtained for main effects of the factor, A 
and B and for their interaction AB. Thus there will be three error mean squares applicable for 
testing the significance of main effects of the factors and their interaction separately. 
Suppose 4 levels of spacings(A) and 3 levels of methods(B) of ploughing are to be tested in 
the same experiment. Each replication is divided into 4 strips vertically and into 3 strips 
horizontally. In the vertical strips the four different levels of spacings are allotted randomly 
and in the horizontal strips three methods of ploughing are allotted randomly. Let there be 4 
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replications(R). The analysis of variance is carried out in three parts viz. vertical strip 
analysis, horizontal strip analysis and interaction analysis as follows: 

• Form spacing × replication (A × R) table of yield totals and from this table compute the 
S.S. due to replication, S.S. due to spacings and S.S. due to interaction - Replication × 
Spacing i.e. error(a). 

• Form method × replication (B × R) table of yield totals and from this table compute the 
S.S. due to methods and S.S. due to interaction - Replication × Method i.e. error(b). 

• Form spacing × method (A × B) table of yield totals and from this table compute the 
S.S. due to interaction - Spacing × Method. 

• Total S.S. will be obtained as usual by considering all the observations of the 
experiment and the error S.S. i.e. error(c) will be obtained by subtracting from total S.S. 
all the S.S. for various sources. 

• Now, calculate the mean square for each source of variation by dividing each sum of 
squares by its respective degrees of freedom. 

• Compute the F-value for each source of variation by dividing each mean square by the 
corresponding error term. 

• The analysis of variance table is outlined as follows: 

 
                                                                 ANOVA 
Source of Variation Degrees of 

Freedom 
Sum of 
Squares 

Mean 
Square 

F 

Replication(R)  (r-1)= 3 ssR - - 
Spacing(A)  (a-1)= 3 ssA MsA  msA/msE1
Error(a) (r-1)(a-1)= 9 ssE1 msE1 =Ea  
Method(B) (b-1)= 2 ssB MsB  msB/msE2
Error(b)                       (r-1)(b-1)= 6 ssE2 msE2 =Eb  
Spacing×Method 
     (A×B) 

(a-1)(b-1)= 6 ss(AB) ms(AB) ms(AB)/msE3

 Error(c) (r-1)(a-1)(b-1)=18  ssE3 msE3 =Ec  
Total (rab-1)= 47 sstot   
   
2.5  Standard Errors and Critical Differences:                                                                   

Estimate of S.E. of difference between two A level means = 
rb
E2 a  

Estimate of S.E. of difference between two B level means = 
ra
E2 b  

Estimate of S.E. of difference between two A level means at the same level of B means     = 
[ ]

rb
E1)E-(b2 ac +  
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Estimate of S.E. of difference between two B level means at the same level of A means    = 
[ ]

ra
E1)E-(a2 bc +  

 
Critical difference is obtained by multiplying the S.Ed by t5% table value for respective error 
d.f. for (i) & (ii).  For (iii) & (iv), as the standard error of mean difference involves two error 
terms, we use the following equation to compute the weighted t values: 

                         t = 
ac

aacc

E1)E-b(
tEt1)E-(b

+
+

 ,  and   t = 
bc

bbcc

E1)E-a(
tEt1)E-(a

+
+

  respectively, 

where ta, tb, and tc are t-values at error d.f. (Ea), error d.f.(Eb) and error d.f.(Ec) respectively. 
 
            SAS input statements for the split plot experiment 

data split plot; 
input rep var nit yield; 
cards; 
1 1 0 15.5 
1 1 1 17.5 
1 1 2 20.8 
1 2 0 20.5 
1 2 1 24.5 
1 2 2 30.2 
1 3 0 15.6 
1 3 1 18.2 
1 3 2 18.5 
2 1 0 18.9 
2 1 1 20.2 
2 1 2 24.5 
2 2 0 15.0 
2 2 1 20.5 
2 2 2 18.9 
2 3 0 16.0 
2 3 1 15.8 
2 3 2 18.3 
3 1 0 12.9 
3 1 1 14.5 
3 1 2 13.5 
3 2 0 20.2 
3 2 1 18.5 
3 2 2 25.4 
3 3 0 15.9 
3 3 1 20.5 
3 3 2 22.5 
4 1 0 12.9 
4 1 1 13.5 
4 1 2 18.5 
4 2 0 13.5 
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4 2 1 17.5 
4 2 2 14.9 
4 3 0 12.5 
4 3 1 11.9 
4 3 2 10.5 

; 
proc print; 
proc glm; 
class rep var nit; 
model yield = rep var rep* var nit var*nit; 
test h = var e = rep*var; 
mean var nit var*nit; 
run; 
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Chapter 12 

Analysis of Covariance 

 

Any scientific experiment is performed to know something that is unknown about a group of treatments 

and to test certain hypothesis about the corresponding treatment effect. 

 

When variability of experimental units is small relative to the treatment differences and the experimenter 

do not  wishes to use experimental  design, then  just take large number of observations  on each  

treatment effect and compute its mean. The variation around mean can be  made as small as desired by 

taking more observations. 

 

When there is considerable variation among observations on the same treatment and it  is not possible to 

take an unlimited number of observations, the techniques used  for reducing the variation are  

(i) use of proper experimental design and 

(ii) use of concomitant variables. 

 

The use of concomitant variables is accomplished through the technique of analysis of covariance. If both 

the techniques fail to control the experimental  variability then the number of replications of  different 

treatments (in other words, the number of experimental units) are needed to be increased to a point where 

adequate  control of variability is attained. 

 

Introduction to analysis of covariance model 

In the linear model 

 1 1 2 2 ... ,p pY X X X         

if  the explanatory variables are quantitative variables as well as indicator  variables, i.e., some of them 

are qualitative and some are quantitative, then the linear model is termed as analysis of  covariance 

(ANCOVA) model. 

 

Note that the indicator variables do not provide as much information as the quantitative variables. For 

example, the quantitative observations on age can  be converted into indicator variable. Let an indictor 

variable be 
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1  if age  17 years

0 if age 1 7 years.
D


  

 

Now the following quantitative values of age can be changed  into indicator variables. 

 

      Ages (years)         Ages 

14 0 

15 0 

16 0 

17 1 

20   1 

21   1 

22   1 

 

In many real application, some variables may be quantitative and others may be qualitative. In such  

cases, ANCOVA provides a way out. 

 

It helps is reducing the sum of squares due to error which in turn reflects the better model adequacy 

diagnostics. 

 

See how does this work: 

     

1 1 1

2 2 2 2

3 3 3 3 3

In one way model : , we have

In two way model : , we have

In three way model : , we have

ij i ij

ij i j ij

ij i j k ik

Y TSS SSA SSE

Y TSS SSA SSB SSE

Y TSS SSA SSB SS SSE

  

   

     

    

      

        

 

If we have a given data set,  then ideally 

 
1 2 3

1 2 3

2 3

;

TSS TSS TSS

SSA SSA SSA

SSB SSB

 

 



 

1 2 3So SSE SSE SSE  . 

Note that in the construction of  F -statistics, we use  
( ) /

.
/

SS effects df

SSE df
 

So F -statistic essentially depends on the SSEs . 

Smaller largeSSE F   more chance of rejection. 



Analysis of Variance  |  Chapter 12  |  Analysis of Covariance  |  Shalabh, IIT Kanpur 
 3 

Since  ,  SSA SSB  etc. here are based on dummy variables, so obviously if ,SSA SSB , etc. are based on 

quantitative  variables, they will provide more information. Such ideas are used in ANCOVA models and 

we construct the model by incorporating the quantitative explanatory variables in ANOVA models. 

 

In  another example, suppose our interest is to compare several different kinds of feed for their ability to 

put weight on animals. If we use ANOVA, then we use the final weights at the end of experiment.  

However, final weights of the animals depend upon the initial weight of the animals at the beginning of 

the experiment as well as upon the  difference in feeds. 

 

Use of ANCOVA models enables us to adjust or correct these initial differences. 

 

ANCOVA is useful for improving the precision of an experiment.  Suppose response Y  is linearly related 

to covariate X  (or concomitant variable). Suppose experimenter cannot control X  but can observe it.  

ANCOVA involves adjusting  Y for the effect of  .X   If such an adjustment is not  made, then the  X  can 

inflate  the error mean square and  makes the true differences is Y  due to treatment harder to detect. 

 

If, for a given experimental material, the use of  proper experimental design cannot  control the 

experimental variation, the  use of concomitant variables (which  are related to experimental material) 

may be effective in reducing the  variability. 

Consider the one way classification model as 

2

( 1,..., , 1,..., ,

( ) .

ij i i

ij

E Y i p j N

Var Y





  


 

 

If usual analysis of variance for testing the hypothesis of equality of treatment effects shows  a highly 

significant  difference in the treatment  effects due to some factors affecting the experiment, then consider  

the model which takes into account this effect 

2

( ) 1,..., , 1,..., ,

( )

ij i ij i

ij

E Y t i p j N

Var Y

 



   


 

where ijt  are the observations on concomitant variables (which are related to  )ijX  and    is the 

regression coefficient associated with  ijt . With this model, the variability of treatment effects can be 

considerably reduced. 
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For example,  in any agricultural experimental, if the experimental units are plots of land then,  ijt  can be 

measure of fertility characteristic  of the thj  plot receiving thi  treatment  and  ijX  can be yield. 

 

In another example, if experimental units are animals and suppose the objective is to compare the growth 

rates of groups of animals receiving different diets.  Note that the observed differences in growth rates can 

be attributed to diet only if all the animals are similar  in some observable characteristics  like weight, age 

etc. which influence  the growth rates. 

 

In the absence of similarity, use  ijt  which is the weight or age of thj   animal receiving thi  treatment. 

 

If we consider  the quadratic regression in  ijt  then in 

 
2

2

2

( ) , 1,..., , 1,..., ,

( ) .

ij i i ij ij i

ij

E Y t t i p j n

Var Y

  



    


 

ANCOVA  in this case is the same as ANCOVA with two concomitant variables  2andij ijt t . 

 

In two way classification with one observation per cell, 

2

i j

ij

( ) , 1,..., , 1,...,

or

( )

with 0, 0,

then ( , ) or  ( , , ) are the observations in ( , ) cell and , are the concomitment variables.

ij i j ij

ij i j i ij ij

i j

th
ij ij ij ij ij ij

E Y t i I j J

E Y t w

y t y t w i j t w

   

    

 

     

    

  

 

The concomitant variables can be fixed on random.  

We consider the case of fixed concomitant variables only. 
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One way classification 

Let  ( 1... , 1... )ij iY j n i p   be a random  sample of size  in  from  thi  normal populations with mean 

 
2

( )

( )

ij ij i ij

ij

E Y t

Var Y

  



  


 

where ,i   and  2  are the unknown parameters, ijt  are known constants which are the  observations on 

a concomitant variable. 

 

The null hypothesis is 

 0 1: ... pH    . 

Let 

1 1 1
; ,

1 1 1
; ,

.

io ij oj ij oo ij
j i i ji

io ij oj ij oo ij
j i i ji

i
i

y y y y y y
n p n

t t t t t t
n p n

n n

  

  



  

  



  

Under the whole parametric space ( ) ,  use likelihood ratio test for which we obtain the ˆ 'i s  and ̂  

using the  least squares principle or maximum likelihood estimation as follows: 

2

2

Minimize ( )

( )

0 for fixed

ij ij
i j

ij i ij
i j

i

i io io

S y

y t

S

y t



 



 

 

  






  




 

2

2

Put in and minimize the function by 0,

i.e.,minimize ( ) with respect to gives

( )( )

ˆ= .
( )

ˆ ˆThus

ˆ ˆˆ .

i

ij io ij io
i j

ij io ij io
i j

ij io
i j

i io io

ij i ij

S
S

y y t t

y y t t

t t

y t

t




 



 

  






    

 



 

 





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ˆ ˆˆSince

ˆ( ),

ij ij ij i ij

ij io ij io

y y t

y y t t

  



   

   
 

we have  

2 2
2

( )( )

ˆ( ) ( ) .
( )

ij io ij io
i j

ij ij ij io
i j ij io

i j

y y t t

y y y
t t



 
  

    



  

 

Under  0 1: ... pH       (say), consider  
2

w ij ij
i j

S y t       and minimize wS  under   sample 

space ( )w , 

2

0,

0

ˆ ˆˆ ˆ

( )( )
ˆ̂

( )

ˆ ˆˆ ˆ ˆˆ .

w

w

oo oo

ij oo ij oo
i j

ij oo
i j

ij ij

S

S

y t

y y t t

t t

t





 



  










  

 




 




 

 

Hence 

2

2 2
2

2
2

( )( )
ˆ̂( ) ( )

( )

and

ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) .

ij oo ij oo
i j

ij ij ij oo
i j i j ij oo

i j

ij ij i oo ij io ij oo
i j i j

y y t t

y y y
t t

y y t t t t



   

 
  

    


        


  

 

 

The likelihood ratio test statistic in this case  is given by 
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2

2

2

2

max ( , , )

max ( , , )

ˆˆ ˆ( )

.
ˆ( )

w

ij ij
i j

ij ij
i j

L

L

y

  


  

 















 

Now we use the following theorems: 

 

Theorem 1:  Let  1 2( , ,..., )nY Y Y Y   follow a multivariate normal distribution  ( , )N    with mean 

vector   and positive definite covariance matrix   . Then  Y AY  follows a noncentral  chi-square 

distribution with p  degrees of freedom and noncentrality parameter ,A   i.e., 2 ( , )p A    if and only 

if  A  is an idempotent matrix of rank p. 

Theorem 2: Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution  ( , )N     with mean 

vector    and positive definite covariance matrix   .  Let  1Y AY  follows  2
1 1( , )p A    

and 2Y A Y  follows  2
2 2( , )p A   .  Then  1YAY  and 2Y A Y  are independently distributed if  1 2 0.A A   

 

Theorem 3:  Let  1 2( , ,..., )nY Y Y Y    follows a multivariate normal distribution 2( , )N I  , then the 

maximum likelihood  (or least squares) estimator  ˆL    of estimable linear parametric  function is 

independently distributed of  2 ˆˆ ; L   follow  1, ( )N L L X X L        and  
2

2

ˆn


 follows 2( )n p   where 

( ) .rank X p  

 

Using these theorems on the independence of quadratic forms and dividing the numerator and 

denominator by respective degrees of freedom, we have 

2

2

ˆˆ ˆ( )
1

ˆ1 ( )

ij ij
i j

ij ij

n p
F

p y

 




 


 




 0~ ( 1, ) underF p n p H   

So reject  0H   whenever 1 ( 1, )F F p n p    at   level of significance. 

The terms involved in    can be simplified for computational convenience follows: 

 

We can write 
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2

2

2

2

2

ˆ̂( )

ˆ ˆˆ ˆ

ˆ̂( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )

ˆˆ( ) ( )

ˆˆ ˆ( ) ( ) ( )

ij ij
i j

ij ij
i j

ij oo ij oo
i j

ij oo ij oo ij io ij io
i j

ij io ij io
i j

ij oo ij io ij oo

y

y t

y y t t

y y t t t t t t

y y t t

y y t t t t



 



  



 



     

     

         

     

     










2

2 ˆˆ ˆ ˆ( ) ( ).

i j

ij ij ij ij
i j i j

y   




   



 

 

For computational convenience 

2 2

2

2 2

ˆˆ ˆ( )

ˆ( )

yt yt
yy yyij ij

tt tti j

ij ij yt
i j yy

yy

T E
T E

T E

y E
E

E

 




   
         

    
  

  
 




 

where 

2

2

2

2

( )

( )

( )( )

( )

( )

( )( ).

yy ij oo
i j

tt ij oo
i j

yt ij oo ij oo
i j

yy ij io
i j

tt ij io
i j

yt ij io ij io
i j

T y y

T t t

T y y t t

E y y

E t t

E y y t t

 

 

  

 

 

  












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Analysis of covariance table for one way classification is as follows: 

Source of 

variation 

Degrees 

of 

freedom 

                         Sum of products
 

                     yy yt tt  

      Adjusted sum of squares F  

Degress 

of feedom 

Sum of squares 

Population 

 

 

Error 

1p   

 

 

n p  

( )yy yy yyP T E  ( )yt yt ytP T E  ( )tt tt ttP T E   

    

yyE                                   ytE                      ttE  

1p 
            1 0 2q q q   

1n p    
2

2
yt

yy
yy

E
q E

E
   

1

2

1

1

qn p

p q

 


 

 

Total 

 

1n  

 

yyT                                    ytT                        ttT                        
2n           

2

0
yt

yy
tt

T
q T

T
   

 

 

If   0H  is rejected, employ multiple comprises methods to determine which of the contrasts in i  are 

responsible for this. 

 

For any estimable linear parametric contrast 

1 1

1 1 1

with 0,

ˆˆ ˆ

p p

i i i
i i

p p p

i i i i ii i
i i i

C C

C C y C t

 

  

 

  

 

  

 

  
 

2

2

2

2
2

2

ˆ( )
( )

ˆ( ) .
( )

ij i
i j

i i
ii

i i ij i
i j

Var
t t

C t
C

Var
n t t



 




  
  

     
 
  




 
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Two way classification (with one observations per cell) 

Consider the case of two way classification with one observation per cell. 

2Let ~ ( , )ij ijy N    be independently distributed with 

 
2

( ) , 1... , 1...

( )

ij i j ij

ij

E y t i I j J

V y

   



     


 

where 

 : Grand mean 

1 : Effect of  thi  level of  A  satisfying  0
I

i
i

     

1 : Effect of  thj  level of  B  satisfying  0
J

j
i

     

ijt : observation (known) on concomitant variable. 

The null hypothesis under consideration are 

0 1 2

0 1 2

: ... 0

: ... 0
I

J

H

H




  
  
   
   

 

Dimension of whole parametric space  ( ) : I J   

Dimension of sample space ( ) : 1w J   under 0H   

Dimension of sample space ( ) : 1w I   under 0H   

with respective alternative hypotheses  as 

1 :H   At least one pair of  's  is not equal 

1H  : At least one pair of  's  is not equal. 

Consider the estimation of parameters under the whole parametric space ( ) . 

Find minimum value of  2( )ij ij
i j

y    under  . 

To do this, minimize 

2( )ij i j ij
i j

y t       . 

For fixed  ,  which gives on solving the least squares estimates (or the maximum likelihood estimates) of 

the respective parameters as 
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( ) (1)

( ).

oo o

i i oo io oo

j oj oo oj oo

y t

y y t t

y y t t

 
 
 

 

   

   
 

Under these values of  j, and ,i    the sum of squares 2( )ij i j ij
i j

y t       reduces to  

2
( ) .ij io oj oo ij io oj oo

i j

y y y y t t t t                       (2) 

Now minimization of  (2)  with respect to   gives 

 1 1

2

1 1

( )( )

ˆ

( )

I J

ij io oj oo ij io oj oo
i j

I J

ij io oj oo
i j

y y y y t t t t

t t t t
  

 

     


  




. 

Using ˆ,  we get from (1) 

ˆˆ

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ).

oo oo

i io oo io oo

j oj oo oj oo

y t

y y t t

y y t t

 
 

 

 

   

   

 

Hence 

2

2
2

2

ˆ( )

( )( )

( )
( )

ij ij
i j

ij io oj oo ij io oj oo
i j

ij io oj oo
i j ij io oj oo

i j

yt
yy

tt

y

y y y y t t t t

y y y y
t t t t

E
E

E



 
      

     
  

 




 

 

where 

 

2

2

( )

( )( )

( ) .

yy ij io oj oo
i j

yt ij io oj oo ij io oj oo

tt ij io oj oo
i j

E y y y y

E y y y y t t t t

E t t t t

   

      

   





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Case (i) : Test of 0H   

Minimize 2( )ij j ij
i j

y t      with respect to , j   and   gives the least squares estimates)  (or the 

maximum likelihood estimates) of respective parameters as 

2

ˆˆ ˆˆ

ˆ ˆˆ ˆ( )

( )( )
ˆ̂ (3)

( )

ˆ ˆˆ ˆ ˆ ˆˆ ˆ .

oo oo

j oj oo oj oo

ij oj ij oj
i j

ij oj
i j

j ij

y t

y y t t

y y t t

t t

t

 

 



   

  

   

 




  




  

Substituting  these estimates in (3) we get 

2 2
2

( )( )
ˆ̂( ) ( )

( )

ij oj ij oj
i j

ij ij ij j
i j i j ij oj

i j

yt yt

yy yy
tt tt

y y t t

y y y
t t

E A
E A

E A



 
  

    


    



    

where 

2

2

2

2

2

( )

( )

( )( )

( )

( )

( )( ).

yy io oo
i

tt io oo
i

yt io oo io oo
i

yy ij io oj oo
i j

tt ij io oj oo
i j

yt ij io oj oo ij io oj oo
i j

A J y y

A J t t

A J y y t t

E y y y y

E t t t t

E y y y y t t t t

 

 

  

   

   

      













 

Thus the likelihood ratio test statistic for testing 0H   is 

 

2 2

1 2

ˆ̂ ˆ( ) ( )

ˆ( )

ij ij ij ij
i j i j

ij ij
i j

y y

y

 




  




 


. 

Adjusting with degrees of freedom and using the earlier  result for the independence of two  quadratic 

forms and their distribution 
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Case b: Test of 0H   
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Thus the likelihood ratio test statistic for testing 0H   is 
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So the decision rule is to reject  0H   whenever 2 1 ( 1, ).F F J IJ I J     
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If  oH    is rejected, use multiple comparison methods to determine  which of the contrasts  i  are 

responsible for this rejection.  The same is true for  oH   . 

 

The analysis of covariance table for two way classification is as follows:  
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Abstract: Lattice designs are resolvable incomplete block designs, some of which are 
Balanced Incomplete Block (BIB) designs or Partially Balanced Incomplete Block (PBIB) 
designs. These designs were developed for the comparison of large number of varieties in 
agricultural experiments. They can be broadly classified as square lattice designs, circular 
lattice designs, cubic lattice designs and rectangular lattice designs according to number of 
treatments, block size and number of restrictions imposed on randomization. Some 
methods of constructing these designs along with their association schemes are discussed 
here. 
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1.  Introduction 
When the number of treatments is large and/or complete blocks are unavailable or 
inappropriate, incomplete block designs are desirable and useful. Lattice design is nothing 
but the method of constructing certain types of resolvable incomplete block designs, some 
of which are Balanced Incomplete Block (BIB) designs or Partially Balanced Incomplete 
Block (PBIB) designs, but others are not. BIB designs require usually a large number of 
replications and are not available for all combinations of parametric values. Historically, 
lattice designs were developed for large-scale agricultural experiments (Yates, 1936) in 
which large number of varieties were to be compared. The main application since then has 
been and continues to be in agriculture. 
 
A special feature of lattice designs is that the number of treatments, v, is related to the 
block size, k, in the form v = k2 or v = k3 or v = k (k+1) or v = k2/2. Even though this limits 
the number of possible designs, lattice designs represent an important class of designs. In 
certain types of agronomic or breeding experiments the number of treatments may be 100 
or more.  
 
2. Types of Lattice Designs 
The existing lattice designs can be classified according to number of treatments, block size 
and number of restrictions imposed on randomization. They can be broadly classified as 
square lattice designs, circular lattice designs, cubic lattice designs and rectangular lattice 
designs. These designs are discussed in detail in Dey (1986), Varghese et al. (2004) and 
Hinkelmann and Kempthorne (2005). 
 
2.1  Square Lattice Designs 
The characteristic features of the square lattice designs introduced by Yates (1936) are that 
the number of treatments is a perfect square and the block size is the square root of this 
number. The number of replications of the treatments are flexible and these designs are 



Lattice Designs 
 

useful for situations in which a large number of treatments are to be tested. If the design 
has two replications of the treatments, it is called a simple lattice; if it has 3 replications it 
is called a triple lattice and so on. In general, if the number of replications is i, it is called 
an  i-ple lattice design.  
 
Square lattice designs can be constructed as follows: 
 
Let there be v = s2 treatments, numbered as 1, 2,…, s2. Arrange these treatment numbers in 
the form of a s × s square array in natural order, i.e., in a standard array. The contents of 
each of the s rows of this array are taken to form blocks giving a set of s blocks; another 
set of s blocks forming another complete replication is obtained by taking the contents of 
each of the s columns of this array. We can check easily that this simple lattice design is a 
PBIB design with a Latin square association scheme, that is, a L2-PBIB design. The 
parameters of this design are v = s2, b = 2s, r = 2, k = s, λ1 = 1, λ2 = 0. Accordingly, two 
treatments are compared with variance V1, say, if they occur together in the same block, V2 
otherwise.  
 
Next, a s × s Latin square is taken and is superimposed on the above standard array of 
treatment numbers. The treatment numbers that fall on a particular symbol of the Latin 
square are taken to form a block. Thus s blocks corresponding to the s symbols of Latin 
square can be obtained. Again, another Latin square orthogonal to the previous one is taken 
and from this square also, another set of s blocks is obtained in the same manner. The 
process is repeated to get further replications. The process is continued till i-2 (≤ s-1, if s is 
a prime or power of a prime) mutually orthogonal Latin squares are utilized. When the 
complete set of  mutually orthogonal Latin squares (if such a set exists) is utilized, 
the design becomes a balanced 

)1s( −
)1s( + - lattice. A balanced lattice is a BIB design.   

 
Thus the triple lattice represents an L3 - PBIB(2) design with the parameters v = s2, b = 3s, 
r = 3, k = s, λ1 = 1, λ2 = 0. The quadruple lattice is an L4 - PBIB(2) design with parameters 
v = s2, b = 4s, r = 4, k = s, λ1 = 1, λ2 = 0. In general the i-tuple lattice is an Li - PBIB(2) 
design with parameters v = s2, b = is, r = i, k = s, λ1 = 1 and λ2 = 0.  
 
Example 2.1.1: Let v = 32 =9, the standard array is as follows: 
  

  1    2    3 
  4    5    6 
   7    8    9 
 

Considering all the four replications, a balanced lattice design which is a BIB design with 
v = 9, b = 12, r = 4, k = 3 and λ = 1 is obtained as given below: 
   

Blocks 
Rep I Rep II Rep III Rep IV 

1 2 3 4 5 6 7 8 9 10 11 12
1 4 7 1 2 3 1 2 3 1 2 3 
2 5 8 4 5 6 6 4 5 5 6 4 
3 6 9 7 8 9 8 9 7 9 7 8 

 
 
 
 
 
 
 
 

 2
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If the last two replications are deleted, it becomes a simple lattice design. If last one 
replication is deleted, the design obtained is a triple lattice design which is a PBIB (2) 
design following L3 association scheme. 
 
2.2  Circular Lattice Designs 
Circular lattice designs given by Rao (1956) are PBIB(3) designs with v = 2n2 treatments 
arranged in n concentric circles and n diameters, giving rise to 2n2 lattice points on the 
circles. Each circle and each diameter has 2n points on them. These designs can be 
obtained by dualizing the group-divisible designs with 2n treatments in 2n2 blocks of size 2 
each, the block contents of the GD designs being 
 

n ..., ,2 ,1i    ),n2,i(),...,2n,i(),1n,i(

)n2,i(),...,2n,i(),1n,i(

=++

++
 

 
The parameters of design obtained are . 0  ,1  ,2  ,n2k  ,2r  ,n2b,n2v 321

2 =λ=λ=λ====
 
Example 2.2.1: For n = 2, v = 8. The block contents of GD with v = 4, b = 8, r = 4, k = 2, 
λ1 = 0, λ2 = 2 are as given:  
 

 

 

1 3 
1 4 
1 3 
1 4 
2 3 
2 4 
2 3 
2 4 

By taking dual of the above design, a circular lattice design with v = 8, b = 4, r = 2, k = 4, 
λ1 = 2, λ2 = 1, λ3 = 0 is obtained and is given below: 
 

               

8642
7531
8765
4321

 
This design can also be obtained by identifying the lattice points as treatments and circles 
and diameters as blocks. 
 
Association Scheme 
Corresponding to any treatment, the first associate is the treatment that is on the same 
circle and same diameter, second associates are those, which are either on the same circle 
or on the same diameter, and the rest are third associates {Rao, 1956}. Here, 

2
321

2 )1n(2n),1n(4n,4n,n2v −=−=== , 
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Example 2.2.2: Let n and .  3 18n2v 2 ==

 

 
The various associates of treatment 1 are as follows: 

 
1st Associates 2nd Associates 3rd Associates 

4 7,13,16,10,2,3,5,6 8,9,11,12,14,15,17,18 
 

 
 

 
2.3  Generalized Circular Lattice Designs  
Circular lattice designs can be constructed easily, but the number of designs which can be 
obtained is very limited in this case. Hence generalized circular lattice designs were 
introduced (Varghese and Sharma, 2004) which covers more number of treatments.  
 
Let the number of treatments be v = 2sn2, n≥2. Draw n concentric circles and n diameters. 
Arrange the treatments on the points of intersection of these circles and the diameter such 
that s treatments occur at each point of intersection. Taking the circles and diagonals as 
blocks, we get a generalized circular lattice design which is a PBIB(3) design with 
parameters v = 2sn2, b = 2n, r = 2, k = 2sn, λ1 = 2, λ2 = 1, λ3 = 0. 
 
Association Scheme 
Two treatments are the first associates, if they lie on the same circle and on the same 
diameter, second associates, if they lie either on the same circle or on the same diameter, 
and third associates, otherwise. The parameters of the association scheme are seen to be: 

2n,)1n(s2n),1n(s4n,1s2n,sn2v 2
321

2 ≥−=−=−== , 
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Example 2.3.1: Let and .The design with v = 36, b = 6, r = 2, k = 12, λ1 = 2, λ2 
= 1, λ3 = 0 is obtained as follows: 

3n = 2s =

 
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
1 2 7 8 13 14 19 20 25 26 31 32
3 4 9 10 15 16 21 22 27 28 33 34
5 6 11 12 17 18 23 24 29 30 35 36

 
Example 2.3.2: Let s = 2, n = 3 and so v = 36. The arrangements of 36 treatments are as 
shown in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
The associates of treatment 1 are:  

1st Associates 2nd Associates 3rd Associates 
2,7,8 3,4,5,6,9,10,11,12,13,14,19,20, 

25,26,31,32 
15,16,17,18,21,22,23,24,27,28, 

28,29,30,33,34,35,36 
 
Note: When s = 1, this scheme reduces to circular lattice association scheme. 
 
2.4  Cubic Lattice Designs 
A cubic lattice design [Das and Giri, 1986] is a PBIB (3) design for v =s3 treatments in 
blocks of size s and 3 replications, based on cubic association scheme. The s3 treatments 
are represented by triplets α β γ (α, β, γ = 1, 2, …, s). Within each of the 3 replications, the 

 5
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treatments are grouped into s2 blocks, each of size s. In the first replication, the rule of this 
grouping is to keep the first two digits of the triplet constant within a block, allowing the 
last digit to take values from 1 to s.  To form the blocks in the second replication, we keep 
the first and the last digits fixed within any block and giving the second digit all values 
from 1 to s.  In the third replication, the second and last digits are kept constant within each 
block. This design has the parameters 

0  and  0  ,1  ,sk  ,3r  ,s3b ,sv 321
23 =λ=λ=λ==== . 

 
Example 2.4.1: Let  giving v = 27. To obtain a plan the 27 treatments are numbered 
by means of a three-digit code in which each digit takes all values from 1 to 3. For 27 
treatments, the codes are as given in the following table: 

3s =

 
Treatment No. Code Treatment No. Code Treatment No. Code 

1 
2 
3 

111 
112 
113 

10 
11 
12 

211 
212 
213 

19 
20 
21 

311 
312 
313 

4 
5 
6 

121 
122 
123 

13 
14 
15 

221 
222 
223 

22 
23 
24 

321 
322 
323 

7 
8 
9 

131 
132 
133 

16 
17 
18 

231 
232 
233 

25 
26 
27 

331 
332 
333 

 
The 9 group of treatments constitute the 9 blocks, block 1 containing the treatments 
(111),(112),(113). To form the blocks in the second replication, we keep the first and the 
last digits fixed within any block and given the second digit all values form 1 to 3. The first 
block therefore contains (111), (121), (131); the second block contains (112), (122), (132); 
and so on. In the third replication, the first and the second digits are constant within each 
block. 
  
The design obtained is as follows with parameters v = 27 =b, r = 3 = k, λ1 = 1, λ2 = 0, λ3 = 
0:   
 

Replication I Replication II Replication III 
1 2 3 1 4 7 1 10 19 
4 5 6 2 5 8 2 11 20 
7 8 9 3 6 9 3 12 21 
10 11 12 10 13 16 4 13 22 
13 14 15 11 14 17 5 14 23 
16 17 18 12 15 18 6 15 24 
19 20 21 19 22 25 7 16 25 
22 23 24 20 23 26 8 17 26 
25 26 27 21 24 27 9 18 27 
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Association Scheme 
Let there be v= s3 treatments denoted by ),,( γβα s,...,2,1,, =γβα . Define the distance δ 
between two treatments (α, β, γ) and  (α′, β′, γ′) to be the number of non-null elements in 
(α - α′, β - β′, γ - γ′).  Two treatments are 1st, 2nd or 3rd associates according as δ = 1, 2, or 
3 respectively {Raghavarao and Chandrasekhararao, 1964}. The parameters of this scheme 
are n1 = 3(s-1), n2 = 3(s-1)2, n3 = (s-1)3, 
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Example 2.4.2: Let . The eight triplets are as given below: 8sv,2s 3 ===
 

Treatment Triplets 
α    β    γ 

1 
2 
3 
4 
5 
6 
7 
 8 

0    0    0 
0    0   1 
0    1   0 
0    1   1 
1    0   0 
1    0   1 
1    1   0 
1    1   1 

 

 
The three types of associates of the treatment 1 as given in the following table are obtained 
by taking all differences between (α,β,γ) and (α′,β′, γ′).  
 

1st Associates 2nd Associates 3rd Associates 
2, 3, 5 4, 6, 7 8 

 
2.5  Rectangular Lattice Designs 
The class of two dimensional lattices is applicable when the number of treatments is a 
perfect square; i.e., v = s2. Obviously, this limits the number of cases in which such a 
lattice design can be used. To remedy this deficiency Harshberger (1947, 1949) developed 
rectangular lattices for treatments in blocks of size s units. These designs form a 
useful addition to the square lattices. The new designs are less symmetrical than the square 
lattices, in the sense that there is a greater variation in the accuracy with which two 
treatment means are compared. There are several methods of constructing rectangular 
lattice designs.  

)1s(s +
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2.5.1  Simple Rectangular Lattice Designs 
Denote the s(s+1) treatments by pair of symbols ( ) such that (y,x yx ≠ ), 1 ≤ x, y ≤ (s+1). 
Blocks in the first replication are formed by selecting those treatments whose x-coordinate 
is same in the corresponding pairs of symbols and second replication is obtained by 
forming blocks with those treatments whose y-ordinate is same in the corresponding pairs 
of symbols. Nair (1951) has shown that these groups of treatments define an association 
scheme for a PBIB (4) design with. v = s(s+1), b = 2(s+1), r = 2, k = s. 
      
Association Scheme 
Two treatments ( ) and ( ) are said to be  y,x '' y,x

1st associates if  )'xx,'yy( or  )'yy,'xx( ≠=≠= , 
2nd associate if  )'yy,'xy,'yx,'xx( ≠≠≠≠ , 
3rd associate if  )'yx,'xy(  or  )'xy,'yx( ≠=≠= and  
4th associate if  . )'xy,'yx( ==

Thus the parameters of the scheme are: n1= 2(s-1), n2 = (s-1)(s-2), n3 = 2(s-1), n4 = 1,λ1 = 
1, λ2 = λ3 = λ4 = 0. 
 
 Furthermore,  
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For s = 2 this design reduces to a PBIB (3) design since then n2 = 0. 
 
Example 2.5.1.1: v = s(s+1) = 6 treatments can be represented by the following ordered 
pairs: 
 

Treatment 
Number 

x y 

1 1 2 
2 1 3 
3 2 1 
4 2 3 
5 3 1 
6 3 2 
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By selecting those treatments whose x-coordinate is same in the corresponding pairs of 
symbols and second replication is obtained by forming blocks with those treatments whose 
y-ordinate is same in the corresponding pairs of symbols. The design obtained is as follows 
with v = 6, b = 6, r = 2, k = 2: 

 
1 2 
3 4 
5 6 
3 5 
1 6 
2 4 

 
2.5.2  Triple Rectangular Lattice Designs 
Denote the treatments by triplets ( ) with   = 1, 2….s and ( ). The 
triplets are chosen in the following way. 

z,y,x z,y,x xzyx ≠≠≠

 
Take a Latin square of order s+1 replacing the Latin letters A, B, C… by the Latin 
numbers 1, 2, 3,… respectively, arranged in such a way that the diagonal contains the 
numbers 1, 2,…, (s+1). The important feature of this arrangement is that no two treatments 
are in the same block more than once. The use of a Latin square with different letters down 
the leading diagonal ensures that in the third replication the three numbers associated with 
any letter are in the different rows and columns, and hence have not previously occurred 
together in a block. Then leaving out the diagonal, the resulting s(s+1) cells are identified 
by the row number x, the column number y, and the Latin number z. Each such cell 
corresponds to a treatment ( ), and the treatments, which are allocated to the blocks in 
the three replicates as follows: 

z,y,x

 

 Replication I: Treatments with the same x value form the xth block 
 Replication II: Treatments with the same y value form the yth block 
 Replication III: Treatments with the same z value form the zth block 
 
This gives rise to a resolvable design with parameters v = s(s+1), b = 3s, r = 3, k = s. This 
method can be generalized to construct rectangular lattices with more than 3 replicates by 
using several Mutually Orthogonal Latin Squares (wherever available) to label the 
treatments appropriately. 
 
Nair (1951) has shown that for 2s =  and 3s =  the resulting design is a PBIB design, but 
that this is no longer true for s ≥ 4. For 2s =  a PBIB (2) design with the following 
association scheme exist: two treatments ( ) and  are said to be 1st 
associates if  or '  or 

z,y,x )'z,'y,'x(
'xx = yy = 'zz =  and 2nd associates, otherwise. It then follows that  

 and  0  ,1  ,2n  ,3n 2121 =λ=λ==
 

P1 =  and P2 = . 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

02

20

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

10

03

 
For s = 3, the association is as follows: two treatment ( ) and  are said to be 
first associate if '  or '  or '

z,y,x )'z,'y,'x(
xx = yy = zz =  and 2nd associates, if they have three digits 
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alike, and 3rd associates, otherwise. This leads to a PBIB (3) design with parameters 
0  ,1  ,3n  ,2n  ,6n 321321 =λ=λ=λ===  and  

 

P1 = ,   P2 =  and  P3 = . 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

012

101

212

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

003

010

303

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

200

002

024

 
Example 2.5.2.1: Form a 4 × 4 square as follows: 

 
A  B1 C2 D3 
 
D4  C B5 A6 
 
B7  A8 D C9 
 
C10  D11 A12 B 
 

In the first replication, place in a block all numbers that lie in the same row of the Latin 
square, in the second replication all numbers that lie in the same column, and in the third 
all numbers that have the same Latin letter. 
 
The resultant design is: 

 
1 2 3 
4 5 6 
7 8 9 
10 11 12 
4 7 10 
1 8 11 
2 5 12 
3 6 9 
6 8 12 
1 5 7 
2 9 10 
3 4 11 

 
By using the first 2 replications from any plan we obtain a rectangular lattice in 2 
replications is obtain, which by means of replications can be used for an experiment in 4, 
6, 8, etc., replications. By using all 3 replications of the plan we have the designs for 3,  6,  
9, etc., replications. 
 
2.5.3  Method by Sharma and Das (1985) 
Let v = ks be the number of treatments denoted by 1, 2,…,ks. These treatments are 
arranged in a rectangle R with k rows and s columns. A set of r MOLR of order k × s in s 
symbols is formed. A Latin rectangle is now taken from the set and is superimposed on the 
rectangle R. The k treatment numbers that fall on a symbol of the Latin rectangle are taken 
to form a block. Thus from the s symbols s blocks are obtained which constitutes the first 
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replication. More replications are obtained using more MOLR. When s is prime or prime 
power, lattice designs obtained is PBIB(3) following rectangular association scheme. 
 
Example 2.5.3.1: Let v = ks =15. These treatments can be written in the following 
rectangle as: 
 
 1    2    3    4     5 
 6    7    8    9    10 
 11  12  13  14  15 
 
A complete set of MOLR in 3 rows and 5 columns each is as given below: 
 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4 

3 4 5 1 2 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3 

 
The rectangular lattice design corresponding to first two MOLR is as follows: 
 

Rep I Rep II 
1 10 14 1 9 12 
2 6 15 2 10 13 
3 7 11 3 6 14 
4 8 12 4 7 15 
5 9 13 5 8 11 

 
Parameters of the above design are  v = 15, b = 10, r = 2 and k = 3. 

 
2.5.4  Another Method 
As pointed out by Shrikhande (1965), rectangular lattice designs can also be constructed 
from a balanced lattice with treatments. If the first replication is omitted, and if all 
treatments that appear in any one selected block in the first replicate are omitted the 
resultant design is a rectangular lattice in which every block is of size s and in which no 
two treatments appear together more than once in the same block. This method gives any 
number of replicates up to s, though of course the method fails when no balanced lattice 
exists, as with 36 treatments.  

2)1s( +

 
Example 2.5.4.1: Consider a balanced lattice s with .  22 3)1s(v =+=
 

Blocks 
1 2 3 4 5 6 7 8 9 10 11 12
1 4 7 1 2 3 1 2 3 1 2 3 
2 5 8 4 5 6 6 4 5 5 6 4 
3 6 9 7 8 9 8 9 7 9 7 8 

 
          
 
 

 
 

The rectangular lattice design obtained is: 
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 1 4 
2 5 
3 6 
1 6 
2 4 
3 5 
1 5 
2 6 
3 4 

 
 
 
 
 
 
 
 
 
Parameters are . 3sk ,3)1s(r ,9)1s(b ,6)1s(sv 2 ===+==+==+=
 
3.  Conclusions 
Lattice designs form an important class of useful resolvable incomplete block designs. 
These designs were initially developed for the comparison of large number of varieties in 
agricultural experiments. They can be broadly classified as square lattice designs, circular 
lattice designs, cubic lattice designs and rectangular lattice designs. In square lattice 
designs, the number of treatments is a perfect square and the block size is the square root 
of this number. The number of replications of the treatments is flexible in these designs 
and is useful for situations in which a large number of treatments are to be tested. Some of 
these designs are BIB designs while others are PBIB(2) designs. Circular lattice designs 
are PBIB(3) designs with the treatment structure as v = 2n2. These designs can be 
constructed easily, but the number of designs which can be obtained is very limited in this 
case. To overcome this, generalized circular lattice designs were obtained which are again 
PBIB(3) designs. Cubic lattice designs were introduced for plant breeding experiments in 
which selection are to be made from an unusually large number of varieties. The number of 
treatments in this case must be an exact cube and the size of the block is the cube root of 
the number of treatments. Thus cubic lattices can accommodate a large number of 
treatments in small size of incomplete block. The number of replications must be 3 or a 
multiple of 3. The treatment structure of rectangular lattice designs is of the form s(s+1) 
and the number of replications is flexible. These designs are generally higher associate 
class PBIB designs and hence there is a greater variation in the precision with which two 
treatments are compared.  
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1. Introduction 
Biological assays (bioassays) are a set of techniques relevant to the comparisons between the 
strength of alternative but similar biological stimuli (a pesticide, a fungicide, a drug, a 
vitamin, plant extract, etc.) based on the response produced by them on the subjects (e.g., an 
animal, a piece of animal tissue, a plant, a bacterial culture, subhuman primates or humans, 
living tissues, plants or isolated organisms, insects, etc).  Typically, a bioassay involves (i) 
stimulus, (ii) subject, and (iii) response, the change produced on the subject due to application 
of stimulus (such as an analytical value like blood sugar content or bone ash percentage, 
occurrence or non-occurrence of a certain muscular contraction, recovery from symptoms of a 
dietary deficiency, or death, etc). 
 
Normally, two preparations of the stimulus, one of known strength (standard preparation) 
and another of unknown strength (test preparation), both with quantitative doses, are applied 
to a set of living organisms. The general objective of the bioassays is to draw statistically 
valid conclusions on the relative potency of test preparation with respect to standard one. If 
ds and dt denote the doses of the standard and the test preparations respectively such that each 
of them produces a pre-assigned response in some living organism, then the ratio ts dd /=ρ  
is called the relative potency of the test preparation. If ρ  is greater than unity, it shows that a 
smaller dose of the test preparation produces as much response as relatively larger dose of 
standard preparation and therefore the potency of the test preparation is greater than that of 
standard preparation. Similarly, when ρ  is less than unity, the potency of the standard 
preparation is greater than that of the test preparation. Naturally, such statistical procedures 
may depend on the nature of the stimulus and response as well as on other extraneous 
experimental (biological or therapeutical) considerations. 

 
As is clear from the above discussion, the biological assay is an experiment in which the 
interest lies in comparing the potencies of the treatments on an agreed scale. Biological assays 
are. therefore, different from traditional comparative experiments where the interest lies in 
comparing the magnitude of effects of treatments. The experimental technique may be same, 
but the difference in purpose affects the designing and the statistical analysis of the 
experimental data. Thus, an investigation into the effects of different samples of insulin on 
blood sugar of rabbits is not necessarily a biological assay; it becomes one if the interest lies 
not simply in the change in blood sugar levels, but in their use for the estimation of the 
samples on a scale of standard units of insulin. A field trial of the responses of the potatoes to 
various phosphatic fertilizers would not generally be regarded as an assay; but if the yields of 
potatoes are to be used in assessing the potency of a natural rock phosphate relative to a 
standard superphosphate, and perhaps even in estimating the availability of phosphorus in the 
rock phosphate, then the experiment is an assay. 
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A glance at the history and day to day life reveals that the bioassays were (are) commonly 
employed, though sometimes unknowingly. We, therefore, give a brief account of bioassays 
with historical perspective.   
  
1.1 History and Some Common Practices 
The earliest description of biological assay can be found in the Bible wherein Noah sends a 
dove from his ark till it returns with an olive leaf. By doing this experiment, Noah estimates 
the levels of receding waters from the Earth’s ground.   
This experiment has all the three essential components of an assay- namely, ‘stimulus’ (depth 
of water), ‘subject’ (the dove) and ‘response’ (plucking of olive leaf). Knowledge of the 
response enabled Noah to estimate, or rather, in this instance, to place an upper limit to the 
size of the stimulus. The limitations of his animal house made his replication less than would 
today be thought as adequate, but in other respects his experiment was admirable for its 
purpose. 

 
Figure1.1: Canary 

Source:http://www.photos-animoux.com 
 

In bioassays bio-organism is used to test toxicity of chemicals. One can notice that the 
bioassays are employed (may be unknowingly) in real life. Traditionally, coal miners have 
taken caged canaries down into the mines to help ensure a safe air supply.  Canaries are more 
sensitive than humans to methane, so they were used to provide an advanced warning of 
rising levels of methane to dangerous levels in the mines. Death of canary meant warning 
signal to miners and they left the mine immediately.  

 
 
Serious work on biological assays began by the end of 19th century with Ehrlich’s 
investigations into the standardization of diphtheria antitoxin. Since then it became a common 
practice to standardize materials by means of the reactions on living organism. This has found 
favour in many branches of science like pharmacology and plant pathology. The assays were, 
however, put on sound footing only since 1930’s when some statisticians   contributed 
through their refined methods. 
 
1.2 Types of Bioassays 
The test preparation behaves (in terms of the response/tolerance distribution) as if it is a 
dilution or concentration of the standard preparation. These assays are termed as dilution 
assays or analytical dilution assays. Analytical dilution assays can broadly be classified into 
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two categories viz., (i) direct dilution and (ii) indirect dilution assays. There is one more 
category of bioassays viz. qualitative assay which do not pose any statistical problems. 
 
1.2.1 Direct Assays are those assays where dose needed to produce a pre-assigned/ specified 
response is directly measurable for both the preparations.  In this case the response is certain 
while the dose is a non-negative random variable that defines the tolerance distribution. These 
assays are practical only when it is possible to administer the dose in such a manner that the 
minimal amount of dose to produce a specified response can be measured directly.  Following 
example given by Finney (1978, Statistical Methods in Biological Assays, 3rd Edition) makes 
the ideas clear. 
 
Example 1:  (Burn, Finney and Goodwin 1950; Hatcher and Brody 1910). This is a typical 
example of direct assay ‘the cat method’ for the assay of digitalis. The standard or test 
preparation is infused at a fixed rate, into the blood stream of a cat until the heart stops 
beating. The total time of infusion multiplied by rate is termed as dose. This is repeated on 
several cats for each preparation and the mean doses are compared i.e., if    xs and tx  denote 
average of tolerances for standard and test preparations respectively then an estimate of 
relative potency is given by ts xxR = . Three groups of cats were infused with two tinctures 
of Strophantus using the procedure described above. The tinctures were having same effective 
ingredients.  The doses were recorded as quantities per kg body weight of cat.  
  
Table 1.1 shows the fatal doses or tolerances of three groups of cats for two tinctures of 
strophanthus (Burn et al., 1950). The doses were recorded as quantities per kg body weight of 
cat, and unfortunately the total doses are not available: the tolerance is thus assumed to vary 
in proportion to body weight, or at least to show an approximately proportion variation rather 
than independence of body weight. Provided that the cats have been assigned at random to the 
different preparations, either form of expression of dose gives a valid method of estimating 
potency, but neither necessarily makes the best possible use of information on body weight. 
 

Table 1.1: Tolerances of cats for tinctures of strophantus and ouabain 
Preparation Strophanthus A 

(in 0.01 c.c per kg.) 
Strophanthus B 

(in 0.01 c.c per kg.) 
1.55 2.42 
1.58 1.85 
1.71 2.00 
1.44 2.27 
1.24 1.70 
1.89 1.47 
2.34 2.20 

-- -- 

Tolerances ... 

-- -- 
Mean           … 1.68 1.99 

 
Suppose that Strophanthus tincture B is to be regarded as the standard preparation, and A is to 
be compared with it as a test preparation. From the means in Table 1.1,   0.0168 c.c. of A is 
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estimated to produce the same results as 0.0199 c.c. of B, either being just sufficient, on an 
average, to kill a cat. Hence the relative potency is estimated to be  

   ;18.1
0168.0
0199.0ˆ === ρR  

 
Having obtained the estimate of relative potency ρ as above, a natural question is that of its 
precision. We now work out the precision of estimate. 
 
Let AB xxR = , then variance of R is given by  
 

( ) ( ) ( )[ ]AB
A

xRx
x

R VV1V 2
2

+=  

Now ( ) 0.6815andA for 7587.02   xxi =−∑  for B. It can be seen that both the sums of squares 
are based on 6 degrees of freedom and, therefore, estimate of common variance is given by 
 

1200.0
12

6815.07587.02 =
+

=s  and 

( ) ( )
7

VV
2sxx BA ==  (since both BA x x , are based on 7 observations) Here, 18.1=R  and 

therefore ( ) 0145.0
77

1V
2

2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

R
x
sR

A

. 

Hence, 120.0  since120.018.1 =±= 0.0145  R .  
 
We now attempt to work out the fiducial limits of the estimate of relative efficiency R using 
Fieller’s Theorem that is given below 
 
Theorem 1.1: Let α  and β  be two parameters with βαµ =  such that 
( ) ( ) βbE  αaE == and . Let bam = be an estimate of µ . We also assume that a  and b are 

normally distributed. Also, ( ) ( ) ( ) 2
12

2
22

2
11 Cov ,V,V svba,svb sva === , where s2 is an unbiased 

estimator for common variance 2σ based on f degrees of freedom. Under this set up upper and 
lower fiducial limits of µ are given by 
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where 2
22

22
0 bvstg = , and 0t  is the two-sided α  percent point of Student’s t distribution 

with f degrees of freedom. 
 
We can very easily use Fieller’s Theorem to calculate fiducial limits of R of Example 1. We 
have 
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An analysis in terms of log doses may be more satisfactory than one in the absolute units. In 
direct assays, the assumption of a normal distribution of log tolerances, if admissible, has 
many advantages. All variance estimates may be pooled in order to give the best possible 
estimate of the population variance. The relative potency is estimated as the antilogarithm of 
the difference of two means, instead of as a ratio of two means, fiducial limits are calculated 
from simple standard error formulae without the use of Fieller’s Theorem. 
 
Direct assays many a times pose serious problems that may lead to erroneous conclusions.  
For example if two stimuli of unequal potency are applied at equal rates (e.g. two drugs 
infused with equal speeds), subjects receiving the less potent stimulus will have longer 
average times under treatment than those receiving the more potent stimulus. If there is any 
time lag in the production of effects on the subject, or any cumulative effect other than of a 
simply additive nature, the comparison of the two drugs will be biased. Even when this danger 
is absent, technical difficulties may prevent the experimenter from ensuring that subjects 
receive just the right dose to produce the specified response; to determine individual 
tolerances of cats for digitalis may require no more than reasonable skills and care, but to 
determine individual tolerance of aphids for an insecticide is impossible, and a different 
method of assay must be sought. This leads us to indirect assays. 

 
1.2.2 Indirect Assays: In most of the bioassays, response is not directly measurable and 
therefore indirect methods are used to estimate the dose corresponding to a given response via 
a dose-response relationship.  These kinds of assays are known as indirect assays.  In these 
assays the dose is administered at some prefixed (usually non-stochastic) levels, and at each 
level the response is observed for subjects included in the study.  Thus, the dose is generally 
non-stochastic and the responses are stochastic in nature. The stochastic response provides 
information about the tolerance distribution of a particular preparation. If the response is a 
quantitative variable (magnitude of some property like survival time, weight, etc.), then we 
have quantitative assay. On the other hand if the response is quantal (i.e., all or nothing), we 
have quantal assay. Both these assays are commonly adopted in statistical practice.  Within 
this framework, the nature of dose-response regression may call for suitable transformation on 
the dose variable (called the dosage or dose-metameter) and/or response variable called the 
response metameter. The objective of these transformations is to achieve a linear dose-
response regression that may induce simplification in statistical modeling and analytical 
techniques. If z represents the dose in the original scale, then the two transformations that 
have been found useful in bioassays are (i) ( )zlogx e=  and (ii) λzx = , where λ>0 is a known 
constant. The first of these gives rise to parallel line assays and the second to slope ratio 
assays. These assays generally fall in the category of quantitative indirect assays. 
Transformation of response variable is generally not needed in such bioassays. In quantal 
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assays, the response variable is generally subjected to the probit (or normit) and logit 
transformation based on normal and logistic distributions respectively. 
 
In the sequel we describe, the indirect assays with quantitative response. Consider two assays 
A and B, each administered at )2(≥m  prefixed levels (doses) mddd ...,, ,21 . Let ( )ii ts YY  be the 
response variable of standard (test) preparations. It is not necessary to have the same number 
of doses for both the preparation, but the modifications are straight forward and hence we 
assume this congruence. We first assume that both isY  and itY  are continuous (and possibly 
non-negative) random variables. Suppose that there exist some dosage ( ) ,...,m,i dx iii 21, == ξ  
and response metameter ( )XgY =*  for some strictly monotone ( ).g , such that the two dosage-
response regressions may be taken as linear, namely 

iii

iii

sssss

ttttt

exY

exY

++=

++=

βα

βα
*

*

                      (1.3.1) 

 
where, for statistical inferential purposes, certain distributional assumptions are needed for the 
error components ite and ise , mi ,,2,1 K= .  Generally, in the context of log dose 
transformations we have a parallel-line assay, while slope-ratio assays arise typically for 
power transformations. 

 
1.2.2(a) Parallel Line Assays: For linearizing transformation, )log(dosexi = , mi ,,2,1 K= ,  let  

ii sss xYE βα +=)( *                                                                       (1.3.2) 
 
denote the relation between the expected response and sx  where )log( ss dx =  and sd  denotes 
the dose of the standard preparation. Denoting by td  a dose equipotent to sd , we have 

ts dd /=ρ , that is 
tsts xxdd −=−= logloglogρ . 

That is ts xx += ρlog .  Substituting for sx  in the relation of the standard preparation (1.3.2), 
we get the relation for the test preparation as 

( ) ( )ii tss xYE ++= ρβα log*  

 that is  ( ) ( )**
iii ttts YExYE =+= βα           (1.3.3) 

  
where ρβαα log+= st . Hence, the relationship for the test preparation is also linear like that 
of the standard preparation for the same transformation.  An examination of the two equations 
for the two preparations shows that the lines have the same slope and are, therefore, parallel. 
In this setup we then have βββ == ts (unknown), while, ρβαα log+= st , where ρ is the 
relative potency of the test preparation with respect to the standard one.  This leads to the 
basic estimating function 
   ( ) βααρ st −=log                             (1.3.4) 
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so that if the natural parameters β , sα  and tα  are estimated from the acquired bioassay data 
set, statistical inferences on log ρ (and hence ρ) can be drawn in a standard fashion.  If in an 
assay m doses are taken for each of the two preparations and sx  and tx  denote the averages 
of the dose metameters and sy  and ty  are the average responses for the preparations, then it 
is known that  
 sss xy βα −=  
      and  ttt xy βα −= .                                (1.3.5) 
 
Substituting these values in log βααρ /)( st −= ,  we get an estimate R of ρ from  
  β/}{log tsts yyxxR −−−= .                              (1.3.6)   
 
From equations (1.3.2) and (1.3.3) it is seen that the two lines for the two preparations should 
be parallel when the dose metameter is log (dose).  The assays corresponding to this 
transformation are, therefore, called parallel line assays. Thus, in a parallel-line assay, the two 
dose-response regression lines (1.3.1) are taken to be parallel and, further that the errors 

ite and ise have the same distribution (often taken as normal). For normally distributed errors, 
the whole set of observations pertains to a conventional linear model with a constraint on the 
two slopes, sβ and tβ , so that the classical maximum likelihood estimators and allied 
likelihood ratio tests can be incorporated for drawing statistical conclusion on the relative 
potency or the fundamental assumption of parallelism of the two regression lines.  The 
estimator of log ρ involves the ratio of two normally distributed statistics, and, therefore, it 
may be biased; moreover, generally the classical Fieller's theorem (see Finney, 1964) is 
incorporated for constructing a confidence interval for log ρ (and hence, ρ). Because of this 
difference in setups (with that of the classical linear model), design aspects for such parallel-
line assays need a more careful appraisal. For equi-spaced (log) doses, a symmetric 2m-point 
design has optimal information contents, and is more popularly used in practice.  We refer to 
Finney (1964) for a detailed study of such bioassay design in a conventional normally 
distributed error model. Two main sources of non-robustness of such conventional inference 
procedure are the following: 

1. Possible non-linearity  of the two regression lines (they may be parallel but yet 
curvilinear) 

2. Possible non-normality of the error distributions. 
 

On either count the classical theory procedures may perform quite non-robustly and their 
(asymptotic) optimality properties may not hold even for minor departures from either 
postulation.  If the two dose-response regressions (linear or not) are not parallel, then the 
fundamental assumption of parallel-line assays is vitiated, and hence statistical conclusion 
based on the assumed model may not be very precise 
 
1.2.2(b) Slope Ratio Assays: For linearizing transformation, ( )λdose=ix   
 mi ,,2,1 K= , let 
  ( ) ii ssss xYE βα +=*                                   (1.3.7) 
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denote the relation between the expected response and sx , where ( )λss dx = and sd denotes the 
dose of the standard preparation..   
 
Denoting by td a dose equipotent to sd , we have ts dd /=ρ , or ( )λλρ ts dd= that is 

   
t

s
x
x

=λρ                                      (1.3.8) 

That is, λρts xx = .  Substituting for sx  in the relation of the standard preparation (1.3.2), we 
get the relation for the test preparation as 

( ) λρβα tsss xYE i +=*  

or, ( ) ( )**
iii tttss YExYE =+= βα                                            (1.3.9) 

 
where λρββ st = , i.e., st ββρλ /= . 

λββρ /1)/{ st=                                      (1.3.10) 
 
Since the relative potency is estimated from the ratio of the slopes of the two preparations, the 
assays, corresponding to the transformation λz  are called slope ratio assays. 
 
The relative potency is typically a non-linear function of the two shapes tβ  and sβ , and 
presumes knowledge of λ.  In such a case the two error components may not have the same 
distribution even if they are normal.  This results in heteroscedastic linear model (unless ρ 
=1), where the conventional linear estimators or allied tests may no longer possess validity 
and efficiency properties.  
 
Since λρ  is a ratio of two slopes, its conventional estimator based on the usual estimators of 
the two slopes is of the ratio type. For such ratio-type estimators, again the well-known Fieller 
theorem is usually adopted to attach a confidence set to ρ  or to test a suitable null hypothesis. 
Such statistical procedures may not have the exact properties for small to moderate sample 
sizes. Even for large sample sizes, they are usually highly non robust for departures from the 
model based assumptions (i.e. linearity of regressions, the fundamental assumptions of 
normality of errors.). Again, the design aspects for such slope ratio assays need careful study 
and Finney (1964) contains a detailed account of this study. Because of the common intercept, 
usually a 2m+1 point design is advocated here. 
 
1.2.2 (c) Quantal Assays: In quantal assays, occurrence or non-occurrence depends on the 
intensity of the stimulus. Under the controlled conditions, for any one subject there will be a 
certain level of intensity below which the response does not occur and above which the 
response occurs. This value is known as threshold or limen, but the term tolerance is widely 
accepted now. This tolerance value will vary from one member to another of the population 
used, frequently between quite wide limits. When the characteristic response is quantitative, 
the stimulus intensity needed to produce a response of any given magnitude will show similar 
variation between individuals. In either case, the value for an individual also is likely to vary 
from one occasion to another as a result of uncontrolled internal or external conditions. 
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In these assays, the earlier attempts were made to characterize the effectiveness of a stimulus 
in relation to a quantal response referred to as the minimal effective dose or for a more 
restricted class of stimuli, as the minimal lethal dose terms which failed to take account of the 
variation in tolerance within a population.  The logical weakness of such concepts is the 
assumption that there is a dose for any given chemical which is only just sufficient to kill all 
or most of the insects of a given species, and, doses a bit lesser would not kill any insect of 
that species.  Any worker, however, accustomed to the estimation of toxicity knows that these 
assumptions do not represent the reality. 
 
It might be thought that the minimal lethal dose of a poison could instead be defined as the 
dose just sufficient to kill a member of the species with the least possible tolerance, and also a 
maximal non-lethal dose as the dose which will just fail to kill the most resistant member. 
Undoubtedly some doses are so low that no test subject will succumb to them and others so 
high as to prove fatal at all, but considerable difficulties attend determination of the end-
points of these ranges. Even when the tolerance of an individual can be measured directly, to 
say from measurements on a sample of ten or a hundred that the lowest tolerance found 
indicated the minimal lethal dose would be unwise: a larger sample might contain a more 
extreme member.  When only quantal responses for selected doses can be recorded the 
difficulty is increased, and the occurrence of exceptional individuals in the batches at different 
dose levels may seriously bias the final estimates.  The problem is in fact that of determining 
the dose at which the dose response curve for the whole population needs the 0% or 100% 
levels of kill and even a very large experiment could scarcely estimate these points with 
desired accuracy.   
 
An escape from the dilemma can be made by giving attention to a different and more 
satisfactorily defined characteristics, the median lethal dose, or, as a more general term to 
include response other then death, the median effective dose.   This is the dose that will 
produce a response in half the population.  The median effective dose is commonly referred to 
as the ED 50, the more restricted concept of median lethal dose as the LD 50.  Analogous 
symbols were used for doses effective for other proportions of the population, ED90 being the 
dose that causes 90% to respond.  With a fixed total number of subjects, effective doses in the 
neighborhood of ED50 can usually be estimated more precisely than those for more extreme 
percentage levels and this is, therefore, particularly favoured in expressing the effectiveness 
of the stimulus.   The ED50 alternatively may be regarded as the median of the tolerance 
distribution that is to say the level of tolerance such that exactly half the subjects lie on either 
side of it.  The ED 50 or LD 50 can easily be calculated using the Probit Analysis.  
 
1.2.2 (d) Probit Analysis: We consider an experiment conducted with different doses of an 
insecticide under standardized conditions to samples of an insect species. Data on number of 
insects killed and the number exposed to the insecticide are recorded. Ratio of number of 
insects killed to number exposed gives the empirical probability of the insects killed at 
particular dose. This empirical probability data is subjected to probit or logit transformation 
and the doses are subjected to logarithmic transformation.  
 
Probit transformation is obtained by adding 5 to the normal equivalent deviate. In this 
transformation, we replace each of the observed proportions with the value of standard normal 
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curve below which the observed proportion of the area is found.  To avoid negative numbers, 
the constant 5 is usually added. For example, if half (0.5) of the subjects respond at a 
particular dose, the corresponding probit value is 0, since half of the area in a standard normal 
falls below a Z score of 0.  When the constant 5 is added, the transformed value for the 
proportion is 5.  If the observed proportion is 0.95, the corresponding probit value is 1.64.  
Addition of the constant value of 5 makes this 6.64. Likewise, if 10% of the subjects respond, 
then the normal equivalent deviate is -1.29 and hence the probit value is 3.7. 
 
In the logit transformation, the observed proportion P is changed to   

( )( )
5

2
1ln

+
− PP  

 
The quantity ( )( )PP −1ln  is called a logit. Division by 2 and addition of the constant 5 is done 
to keep the values positive and to keep the two types of transformations on a similar scale.  If 
the observed proportion is 0.5, the logit-transformed value is 0+5=5, the same as the probit-
transformed value.  Similarly, if the observed proportion is 0.95, the logit-transformed value 
is 6.47 (=1.47+5).  This differs somewhat from the corresponding probit value of 6.64.  (In 
most situations, analyses based on logits and probits give very similar results.) 
 
The above is a discussion about the transformation of the observed proportions.  The doses 
are transformed to the logarithmic scale. When the experimental data on the relation between 
dose and proportion of the subjects responded have been obtained, either a graphical or a 
statistical approach in terms of fitting of response metameter-dose metameter linear regression 
relationship can be used to estimate the parameters such as regression coefficients and their 
standard errors. We can also obtain observed and expected frequencies, Pearson’s goodness of 
fit chi-square, and confidence intervals for effective levels of independent variable(s). If the 
Pearson’s goodness of fit chi-square is non-significant, we compute the value of the response 
metameter (probit) is 5. The antilogarithm of this dose metameter is the ED50. The 
effectiveness of stimulus is not fully described by ED50 alone. Two insecticides/fungicides 
may require same rate of application to be lethal for half the population. ‘Spread’ of tolerance 
distributions is very important.  A stimulus with less spread will be more effective than with 
the larger spread. It is, therefore, very much necessary to calculate standard error and fiducial 
limits associated with ED50 or LD50. Besides knowing the ED50 of particular chemical 
preparation, the experimenter may be interested in comparing the relative potencies of several 
preparations with a standard preparation. For this, one is required to fit the probit regression 
lines and test for parallelism. If the probit regression lines are parallel than the relative 
potency will be constant at all levels of response. 
 
Remark: The probit analysis can also be very useful in market research. Suppose, we want to 
study "How low does a sale price have to be fixed to induce a consumer to buy a product? 
Here the stimulus is the sale price of an object and the response is sale made or not. Since all 
the people who are going for shopping do not respond in the same way i.e. they have different 
tolerance levels. Therefore, one has to obtain the proportion of the shoppers responding to 
each level of price. Therefore, here the subjects are the shoppers. 
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1.3 Block Designs and bioassays 
The contrasts to be estimated in bioassays are different from those in usual experiments where 
the interest is mainly in making all possible pairwise treatment comparisons or test treatment 
control treatment comparisons. In these experimental situations, the interest is only in limited 
number of treatment contrasts. For example in parallel line assays the contrasts of major 
interest are preparation, combined regression and parallelism contrasts while for slope ratio 
assays the contrasts of major interest are blank and intersection contrasts. For experiments 
involving bioassays, therefore, the usual classical designs are not appropriate as it is generally 
desired that the contrasts of interest be estimated free from block effects. If the number of 
homogeneous experimental units are same as the number of doses then the experiment is 
conducted in randomized complete block design.  However, when the number of experimental 
units within homogeneous set are less than that of total number of doses then recourse is made 
to use of incomplete block designs. Thus, for the conduct of bioassays one should choose a 
block design that estimates contrasts of interest free from block effects. 
 
2.1 Analytical Techniques for Bioassays 
As mentioned above the block designs which are efficient for estimating all the elementary 
contrasts, are generally not suitable for the experiments involving bioassays, as the treatment 
contrasts of interest are different. In parallel line assays the contrasts to be estimated are 
preparation, combined regression and parallelism contrasts while for slope ratio assays the 
contrasts of interest are blank and intersection contrasts. In bioassays we seek to obtain 
efficient block designs for two types of bioassays, i.e., (i) parallel line assays (ii) slope ratio 
assays. We noe give a brief outline of analytical techniques relevant for biological assays. We 
begin with parallel line assays. 
 
2.1.1Definition of contrasts for parallel line assays 
Let s and t denote typical doses of standard and test preparations respectively with their 
effects being denoted by η1(x) and η2(z) respectively, where .t,s ee log z  logx ==  Let there be 
m1 (≥2) doses of standard preparation denoted by 1,...,, 21 msss  and m2 (≥2) doses of test 
preparation denoted by 221 m,...,t,tt .  A parallel line assay is called symmetric if m1 = m2 and 
asymmetric otherwise. These doses are equi-spaced on logarithmic scale, the common ratio 
being the same for both the preparations. We thus have 

( ) ( )2
i

i1
i

i mi  hct   mi1 hcs ≤≤=≤≤= −− 1, 1
2

1
1 , where c1, c2 and h (>1)  are positive constants. 

Let iτ  denote the effect of ith dose of   standard preparation, 11 mi ≤≤  and for 21 mi ≤≤ , im +1τ  
be that of ith dose of test preparation.  Then, the three contrasts, namely preparation, 
combined regression and parallelism  respectively given by 

 
 
 

where ( )′= vτττ ,...,, 21τ is the vector of dose effects. v=m1+m2, 1s is a s×1vector of all unities, 

( ){ } { }h  ,h log12log12 212211 θϑδθθδ =+=  and for i=1, 2, ( ) ( ) .1
2
1,...,2,1 imiii mm 1w ′+−′=′ and 

for i=1,2, ( )12
iii −= mmθ . 

 

( ) ( ) ( )τwwτw,wτ11 2112212111
1

2
1

1 ,,,, 21
′−′=′′′=′−′= −− θθδψδΨψ               mm mmp
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2.1.2Analysis of parallel line assays 
The purpose of analysis of variance of parallel line assays is two fold viz., (i) to test through 
ANOVA whether the dose metameter and response relationship is linear and (ii) the two lines 
for the two preparations are parallel. If the tests reveal that the relationship is linear and the 
lines are parallel, then the relative potency of the test preparation can be estimated. The 
analysis of the data obtained from a parallel line assay can be carried out as per procedure of 
the design adopted. LetThe preparation contrast, combined regression contrast and parallelism 
contrast then can be estimated and significance can be tested as per procedure of contrast 
analysis. Let there be m1 (≥2) doses of standard preparation denoted by 1,...,, 21 msss  and m2 
(≥2) doses of test preparation denoted by 221 m,...,t,tt . The total number of treatments (doses) 
are vmm =+ 21  with ir  as the replication number for treatment i, .1 vi ≤≤  If the design 
adopted is a completely randomized design, then an outline of analysis of variance is  
 
Table 2.1.1: Analysis of Variance in 21 mm +  point assays for validity tests:CRD 

Source of 
Variation 

d.f. SS MS F 

Doses v-1 = 
( )121 −+ mm  

SST   

Preparation( pΨ ) 1 SSLP   
Combined 
regression ( 1Ψ ) 

1 SSCR   

Parallelism 
( 1Ψ ′ ) 

1 SSP 1/2 SSPsb =  22 / ssb  

Deviation from 
regression 

v - 4 SSDR: by 
subtraction

)4/(2 −= vSSDRsd  22 / ssd  

Within 
doses(error) vr

v

i
i −∑

=1
 

SSE 
)/(

1

2 vrSSEs
v

i
i −= ∑

=
 

 

Total 
1

1
−∑

=

v

i
ir  

TSS   

 
If the design is symmetric parallel line assays with 2m doses each replicated r times, then the 
outline of Analysis of variance simplifies to 
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Source of 
Variation 

d.f. SS MS F 

Doses 2m-1 SST   
Preparation( pΨ ) 1 SSLP   
Combined 
regression ( 1Ψ ) 

1 SSCR   

Parallelism 
( 1Ψ ′ ) 

1 SSP 1/2 SSPsb =  22 / ssb  

Deviation from 
regression 

2m-4 SSDR: by 
subtraction

)42/(2 −= mSSDRsd  22 / ssd  

Within 
doses(error) 

2m(r-1) SSE ))1(2/(2 −= rmSSEs   

Total 2rm-1 TSS   

If the experiment is conducted using a block design with ∑
=

=
v

i
irn

1
 experimental units arranged 

in b blocks with same or different sizes, then an outline of analysis of variance table for a 
block design is  
 
Table 2.1.2: Analysis of Variance in 21 mm +  point assays for validity tests:Block Design 

Source of 
Variation 

d.f. SS MS F 

Between Blocks b-1 SSB   
Doses (adjusted) v-1= ( )121 −+ mm  SST   
Preparation( pΨ ) 1 SSLP   
Combined 
regression ( 1Ψ ) 

1 SSCR   

Parallelism ( 1Ψ ′ ) 1 SSP 1/2 SSPsb =  22 / ssb  
Deviation from 
regression 

v – 4 SSDR: by 
subtraction 

)4/(2 −= vSSDRsd  22 / ssd  

Within 
doses(error) vr

v

i
i −∑

=1
 

SSE 
)/(

1

2 vrSSEs
v

i
i −= ∑

=
 

 

Total 
1

1
−∑

=

v

i
ir  

TSS   

 
For testing the linearity of regression, the mean squares for the deviations from regression is 
tested by the F-test using the within squares as error. For testing parallelism, the “parallelism” 
component is tested. If both these are not significant, then the relative potency can be estimated. 
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Example 2.1.1: (Finney, 1978, pp139): This is an example related to the assay of a test 
preparation of the testosterone propionate against a standard, using three doses of each. Each of 
the six doses was injected into five capons, and the birds responded by showing a growth of 
comb. The experiment was conducted using a completely randomized design. The response 
used for bioassay is the increase in the sum of the length and height of the comb. The data 
obtained is given below: 

c1=c2=20,h=2 
Standard Preparation Test Preparation 

20µg 40µg 80µg 20µg 40µg 80µg 
Doses→ 

Responses↓ 
20.20 20.21 20.22 20.20 20.21 20.22 

1 6 12 19 6 12 16 
2 6 11 14 6 11 18 
3 5 12 14 6 12 19 
4 6 10 15 7 12 16 
5 7 7 14 4 10 15 
For the 6-point assay, the contrasts are 
Contrast 1s  2s  3s  1t  2t  3t  Coefficient Divisor 
 20.20 20.21 20.22 20.20 20.21 20.22  
Preparation 
( pΨ )  

1 1 1 -1 -1 -1 3 

Combined 
Regression 
( 1Ψ ) 

-1 0 1 -1 0 1 6/ )log( hθ =6/(3*(32-1)*log102) 
=1.204 

Parallelism 
contrast 
( 1Ψ ′ ) 

-1 0 1 1 0 -1 12/ )log( hθ =12/(3*(32-1)*log102) 
=0.602 

 
The ANOVA table for the above is 

Source of variation d.f. SS MS F Prob>F 
Doses 5 519.067 103.813 43.86 0.0001
Preparation ( )pψ  1 4.800 4.800 2.03 0.1673
Combined regression 
( )1ψ  

1 510.050 510.050 215.51 0.0001

Parallelism ( )1ψ ′  1 4.050 4.050 1.71 0.2032
Deviation from 
regression 

2 0.167 0.835 <1 NS

Within doses (error) 24 56.800 2.367  
Total 29 575.867  

 
We can see that both assumptions of linearity of regression and parallelism hold. Therefore, 
one has to obtain the estimates of the preparation and combined regression contrasts. The 
estimated values of these contrasts are 
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Contrast Estimate SE of estimate T for H0: Contrast 
=0 

Prob>T 

Preparation -0.800 0.562 -1.42 0.1673
Combined 
Regression 

16.777 1.143 14.68 0.0001

Parallelism -2.990 2.286 -1.31 0.2032
 
Therefore, the estimate of relative potency is  

( ) ( ) 048.1)777.16/800.0exp(
20
20/expˆ 121 ==−= ΨΨρ pcc . 

 
Example 2.1.2 (Das and Giri (1986), pp294): Here, the data obtained from a 6 point 
symmetrical parallel line assay collected on a vitamin D assay by Coward and Kassner (1941) 
has been used with some modifications. The design used is a randomized complete block 
designs with liters as blocks (12 litters). To ensure comparability of the estimate of relative 
potency all observation were used, but were fitted into an incomplete block design of the 
present series by omitting two observations from each of the original block (litters), as shown 
by blanks in Table 4, and forming 6 additional blocks (13-18) from the 24 observations 
omitted, ignoring litter differences, but retaining the dose-observation relations.  The design 
assumed is that for 6 treatments in blocks of size 4. The data and the assumed design are 
shown in the following table 

Standard Preparation Test Preparation Doses 
s1 
2.5 

s2 
5 

s3 
10 

t1 
2.5 

t2 
5 

t3 
10 

Block 
Totals 

Blocks 
1 2 8 - - 9 7 26
2 6 - 9 3 - 8 26
3 - 6 12 4 6 - 28
4         9 11 - - 14 13 47
5 10 - 17 8 - 10 45
6 - 7 5 - 6 9 27
7 4 10 - 11 13 - 38
8 11 - 9 3 - 15 38
9 - 9 14 5 8 - 36

10 4 7 - 10 10 - 31
11 12 - 9 15 - 15 51
12 - 8 11 - 7 8 34
13 4 4 - - 5 9 22
14 7 - 8 3 - 9 27
15 - 15 10 6 8 - 39
16 2 4 - - 6 6 18
17 4 - 13 5 - 12 34
18 - 10 13 4 18 - 45

Dose 
Total 

75 99 130 69 112 127 612
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The ANOVA table for this example is given by 
 Nature of Variation d.f. s.s m.s. F Prob.>F 
      
Between Blocks 
(unadjusted) 

17 358.00 21.06 - - 

Doses (adjusted) 5 302.333 60.47 8.83 <0.0001 
Between Blocks 
(adjusted) 

17 382.333 22.49 3.28 0.0006 

Preparation 1 0.222 0.22 0.03 0.8578 
Regression 1 266.02 266.02 38.83 <0.0001 
Parallelism 1 7.563 7.563 1.10 0.2986 
Deviation from 
regression 

2 28.428 14.214 2.075 0.1370 

Error (by subtraction) 49 335.667 6.850   
Total 71 996.00    

 
We can see that both assumptions of linearity of regression and parallelism hold. 
 
One has to obtain the estimates of the preparation and combined regression contrasts. The 
estimated values of these contrasts is 
 

Contrast Estimate SE of 
Estimate 

T for H0: 
Contrast=0 

Prob.>T 

   
Preparation -0.111 0.617 -0.18 0.8578 
Combined regression 7.821 1.255 6.23 <0.0001 
Parallelism -3.045 2.898 -1.05 0.2986 

 
Therefore, the estimate of relative potency is  

( ) ( ) )821.7/111.0exp(
5.2
5.2/expˆ 121 =−= ΨΨρ pcc . 

 
2.2 Slope Ratio Assays 
In slope ratio assays, the equations of regression lines for the two preparations in a slope ratio 
are given by 
  sss xyE βα +=)(  and ttt xyE βα +=)(   
 
where ( )ts yy  is response due to standard (test) preparation ;  λρββ st = and λ is a known 
constant determined by the transformation. That is, it is assumed that the two regression lines 
intersect at the same point on the response axis, i.e., the lines have the same intercept. Since 
the dose takes value zero at response axis, it is logical to include a blank dose in the assay for 
validity test. If there are m1(m2) doses in standard (test) preparation then a slope ratio assay 
contains 121 ++mm  doses. 
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The regression coefficients sβ  and tβ  of the two lines can be estimated subject to the fact 
that the two lines intersect on the response axis by fitting the relation:  

ttss xxyE ββα ++=)(  (Unblocked set up) 
and effectblock)( +++= ttss xxyE ββα  (block design). 

 
Inclusion of blank dose in the assay raises a question “does the linearity of the relation holds 
up to zero dose?” It is therefore, necessary to test if the relation ttss xxyE ββα ++=)(  holds 
up to zero dose. This provides one validity test. For this, the difference between α  and α ′  is 
tested, where, α  is the estimate of α  when the relation is fitted by including the blank dose 
and α ′  is the estimate of α  when the relation is fitted by omitting the observations from the 
blank dose. This contrast is known as blank contrast.  

 
The next question is “Whether the two lines intersect on the response axis?”. For this the two 
lines are fitted individually ignoring the blank dose and then their intercepts on the response 
axis are compared. This provides another validity test. The corresponding contrast is called 
intersection contrast. There are therefore, two major contrasts of interest in slope ratio assays 
viz., blank contrast and intersection contrast.  
 
For slope ratio assay with ( )121 ++mm  doses, the blank and intersection contrasts are given 
by 
 
Blank contrast: ( )   ,ταα 21B ,,gL ′′=  
 

Intersection Contrast:   ,ταα ⎟
⎠

⎞
⎜
⎝

⎛ ′′
−= *

2
*
1I ,,0L  

Where ( ) ;2,1i,1m...,,m25,m22 iiii =′−−−=α   

;2,1i,
h
2

i
i

*
i == αα  ( ) ′= ++ 2111 mm1mm10 ,...,,,...,, ττττττ and  

∑
=

=
2

1i
ih

2
1g ,  ;)1m(mh iii −= i=1, 2. 

 
For symmetric slope ratio assay i.e., for mmm == 21  these contrasts are given by 

( ) ( )τααταα ′′−=′′= ,,0L;,,gL sy
I1

sy
B  

where  
( ) ( )m22101 ,..,,,;1m,...,m25,m22);1m(mg ττττ=′−−−=−= τα  

Here, the superscript sy stands for symmetric. 
 
Now using the above contrasts, one can test the validity and then by fitting 

ttss xx)y(E ββα ++=  can obtain the estimate of relative potency. 
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1. Introduction 
Heterogeneity in the experimental material is the most important problem to be reckoned 
within the statistical design of scientific experiments.  As if it is not suitably taken care of, in 
designing of an experiment, is likely to over shadow the real treatment differences making 
them remain undetected, unless they are large enough.  Occasionally, one can find a certain 
factor (called nuisance factor) which, though not of interest to the experimenter, does 
contribute significantly to the variability in the experimental material.  Various levels of this 
factor are used for blocking. Blocking is the technique used to bring about homogeneity of 
experimental units within a block, so that the treatment contrasts are estimated, making use of 
the intra-block information, with higher efficiency. For the experimental situations where 
there is only one nuisance factor, the block designs are used. When two such cross-classified 
factors are present row-column designs such as latin square, lattice square, Youden square, 
generalized Youden, pseudo Youden designs etc. are being used.   In many a field and 
laboratory experiments the experimental units or conditions differ due to several factors 
which influence the response under study.  It might not always be possible to remove such 
heterogeneity in response due to the factors other than treatments by blocking alone. There 
are the experimental situations in which there are one or more factors nested within the 
blocking factor. When there is one such factor, then nested block designs have been 
developed. To make the idea more clear, let us have a look at the following experimental 
situations. 
 

Experimental Situation 1.1: This example relates to a virological experiment, quoted by 
Preece (1967).  Suppose the half-leaves of a plant form the experimental units, on which a 
number of treatments, say, inoculations with sap from tobacco plants infected with Tobacco 
Necrosis virus, are to be applied.  Suppose the number of treatments is more than the number 
of suitable half-leaves per plant.  Now, there is one source of variation present due to the 
variability among plants.  Further, leaves within a plant may exhibit variation between 
themselves due to their being located on the upper branch, middle branch or on the lower 
branch of the same plant.  Thus, leaves within plants form a nested ‘nuisance’ factor, the 
nested being within the plants.  The half-leaves being experimental units, we then have two 
systems of ‘blocks’, leaves (which may be called sub-blocks), being nested within plants 
(which may be called blocks). 
 
Experimental Situation 1.2: In experiments with animals, generally littermates (animals 
born in the same litter) are experimental units within a block, i.e. litters are blocks.  However, 
animals within the same litter may be varying in their initial body weight.  If body weight is 
taken as another blocking factor, we have a system of nested blocks within a block. 
 
Experimental Situation 1.3: Consider a field experiment conducted using a block design and 
harvesting is done blockwise.  To meet the objectives of the experiment, the harvested 
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samples are to be analysed for their contents in the laboratory by different technicians at same 
time or by a technician over different periods of time.  Therefore, to control the variation due 
to technicians or time periods, this is taken as another blocking factor, we have a system of 
nested (sub) blocks i.e technicians or time periods within a block.   
 

Hence, for the experimental situations described above, we have one universe for which the 
results of the experiment will be valid. Out of this universe b1 blocks of size k1 have been 
selected and within each block, there are m sub-blocks such that sub-block size k2 = k1/m and 
total number of the experimental units required is b1k1 = b1mk2.   
 
2.     Nested Balanced Incomplete Block Designs 
Kleczkouski (1960) devised a form of nested incomplete block design with v = 8 treatments 
for a series of experiments in which bean plants, in the two primary leaves stage, were 
inoculated with sap from tobacco plants infected with tobacco necrosis virus.  The treatments 
were eight different virus concentrations.  Each leaf had two inoculations, one for each half-
leaf. Ignoring the leaf positions, plants and leaves were, respectively, the blocks (of size 4) 
and sub-blocks (of size 2) of a nested balanced incomplete block designs.  Preece (1967) has 
for the case of two-way elimination of heterogeneity, one nested within the other, introduced 
a Nested Balanced Incomplete Block (NBIB) design. 
 
Definition 2.1: An arrangement of v treatments each replicated r times in two system of 
blocks is said to be a NBIB design with parameters (r, v, b1, k1, λ1, b2, k2, λ2,m) if  
 

(a) the second system is nested within the first, with each block from the first system (block) 
containing exactly m blocks from the second system (sub-blocks); 

(b) ignoring the second system leaves a balanced incomplete block (BIB) design with b1 
blocks each of k1 units, with  λ1 concurrences; 

(c) ignoring the first system leaves a BIB design with b2 = b1m blocks each of k2 = k1/m units 
with , λ2 concurrences. 

 

Parametric Relationship 
1. vr = b1k1 = b1k2m = b2k2; 
2. λ1(v-1) = r(k1-1); (v-1)λ2 = r(k2-1) and  
3. (λ1-m,λ2)(v-1) = r(m-1). 
 

Preece (1967) presented the analysis of these designs and provided a list of designs with r ≤ 
15. Jimbo and Kuriki (1983), Dey, Das and Banerjee (1986), Parsad, Gupta and Srivastava 
(1999) and Morgan, Preece and Rees (2001) gave methods of construction of NBIB designs. 
Morgan, Preece and Rees (2001) prepared an exhaustive catalogue of NBIB designs with 

30rv ≤≤  and16 . Some of the methods of constructions of NBIB designs are presented in the 
sequel. 
 
3.      Construction of NBIB Design 
Method 2.1: Let their exists a BIB design D1 with parameters v’, b’, r’, k’ = s2, λ‘, where s 
is a prime or prime power. Consider another resolvable BIB design D2 with parameters v” = 
s2, b” = s(s+1), k” = s, r” = s+1, λ“ = 1. Now, take jth block contents of D1 as treatments 
and write a BIB design D2 in these treatments and arrange the blocks of D2, replication wise. 
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Repeat this process for all blocks of D1. This process results into a NBIB design with 
parameters with group of blocks of D2 forming a complete replicate is as block and blocks of 
D2 within replications as sub-blocks. 
 

v = v’, r = r’(s+1), b1 = (s+1)b’, k1 = s2, b2 = s(s+1)b’, k2 = s,  
λ1 = (s+1) λ‘, λ2 = λ‘.            (3.1) 
 

Example 3.1: Let D1 be a BIB design (v’ = 7 = b’, r’ = 4 = k’ = 22, λ‘ = 2), a solution of 
which can be obtained by developing the initial block (3,5,6,7) mod 13. Let D2 be the 
resolvable BIB design (v” = 4 = 22, b’’ = 6 = 2(2+1), r” = 3 = 2+1, k” = 2 = s, λ“ = 1).  
The contents of D2 are  

Replication – I Replication - II Replication - III 
Block - 1 Block-2  Block-3 Block-4 Block-5 Block-6 

A C B A C B 
B D C D A D 

 
Then following the procedure of Method 2.1 i.e. by writing D2, replication wise taking block 
contents of D1 as treatments we get the design. 
 

[(3,5),(6,7)] [(5,6),(3,7)] [(6,3),(5,7)] 
[(4,6),(7,1)] [(6,7),(4,1)] [(7,4),(6,1)] 
[(5,7),(1,2)] [(7,1),(5,2)] [(1,5),(7,2)] 
[(6,1),(2,3)] [(1,2),(6,3)] [(2,6),(1,3)] 
[(7,2),(3,4)] [(2,3),(7,4)] [(3,7),(2,4)] 
[(1,3),(4,5)] [(3,4),(1,5)] [(4,1),(3,5)] 
[(2,4),(5,6)] [(4,5),(2,6)] [(5,2),(4,6)] 

 
The parameters of the above design are: 
v = 7, r =  12, b1 = 21, k1 = 4, λ1 = 6, b2 = 42, k2 = 2, λ2 = 2. 
 
Method 3.2:  Suppose there exists a BIB design (v’,b’,r’,k’, λ‘) for which an initial block 
solution based on t-initial blocks is available.  Suppose it is possible to divide each initial 
block into m sub-blocks, each of size k2, such that the mt sub-blocks form the initial block for 
generating a BIB design with v’ treatments and block size k2.  Then, clearly by developing 
these initial blocks, we get a NBIB design with parameters 
 

v  = v’, r = r’, b1  = b’, k1 = k’, λ1 = λ‘, b2 = mt v’,  k2, λ2 = r’ (k’-m)/m(v-1).        (3.2) 
 

Using this method, several series of NBIB designs have been obtained.  For details see Dey, 
Das and Banerjee (1986). 
Example 2.2: We can construct an NBIB designs with parameters v = 8, r = 14, b1 = 28, k1 = 
4, λ1 = 6, b2 = 56, k2 = 2, λ2 = 2.   The initial blocks for the design are 
 

 [(1,5), (2,3)], [1,6), (4,7)], [(3,5), (8,6)], [(2,1), (8,4)].  
 

 We get the design by developing these blocks mod 7 and keeping fix the treatment 8. 
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Corollary 3.2.1: Following the procedure of Method 2.2, it can easily be seen that following 
series of NBIB designs can always be constructed. 
 Series I: v =2t+1=b1=2t+1, b2=t(2t+1), k1=2t, k2=2, r=2t, λ1=2t-1, λ2=1. 
 Series II: v=2t, b1=2t-1, b2=t(2t-1), k1=2t, k2=2, r=(2t-1), λ1=2t-1 λ2=1 
 

Series I: It is obtained by developing the initial blocks 
[(1,v-1) (2,v-2), ..., (t,v-t)]  mod 2t+1 
  
For v = 7 [(1,6), (2,.5),(3,4)] 
  [(2,7), (3,6), (4,5)] 
  [(3,1), (4,7), (5,6)] 
  [(4,2), (5,1), (6,7)] 
  [(5,3), (6,2), (7,1)] 
  [(6,4), (7,3), (1,2)]  
  [(7,5), (1,4), (2,3)]. 
  

Series II: It is obtained by developing the initial block 
 

[(1,v)   (2,v-1), ..., (t,v-t+1) ] mod (2t-1) by taking  v-th treatment as invariant 
 

For v = 6  [(1,6), (2,.5),(3,4)] 
  [(2,6), (3,1), (4,5)] 
  [(3,6), (4,2), (5,1)] 
  [(4,6), (5,3), (1,2)] 
  [(5,6), (1,4), (2,3)]. 
 

In series II, it can easily be seen that the blocks form an RCB design and sub-blocks for BIB 
designs. Such designs can be treated as complete blocks and incomplete sub-block designs. 
 

Method 3.3:  All 1-resolvable BIB designs can be treated as NBIB designs with complete 
blocks and incomplete sub-blocks, by considering 1-complete replication as blocks and 
blocks within replication as sub-blocks. 
 

Example 3.3: For an resolvable BIB design v = 9, b = 12, r = 4, k = 3, λ = 1, we get NBIB 
design with parameters v = 9, b1 = 4, b2 = 12, r = 4, k1 = 9,  k2 = 3, λ1 = 4, λ2 = 1,m = 3. 
 [(1,2,3), (4,5,6), (7,8,9)] 
 [(1,4,7), (2,5,8), (3,6,9)] 
 [(1,6,8), (2,4,9), (3,5,7)] 
 [(1,5,9), (2,6,7), (3,4,8)] 
The above method can also easily be applied to α-resolvable BIB design. 
 
4.     Analysis of Nested Block Designs 
Suppose that v treatments are arranged in a equireplicated proper nested block design 
involving b1 blocks each of size k1 and there being m mutually exclusive and exhaustive sub-
blocks of size k2 within the jth block, j =1(1) b1, so that b2=mb1 is the total number of sub-
blocks.  Let N = ((nij)) be the v × b1 treatments-blocks incidence matrix, where nij denotes the 
number of replications of the ith treatment in the jth block, i =1(1)v.  The row sums of N are 
r1v and column sums are k1 1b1  where r and k1 denote respectively the replication number of 
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treatments and block sizes.  Let M=((mij’(j)))  denote the v × b2 treatments-sub-blocks matrix, 
where mij’(j) denotes the replication number of ith treatment in the j’th sub-block nested with in 
the jth block.  The row sums of M are r1v while its column sums are k2 .'

b2
1  Here k2 denotes 

the size of j’th sub-block nested within the jth block.  Let R = r I, K1 = k1I and K2 = k2 I. 
 
The model considered for the analysis of these designs is 
 

 u)j('ij)j('jjiu)j('ij ey ++++= ηβτµ         (2.3) 
 
where yij’(j)u is the uth observation obtained from the ith treatment in the j’th  sub-block, u = 
1,...,mij’(j),  i.e. the number of replications of ith treatment in j’th sub-block,  j’ = 1, ..., m nested 
within the jth block, j = 1(1)b1. µ is the general mean, τi is the ith treatment  effect, βj is the jth 
block effect, nij’(j)  is the effect of the j’th sub-block nested within the jth block, and the 
quantities u)j('ije are uncorrelated errors with mean zero and common variance σ2. 
 
Let ( )′= v1 T,...,TT  be the 1v×  vector of treatment totals and ( )′=

2b1 V,...,VV  be the 1b2 ×  

vector of sub-block totals, ( )′=
1b1 , B...,BB  be the 1b1 ×  vector of block totals G be the 

grand total. Then under fixed effects model (1.1), using the principle of least squares, the 
reduced normal equations for obtaining best linear unbiased estimates of treatment contrasts 
is given by 
 QC =τ             (2.4) 

where  MKM RC ′  -  = -1
2     and VMKTQ 1

2
−−=   

such that 'j2
1)i(j

j)j(jiii k/VmTQ ∑
=′

′′−= . 

The above information matrix is same as the usual C - matrix that is obtained if blocks are 
ignored and the design is analysed treating sub-blocks as blocks.  Therefore, in so far as the 
estimation of treatment effects is considered, it is only the sub-block structure that matters.  
The vxv matrix C is symmetric, non-negative definite with zero row-sums.  For a connected 
nested block design, the Rank (C) = v-1. A solution of (2.4) is QCτ −=ˆ   and treatment sum 

of squares (eliminating blocks is given by QQC− . For a NBIB design  

)
v
1(

k
v

2

2 11IC ′−=
λ

 and  .
v

k

2

2 IC
λ

=−  Therefore, treatment sum of squares for a NBIB design  

(SST) is = ∑
=

2k

1i

2
i

2

2 Q
v

k
λ

.  Under a fixed effects model (1.1) the outline of ANOVA is given as 

below: 
 

ANOVA    
Source of Variation     D.F.                            S.S. 
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n
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2
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2
)j(ji −∑∑∑

′
′  

As in the analysis of a balanced incomplete block design, the sum of squares for blocks 
(eliminating treatments) splits into parts, one affects by treatment differences, the other pure 
intra-block error. Similarly, in the analysis of a NBIB design, the sums of squares for blocks 
(eliminating treatments) and sub-blocks within blocks (eliminating treatments) each split into 
a treatment component and a pure error component. The bifurcation of various d.f is given in 
Table 1. 

Table - 1 
Source of Variation D.F. 

Blocks (ignoring treatments)  
Treatment  Component                             v-1 
Remainder                             b1-v 
Total                             b1-1 
Sub-blocks within blocks( ignoring 
treatments) 

 

Treatment  Component                             v-1 
Remainder                             b2-b1- v+1 
Total                             b2-b1 
Treatments(eliminating sub-blocks)                             v-1 
Intra-sub-block error                             rv-v-b2+1 
Total                             rv-1 
 
Using a mixed effects model with block and sub-block effects as random, three independent 
estimates of treatment contrast viz.(i) within sub-block estimate, (ii) between sub-blocks 
within block estimate and (iii) between block estimate are obtained.  These are then combined 
linearly, to obtain most efficient estimates of treatment contrasts or differences for further 
analysis and inferences. 
 
Gupta (1993) showed that the information matrix for estimating the treatments effects of 
nested block design is same as that of information matrix of a block design considering sub-
blocks as blocks and this result hold both for proper and non-proper settings. 
 
A connected nested block design is variance balanced iff, 
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  )( vv 11IIC ′−=θ           (2.5) 

where θ  = ,
1v

bn 2
−
−

 a scalar constant, is the unique positive eigen value of C with multiplicity 

v-1 and Iv is an identity matrix of order v, Iv is a v × 1 vector of unities. 
 
Gupta (1993) also showed that optimality results of nested block designs are dependent on the 
optimality results of sub-blocks designs.  He also obtained several series of optimal nested 
block designs with unequal block sizes.  As a particular case of these results, it can easily be 
verified that a NBIB design whenever existent is universally optimal over the competing class 
of designs. 
 
For an excellent review of nested block designs and their generalization one may refer to 
Calinski and Kageyama (1996). 
 
5. Nested Partially Balanced Incomplete Block designs 
A nested variance balanced block design may not exist always or even if it exists may require 
a large number of replications which the experimenter may not be able to afford. To deal with 
such situations, Homel and Robinson (1975) introduced nested partially balanced incomplete 
block (NPBIB) designs as defined below: 
 
Definition 1.1: An NPBIB design based on m (≥ 2)-class association scheme defined in v 
symbols, is an arrangement of v symbols into b2 sub-blocks of size k2 nested within b1 (= b2/t, 
t is an integer) blocks of size k1 (= tk2 < v) such that 
(i) Every symbol occurs at most once in a block. 
(ii) Every symbol appears at most r times in the design. 
(iii) If two symbols, say α and β, are ith associates, then they occur together in λ1i blocks 

and λ2i sub-blocks, the numbers λ1i, λ2i being independent of the particular pair of ith 

associates α and β, i = 1, 2…m. 
 
The numbers v, b1, b2, r, k1, k2, λ1i, λ2i (i = 1, 2…m) are called parameters of the design. If  λ1i 
= λ1 and λ2i = λ2; ∀ i = 1, 2...m, then an NPBIB design reduces to NBIB design. Since then 
several methods of construction of NPBIB designs have been obtained and are available in 
the literature. Satpati and Parsad (2003) have prepared catalogues of two and three associate 
class NPBIB designs for v ≤ 30 and r ≤ 15. 
 
For several factors nested within each other nested multiway designs have been obtained.  
Optimality aspects of these designs have been studied by Bagchi (1991). NBIB and NPBIB 
designs with sub-blocks sizes as 2 has an interesting application in obtaining block designs 
for diallel cross experiments. 
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