

## **INTEGRATED PEST MANAGEMENT FOR VEGETABLE CROPS**

A. B. Rai

#### **Crop Protection Division,**

Indian Institute of Vegetable Research Varanasi



## INTRODUCTION



## **Farmers tend to**

- □ Knockdown pest over ambitiously
- Overuse, misuse and even abuse pesticides

## Lead to

- Insecticide resistance/resurgence
- Control failures
- Environmental and ecological imbalances

## Reasons for increasing pest status in vegetables

- □ Intensive mono-cropping
- Off season cultivation
  - Wider pest activity in time and space
- Indiscriminate use of insecticide
  - Scheduled application
  - Loss of efficacy
  - Increasing pest management cost
  - **Resistance / resurgence**
  - Impact on Natural Enemies



#### Pesticide use scenario

- Pesticide consumption in India very low
- Currently about 40000 t of pesticides uses a decline of <sup>1</sup>/<sub>3</sub> since 5 yrs ago.
- Worldwide 44% increase in herbicides use over past decade, with a concomitant reduction in insecticides by 30%.
- Insecticides still account for 60% of total pesticide use.
- About 13-14 % of total pesticides used in the country are applied on vegetables.
- Average pesticide consumption in vegetables in India 0.678 a.i. kg/ha.
- Maximum pesticide usage in chilli followed by brinjal, Cole crops and okra.
- □ Global agro-chemical consumption dominated by fruits and vegetables, accounting 25% of total pesticide market.





## **Important pests showing resistance/resurgence against insecticides**

| Insect                                              | Resistance | Insecticide                                                                                                                                                                                                      |
|-----------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diamondback moth ( <i>P. xylostella</i> )           | Resistance | Cypermethrin, DDT, fenvalerate, malathion, parathion,<br>quinalphos, Diazinon, methomyl, monocrotophos,<br>cartap hydrochloride, carbaryl, ethyl parathion,<br>carbosulfan, Bt subsp. Aizawi, Bt subsp. kurstaki |
| Tomato fruit borer ( <i>H. armigera</i> )           | Resistance | Cypermethrin, endosulfan, fenvalerate, Quinalphos,<br>Carbaryl, Bacillus thuringiensis, organophosphate,<br>synthetic pyrethroids                                                                                |
| Whitefly (Bemisia tabaci)                           | Resistance | Cyfluthrin, cypermethrin, endosulfan,<br>monocrotophos, Quinalphos, methamidophos                                                                                                                                |
| BSFB (L. orbonalis)                                 | Resistance | Quinalphos, synthetic pyrethroids                                                                                                                                                                                |
| Okra jassid (A. biguttula biguttula)                | Resistance | Malathion, monocrotophos                                                                                                                                                                                         |
| Yellow mite of chilli (P. latus)                    | Resistance | Acephate, cypermethrin, deltamethrin, fenvalerate, monocrotophos, imidacloprid                                                                                                                                   |
| Bitter gourd aphid (Aphis malvae)                   | Resurgence | Deltamethrin, Permethrin, malathion                                                                                                                                                                              |
| Red spider mite of brinjal<br>(Tetranychus urticae) | Resurgence | Deltamethrin, fenvalerate                                                                                                                                                                                        |
| Brinjal aphid (Myzus persicae)                      | Resurgence | Cypermethrin, deltamethrin                                                                                                                                                                                       |
| Red spider mite of okra (T. urticae)                | Resurgence | Ethion                                                                                                                                                                                                           |

(Mehrotra and Phokela, 2000, Dhawan et al., 2000) and www.pesticideresistance.org



# Relative resistance of whitefly, *Bemisia tabaci* to neonicotinoid insecticides

| Insecticides         | LC <sub>50</sub> value worked | LC <sub>50</sub> value worked | Relative   |
|----------------------|-------------------------------|-------------------------------|------------|
|                      | out during 2010               | out during 2013               | Resistance |
| Imidacloprid 17.8 SL | 7.65 ppm                      | 163.7 ppm                     | 21.54      |
| Thiamethoxam 25WG    | 8.62 ppm                      | 30.44 ppm                     | 3.53       |

Relative Resistance =  $LC_{50}$  value of 2013/ $LC_{50}$  value of 2010



Shift in the  $LC_{50}$  value of neonicotinoid insecticides to whitefly



## **Pesticide contamination in vegetables (State wise)**

| States           | Samples with contamination (%) | Samples above MRL (%) |
|------------------|--------------------------------|-----------------------|
| Haryana          | 56.2                           | 4.5                   |
| Himachal Pradesh | 19.5                           | 1.4                   |
| Tamil Nadu       | 91.8                           | 15.3                  |
| Gujrat           | 50.8                           | 13.5                  |
| Andhra Pradesh   | 29.8                           | -                     |
| Uttar Pradesh    | 100.0                          | 49.5                  |
| West Bengal      | 56.0                           | -                     |
| Kerala           | 100.0                          | 52.8                  |
| Punjab           | 58.1                           | 4.7                   |
| Orissa           | 57.4                           | 12.4                  |
| Delhi            | 77.9                           | -                     |
| Assam            | 46.9                           | -                     |
| Rajasthan        | 53.4                           | 12.1                  |
| Karnataka        | 19.7                           | 7.3                   |
| Madhya Pradesh   | 96.9                           | 1.5                   |
| Maharastra       | 73.4                           | 13.7                  |
| Total            | 55.1                           | 9.5                   |

#### http://www.cib.gov.in



## **Extent of pesticide residues in vegetables above MRL**

| Vegetables  | Samples | Frequency | Pesticides                                                     | Year       | No of samples       | Samples above      |
|-------------|---------|-----------|----------------------------------------------------------------|------------|---------------------|--------------------|
| Brinjal     | 87      | 62 (11.5) | Monocrotophos, cypermethrin, deltamethrin, endosulfan, lindane | 1999       | 277                 | 10 (3.6)           |
| Cabbage     | 73      | 66 (11)   | Cyfluthrin, phosphamidon, chlorpyriphos, monocrotophos,        | 2000       | 712                 | 81 (11)            |
|             |         |           | endosulfan, quinalphos                                         | 2001       | 796                 | 93 (11.7)          |
| Cauliflower | 89      | 72 (21.3) | Cyfluthrin, phosphamidon, chlorpyriphos, endosulfan, lindane   | 2002       | 592                 | 54 (9)             |
| Okra        | 76      | 64 (18)   | Quinalphos, cypermethrin, endosulfan, phosphamidon, lindane    | 2003       | 666                 | 54 (5.3)           |
| Chilli      | 73      | 67 (14)   | Fenvelerate, endosulfan, cypermethrin, quinalphos,             | 2010-11    | 5170                | 593 (11.5)         |
|             |         |           | monocrotophos                                                  | *Cabbage   | , cauliflower, brin | jal, okra, potato, |
| Tomato      | 96      | 59 (7.3)  | Deltamethrin, endosulfan, cypermethrin, chlorpyriphos          | carrot, cu | cumber and cowp     | ea.                |

□ In 2010, out of 34027 samples analyzed at national level, 543 samples (1.6%) were above MRL.

- 3.1% samples of vegetables, 0.8% of fruits, 2.7% of cereals, 0.7% of pulses, 2.3% of spices, 0.1% of fish/crustaceans, 1.1% of meat/egg, 0.2% of tea, 1.9% of milk and 1.1% of butter were above MRLs.
- > A serious fact revealed was the presence of non-recommended pesticides in vegetables.

#### Recently during export of vegetables by Indian farmers, an alarming situation was raised by European Union.

- Out of 446 import samples tested for agrochemical residue, 70 were of Indian origin.
- Out of these, 31 samples tested positive for agrochemical residues above EU-MRLs.
- Samples included Okra (16), Curry leaves (7), Drum Sticks (4) and Chilli (4).
- Endosulfan, monocrotophos, acetamiprid, acephate, mancozeb, thiophenate methyl and carbandazim - commonly detected pesticides above MRLs (up to 700 times).



#### Yield losses due to major insect pests in vegetables in India

| Crop/Pest                                    | Yield<br>loss<br>(%) | Crop/Pest                                             | Yield<br>loss<br>(%) |
|----------------------------------------------|----------------------|-------------------------------------------------------|----------------------|
| ΤΟΜΑΤΟ                                       |                      | CABBAGE                                               |                      |
| Fruit borer (Helicoverpa armigera)           | 24-65                | DBM (Plutella xylostella)                             | 17-99                |
| BRINJAL                                      |                      | Cabbage caterpillar (Peiris brasicae)                 | 69                   |
| Fruit and shoot borer (Leucinodes orbonalis) | 11-93                | Cabbage leaf webber ( <i>Crocidolomia binotalis</i> ) | 28-51                |
| CHILLIES                                     |                      | Cabbage borer (Hellula undalis)                       | 30-58                |
| Thrips (Scirothrips dorsalis)                | 12-90                | CUCURBITS                                             |                      |
| Mites (Polyphagotarsonemus latus)            | 34                   | Fruitfly (Bactrocera cucurbitae)                      |                      |
| OKRA                                         |                      | Bitter gourd                                          | 60-80                |
| Fruit borer <i>(H. armigera</i> )            | 22                   | Cucumber                                              | 20-39                |
| Leafhopper (Amrasca biguttula biguttula)     | 54-66                | Ivy gourds                                            | 63                   |
| Whitefly ( <i>Bemisia tabaci</i> )           | 54                   | Muskmelon                                             | 76-100               |
| Shoot and fruit borer (Earias vittella)      | 23-54                | Snake gourd                                           | 63                   |
|                                              |                      | Sponge gourd                                          | 50                   |

Average loss : 40%

#### Shivalingaswamy et al., 2002



## **Expanding Host Horizon of pests in vegetable crops**

| Insect Pest                                             | Old Host crops                   | New Host                                                                  | References             |
|---------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|------------------------|
| *Serpentine leaf miner<br>( <i>Liriomyza trifolii</i> ) | Tomato                           | Brinjal, Cow pea, French<br>bean, Squash, Leafy<br>vegetables, cucurbits, | Durairaj et al., 2007  |
| Spiralling whiteflies<br>(Aleurodicus macfarlanei)      | Guava, Citrus                    | Bhendi                                                                    | Puri et al., 2001      |
| *Mealy bug (C. insolita, P. solanpisis)                 | Cotton, Jute                     | Brinjal, Tomato, chilli, okra<br>and Pointed gourd                        | Chaudhary, 2006        |
| Hadda beetle (H.<br>vigitioctopuntata)                  | Brinjal                          | Bitter gourd, Cowpea                                                      | Rajapaske et al., 2005 |
| Fruit borer ( <i>H. armigera</i> )                      | Gram, Cotton, Tomato,<br>Cabbage | Peas, Chilli, Brinjal, Okra                                               | Puri et al., 2001      |
| Cabbage butterfly (Pieris brasicae)                     | Cabbage, cauliflower & Mustard   | Knol Khol, Radish                                                         | Puri et al., 2001      |
| *Gall midge                                             | Brinjal                          | Chilli, Brinjal and Capsicum                                              | David, 2006            |
| *Head borer (H. undalis)                                |                                  | Cabbage                                                                   | Sivaprasagam, 1997     |
| *Stem fly ( <i>O. phaseoli</i> )                        |                                  | Okra                                                                      | Patil & Jamadgni, 2008 |
| Red spider mite<br>( <i>Tetranychus</i> sp.)            |                                  | Okra, brinjal, cowpea,<br>Indian bean                                     | Mahto & Yadav., 2009   |
| Leafhopper ( <i>Empoasca motti</i> )                    |                                  | Bitter gourd                                                              |                        |



#### Pesticides

#### **Biological Control**

Use of resistant varieties, natural enemies, bio-fumigants, naturally occurring bio -control agents, sex pheromones and botanicals.

#### **Cultural Practices**

Crop rotations, inter-cropping, trap crops, hot/cold weather cultivation, use of healthy seed, adjusting planting/harvesting dates, judicious irrigation and sanitation.

## IPM approaches for pest mp ment in vegetables



### **Tolerant varieties of some vegetable crops**

| Сгор                     | Pest                                                                                 | Varieties                                                                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Tomato                   | Fruit borer<br>(H. armigera)                                                         | Arka Vikash, Pusa Gaurav, Pusa Early Dwarf,<br>Punjab Keshri, Punjab Chhuhara, Pant Bahar,<br>Azad, Avinash -2, Hemsona, Krishna, Sartaj      |
| Brinjal                  | Shoot and fruit borer<br>( <i>L. orbonalis</i> ), Aphid,<br>jassid, thrips, whitefly | SM 17-4, PBr 129-5 Punjab Barsati, ARV 2-C,<br>Pusa Purple Round, Punjab Neelam, Kalyanpur-<br>2, Punjab Chamkila, Gote-2, PBR-91, GB-1, GB-6 |
| Cabbage                  | Aphid (Brevicoryne<br>brassicae)                                                     | All season, Red Drum Head, Sure Head, Express<br>Mail                                                                                         |
| Cauliflower              | Stem borer ( <i>Hellula undalis</i> )                                                | Early Patna, EMS-3, KW-5, KW-8, Kathmandu<br>Local                                                                                            |
| Okra                     | Jassid (Amrasca biguttula)                                                           | IC-7194, IC-13999 New Selection, Punjab<br>Padmini                                                                                            |
| Onion                    | Thrips ( <i>Thrips tabaci</i> )                                                      | PBR-2, PBR-6, Arka Niketan, Pusa Ratnar, PBR-4,<br>PBR-5, PBR-6                                                                               |
| Round gourd,             | Fruit fly ( <i>B. cucurbitae</i> )                                                   | Arka Tinda                                                                                                                                    |
| Pumpkin,<br>Bitter gourd |                                                                                      | Arka Suryamukhi                                                                                                                               |
|                          |                                                                                      | Hissar-II                                                                                                                                     |



#### CROP HUSBANDARY (Cultural Control Methods)

- Crop rotation
- Trap crops
- Tillage
- Altered timings
- Clean cultures
- Pruning & thinning
- Crop refuse and destruction
- Soil manuring and fertilization



Marigold as trap crop/border crop



**Shoot clipping** 

Chinese cabbage as trap crop



Coriander as Border crop



Combination of different intercropping effective in vegetable pest management

| Crop combination            | Target pest           |
|-----------------------------|-----------------------|
| Cabbage + Carrot            | Diamondback moth      |
| Broccoli + Faba bean        | Flea beetle           |
| Cabbage + French bean       | Root fly              |
| Cabbage + Tomato/Mustard    | Diamondback moth      |
| Brinjal + Coriander/ Fennel | Shoot and Fruit borer |
| Bitter gourd + Maize        | Fruit fly             |



Inter cropping



#### **Biocontrol agents recommended in vegetable crops**

Satpathy et al., 2006

| Bioagent                        | Dose                                                                                                               | Target pest                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Trichogramma<br>brassiliensis   | 2,50,000 parasitized eggs/ha (Inundative<br>release)<br>50,000 parasitized eggs/ha (Weekly<br>inoculative release) | Okra shoot and fruit borer<br>Tomato fruit borer                                     |
| Chrysoperla<br>zastrowi arabica | 50,000 first instar larvae/ha (weekly release)                                                                     | Okra aphid<br>Cabbage aphid                                                          |
| HNPV                            | 250 LE/ha (10 days interval)                                                                                       | Tomato fruit borer                                                                   |
| SNPV                            | 250 LE/ha (10 days interval)                                                                                       | Spodoptera litura                                                                    |
| Bacillus<br>thuringiensis       | 500 g ai/ha (10 days interval)                                                                                     | Diamondback moth<br>Shoot and fruit borer of brinjal and<br>okra, Tomato fruit borer |

| Kairomones       | Effect                                    | Natural enemies                                                   |
|------------------|-------------------------------------------|-------------------------------------------------------------------|
| Tricosane        | Preconditionong and reinforcing agent     | Chrysopid (Increased predation)                                   |
| Alpha-Tryptophan | Ovipositional attractrant<br>Singh (2001) | Chrysopid,<br>Trichogramma,Coccinellid<br>(Increased oviposition) |



#### Plant products used for management of insect pests of vegetables

| Species                          | Plant products                                                                     | Mode of action           | References                                        |
|----------------------------------|------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|
| Leucinodes<br>orbonalis          | Oil (2%) of <i>Pongamia pinnata,</i><br><i>Madhuca indica</i> and A. <i>indica</i> | Contact                  | Srinivasan <i>et al</i> . (1998)                  |
|                                  | Neem Azal (0.03%), Neem oil (0.3%)                                                 | Antifeedant & contact    | Peter & Govindaraju (1994)                        |
| Epilachna<br>vigintioctopunctata | Leaf extract (1%) of <i>Lantana camara</i>                                         | Antifeedant              | Mehta <i>et al</i> . (1995)                       |
|                                  | Leaf extract (6%) of Ageratum<br>haustriarum Melia azedarach                       | Contact                  | Thakur & Mehta (2004)                             |
| Whitefly                         | Neemal <sup>®</sup> (0.5%), Repelin <sup>®</sup> (Neem based formulation)          | Mortality                | Somashekhara <i>et al</i> . (1997)                |
| Pieris brassicae                 | Achook, Neem oil and Nimbicidene                                                   | IGR ,<br>Antifeedancy    | Dhingra <i>et al</i> . (2005)                     |
| Helicoverpa<br>armigera          | Methanolic of <i>Vinca rosea</i> and <i>Callistemon lanceolatus</i>                | IGR,<br>Antifeedancy     | Halder <i>et al</i> . (2009)                      |
| Spodoptera litura                | Leaf extract of Persea americara                                                   | Antifeedant &<br>Contact | Wheeler & Islam (2001)                            |
| Earias vittella                  | NSKE (5%)                                                                          | Contact and ovicidal     | Sarode & Gabhane (1998)<br>Sojitra & Patel (1992) |
| complex of okra                  | NSKE (5%), Multineem (2.5 lit/ha)                                                  | Contact                  | Misra (2002)<br>Satpathy (2004)                   |
| complex of crucifers             | Nimbecidine (7.5 ml/lit)                                                           | Contact                  | Ojha & Singh (2003)                               |
| complex of tomato                | NSKE/Melia seed extract (5%)                                                       | Contact                  | Senguttuvan <i>et al</i> . (2005)                 |
| complex of<br>eggplant           | Nimbecidine/ Neemgold/ Neem<br>Azal (0.1%)                                         | Contact                  | Srinivasan & Sundarababu<br>(2000)                |



| Pest                                         | ETL                                                      |
|----------------------------------------------|----------------------------------------------------------|
| DBM of cabbage ( <i>P. xylostella</i> )      | 10 larvae/ plant at seedling stage                       |
| Cauliflower aphids                           | 30 aphids/plant                                          |
| Chilli mites( <i>P. latus</i> )              | Single mite/ leaf                                        |
| Chilli thrips ( <i>S. dorsalis</i> )         | 2 thrips/ leaf                                           |
| Whitefly (B.tabaci) in brinjal               | 5-10 flies/leaf                                          |
| BSFB ( <i>L.orbonalis</i> )                  | 0.5% shoot and 5% fruit damage, 8-10 moths/<br>day/ trap |
| Tomato Fruit borer (H. armigera)             | 1 larva/ plant or 2% fruit damage                        |
| Okra fruit borer ( <i>E. vittella</i> )      | 5.3 % of fruit infestation                               |
| Leafhopper ( <i>A. biguttula biguttula</i> ) | 4-5 nymphs/ plant                                        |
| Pea aphids (Acyrtosiphon pisum)              | 3-4 aphids/stem tip                                      |



#### Safer insecticides to natural enemies of vegetable pests

| Crop / Pest                               | Natural Enemy         | Insecticide                                                                             |
|-------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|
| BEANS                                     |                       |                                                                                         |
| Mite                                      | A. tetranychivorus    | Sulphur                                                                                 |
| CABBAGE                                   |                       |                                                                                         |
| Tobacco caterpillar                       | Telenomus remus       | NSKE, Phosalone                                                                         |
| Diamondback moth <i>Cotesia plutellae</i> |                       | Phosalone, Permethrin,<br>Deltamethrin, NSKE, Fenvalerate,<br>Cypermethrin, Fluvalinate |
| OKRA                                      |                       |                                                                                         |
| Mites                                     | A. tetranychivorus    | Sulphur                                                                                 |
| ΤΟΜΑΤΟ                                    |                       |                                                                                         |
| Fruit borer                               | Campoletis chloridiae | Acephate, Phosalone                                                                     |
|                                           | T. brassiliensis      | Fenvalerate                                                                             |
| BRINJAL                                   |                       |                                                                                         |
| Epilachna beetle                          | Pediobius foveolatus  | Endosulfan, Phosalone                                                                   |



#### Waiting period (in days) of important insecticides used in vegetable crops

| Pesticide           | Okra | Cabbage | Brinjal | Cauliflower | Tomato | Реа |
|---------------------|------|---------|---------|-------------|--------|-----|
| Malathion           | 3    | 7       | 1       | 7           | -      | 3   |
| Fenvalerate         | 5    | 10      | 5       | 3           | 3      | -   |
| Endosulfan          | 21   | 10      | 3       | 10          | 5      | -   |
| Cypermethrin        | 3    | 7       | 3       | -           | 1      | -   |
| Phosphamidon        | 10   | -       | -       | -           | -      | 6   |
| Carbaryl            | -    | -       | 25      | 25          | 30     | -   |
| Quinalphos          | -    | -       | 10      | 27          | -      | -   |
| Dimethoate          | -    | 10      | -       | 7           | -      | -   |
| Imidacloprid        | 3    | -       | -       | -           | -      | -   |
| Thiomethoxam        | 5    | -       | 3       | -           | 5      | -   |
| Indoxacarb          | -    | 7       | -       | -           | 5      | -   |
| Spinosad            | -    | 3       | -       | 3           | -      | -   |
| Emmamectin benzoate | 5    | 3       | 3       | -           | -      | -   |
| Lufenuron           | -    | 14      | -       | 5           | -      | -   |
| Novaluron           | -    | 5       | -       | -           | 1-3    | -   |



## Novel insecticide molecules for pest management

#### Rationale

- Currently several new insecticide groups have been discovered and commercialized for use in modern crop protection.
- Low risk to non-target organisms, high target specificity, their versatility in application, greater role in IPM and IRM programmes.
- 10-15 times lower dose than conventional insectcides for sucking pests and 5-25 times lower dose for borer and leaf feeding insect pests.
- Screening for their efficacy and biosafety to natural enemies important before incorporating in any IPM programmes.



These new insecticide groups with unique mode of action have been registered from late 1990s to early 2009 for pest management in agriculture.



## **Biorational insecticides for use in vegetables**

|    | Common name                 | Сгор                    | Target pest                | Dose/ha (g a.i.) |
|----|-----------------------------|-------------------------|----------------------------|------------------|
| 1. | Imidacloprid 17.8% SL       | Chilli                  | Jassid, aphid, thrips      | 25-20            |
|    |                             | Okra                    | Jassid, aphid, thrips      | 20               |
| 2. | Thiamethoxam 25% WG         | Okra                    | Jassid, aphid, whitefly    | 25               |
|    |                             | Tomato                  | Whitefly                   | 50               |
|    |                             | Brinjal                 | Whitefly                   | 50               |
| 3. | Thiacloprid 21.7% SC        | Chilli                  | Thrips                     | 54-72            |
| 4. | Fipronil 5% SC              | Cabbage                 | DBM                        | 40-50            |
|    |                             | Chillies                | Thrips, aphid, fruit borer | 40-50            |
| 5. | Indoxacarb 14.5% SC         | Cabbage                 | DBM                        | 30-40            |
|    |                             | Chilli                  | Fruit borer                | 50-60            |
|    |                             | Tomato                  | Fruit borer                | 60-75            |
| 6. | Spinosad 2.5% SC            | Cabbage/<br>cauliflower | DBM                        | 15.0-17.5        |
| 7. | Spinosad 45% SC             | Chillies                | Fruit borer                | 73               |
| 8. | Chlorantranilprole 18.5% SC | Cabbage                 | DBM                        | 10               |
|    |                             | Okra                    | Fruit and shoot borer      | 9.5-11.0         |

Contd. .....



|     | Common name           | Сгор                    | Target pest                      | Dose/ha (g a.i.) |
|-----|-----------------------|-------------------------|----------------------------------|------------------|
| 9.  | Emmamectin benzoate   | Cabbage                 | DBM                              | 7.5-10.0         |
|     |                       | Chilli                  | Fruit borer, thrips, mite        | 10               |
|     |                       | Brinjal                 | Fruit and shoot borer            | 10               |
| 10. | Chlorfenapyre 10% SC  | Chilli                  | Mite                             | 75-100           |
| 11. | Spiromesifen 22.9% SC | Brinjal Red spider mite |                                  | 96               |
|     |                       | Chilli                  | Yellow mite                      | 96               |
| 12. | Diafenthurion 50% WP  | Cabbage                 | DBM                              | 300              |
|     |                       | Chilli                  | Mite                             | 300              |
|     |                       | Brinjal                 | Whitefly                         | 300              |
| 13. | Lufenuron 5.4% EC     | Cabbage/<br>cauliflower | DBM                              | 30               |
| 14. | Novaluron 10% EC      | Cabbage                 | DBM                              | 75               |
|     |                       | Tomato                  | Fruit borer                      | 75               |
|     |                       | Chilli                  | Fruit borer, tobacco caterpillar | 33.5             |
| 15. | Buprofezin 25% SC     | Chillies                | Yellow mite                      | 75-100           |
| 16. | Flufenoxuron 10% DC   | Cabbage                 | DBM                              | 40               |



## Fruit fly of cucurbits

- **Temperate : low dispersal, monophagous**
- **Tropical/Sub-tropical : Polyphagous**
- Fruit fly : 320 species reported
- **Exclusively from India : 200 species**
- Damage : Mango, guava, ber, peach, cucurbits worth Rs. 30,000 million
- □ Major pests belong to Genus : *Bactrocera*
- **Cucurbits** : *B. cucurbitae*, *B. ciliatus*

| Сгор            | Pest species             | Yield loss<br>(%) |
|-----------------|--------------------------|-------------------|
| Bitter<br>gourd | Bactrocera<br>cucurbitae | 80                |
| Snake<br>gourd  | Bactrocera<br>cucurbitae | 63                |
| Sponge<br>gourd | Bactrocera<br>cucurbitae | 50                |

| Сгор         | Damage (%) | State     |
|--------------|------------|-----------|
| Bittergourd  | 50-60%     | U.P.      |
| Cucumber     | 29-39%     | Assam     |
|              | 70-80%     | H.P.      |
| Muskmelon    | 76%        | Rajasthan |
| Snake gourd  | 63%        | Assam     |
| Sponge gourd | 50%        | A.P.      |







## Abundance of fruit fly adults in cue-lure baited bottle traps

| Period   |    | Adults/trap/week | Period    |     | Adults/trap/week |
|----------|----|------------------|-----------|-----|------------------|
| January  | I  | 5.00             | July      | I   | 29.50            |
|          | П  | 4.00             |           | П   | 9.00             |
| February | I. | 16.50            | August    | - I | 18.50            |
|          | П  | 83.50            |           | П   | 32.50            |
| March    | I  | 182.50           | September | I   | 60.00            |
|          | П  | 191.50           |           | П   | 225.50           |
| April    | I  | 228.50           | October   | I   | 348.50           |
|          | П  | 282.50           |           | П   | 575.66           |
| May      | I. | 82.00            | November  | I   | 491.00           |
|          | П  | 102.00           |           | П   | 312.00           |
| June     | I. | 85.50            | December  | I   | 92.50            |
|          | П  | 21.00            |           | П   | 13.00            |

## Effect of MAT and bait-repellent spray on periodical fruit damage (%) in bitter gourd

Cuelure: [4 P-acetoxyphenyl) - 2 butanone] - B. cucurbitae







# Fruit damage and yield in MAT and bait-repellent treated bitter gourd



T1 - MAT T2 - MAT + bait-repellent T3 - Control



#### IPM technology for Fruit fly management in Cucurbits

- Installation of used water bottle baited with cue lure (as MAT) saturated wood blocks (ethanol: cuelure: carbaryl in a ratio 8:1:2) @ 25 traps/ha prior to flower initiation.
- □ Bait spray containing malathion 20 ml + 20 litres water + 500g molasses sprayed randomly on 250 plants/ha.
- □ Use of repellent (NSKE 4%) enhanced trapping and luring in bait spots. Mean fruit fly catches much higher in traps installed with MAT+BAT-Repellent plots (116.43/trap/week) compared to that of (75.82/trap/week) in MAT+BAT treated plot
- □ Application of neem as a repellent increased the catch in parapheromone traps and enhanced the luring ability of parapheromone by 52%..
- □ Fine tuning of this module with addition of NSKE spray and increased diameter of bottle trap (9cm) along with use of dichlorovos 1% increased the adult trapping/killing in lure

#### Impact:

- □ This technology helps to suppress further population build-up of insect with almost no probability of insecticide residue in and or/on the fruits.
- This technology decreases fruit damage by 71.1% in cucurbits. Overall cost of pesticide application is decreased more than 10 times.
- Benefit is in terms of pesticide free cucurbits, safety to human health and improving quality of environment.







### **Brinjal Shoot and Fruit Borer (***Leucinodes orbonalis***)**





## Abundance of natural enemies in brinjal-intercrop ecosystem (Rabi 2004, 2005)



#### Shyam Prasad et al., 2007



#### **Natural enemies of BSFB**

- □ *Trathala flavo-orbitalis* : Larval parasitoid Active period-kharif (17%), Bangladesh and Srilanka- >40%
- Bracon spp.
- Goryphus nursei: Pupal parasite



Trathala flavo-orbitalis



Goryphus nursei



#### Effect of Boron on biology and egg laying behaviour of BSFB



- Lowest eggs (44.99 eggs/plant) on plants treated with 50 ppm
- Less weight of larvae (50.68 mg) pupae (44.32 mg) when fed on 50 ppm boron treated fruits
- Borer infestation less (23.36%) in plot treated with 75 ppm and 50 ppm (25.11%) as against 31.17% in control.
- Less fruit infestation (23.27%) in Punjab Barsati compared to Punjab Sadabahar (29.62%).



#### Effect of *Trichogramma* release on cumulative damage caused by BSFB



- Inundative release of T. chilonis @ 2.5 lakh/ha in conjugation with botanicals and insecticide for management of BSFB.
- At 90 DAT prominent effect of both treatments in reducing fruit damage



### Effect of T. chilonis on BSFB management



Mean damage in control = 52.4%

#### Ganga Vicalakshy and Krishnamoorthy (2006)



#### **IPM technology for Shoot & Fruit Borer management in brinjal**

- Installation of plastic funnel traps 100/ha baited with sex pheromone lures from 15-20 days of planting traps at 10 m distance
- Clipping of damaged shoots and early infested fruits at weekly interval
- □ Need based foliar spray of NSKE (4%)
- □ Reduced infestation up to 60- 65%
- □ Fine tuning of this module with addition of seedling root dip in Rynaxypyr 0.5 ml/l for 3 hours
- Extending period of pheromone trap's installation to 25-30 DAT
- Need based spray ∞- cyhalothrin or cypermethrin at flowering and fruiting phase
- □ Improved the efficiency of module with 20-25% additional reduction in BSFB infestation.
- This technology reduced infestation by more than 85 % and increased yield by 40%. As a consequence of this technology, the total cost of the production is reduced by 30% and cost of pesticide application is decreased by 35.20%.



**Funnel trap** 



Clipping of infested Shoots



Trap installation in field



### Low cost net house for management of BSFB

|           | % Fruit damage |           | Marketable Yield (Kg) |
|-----------|----------------|-----------|-----------------------|
|           | No. basis      | Wt. basis |                       |
| Net House | 1.54           | 1.70      | 25,591                |
| Open      | 44.77          | 46.04     | 9986                  |

Raising plant inside net house, a barrier to infestation and spread of ESFB was a major success as damage was < 2% compared to a mean of 46 % damage outside net house

| Particulars                                                  | Net house<br>(Rs) | Open field<br>(Rs) | Change (%)<br>(Rs) |
|--------------------------------------------------------------|-------------------|--------------------|--------------------|
| Cost on net house structures<br>(stones pillars, wires, etc) | 11,90,030         | -                  | -                  |
| Costs on irrigation structures and drip system               | 1,76,650          | 1,76,650           | -                  |
| Mean annual cultivation expenses                             | 56,678            | 44,178             | 28.29              |
| Annuity values for items 1 and 2                             | 37,698            | 3,553              | -                  |
| Annualized cost of cultivation<br>(item 3 + item 4)          | 94,376            | 47,731             | 97.72              |
| Cost of Production                                           | 3.69              | 4.78               | -22.85             |
| Gross returns                                                | 2,55,910          | 99,860             | 156.27             |
| Net returns                                                  | 161,534           | 52,129             | 209.87             |
| BC Ratio                                                     | 2.71              | 2.09               | -                  |

(Kumar et al. 2007-09 IIHR)

- Large fruited eggplant hybrid Indam 19794
- 326 seedlings planted at 75 x 50 cmspacing
- Straight-line depreciation was used to apportion total value of establishment items like stone pillars, net sheets and irrigation equipments, etc., depending on their life span.

Low-cost net house cultivation significantly reduced ESFB infestation and damage through:

- an increase in total fruit yield, mostly through bigger size rather than number.
- ✤ a reduction in leafhopper infestation and damage and no incidence of *little leaf*, a phytoplasma disease inside the net house.



## **IPM Interventions in Brinjal**

#### For Sucking Pests

|                  | Installation of Delta traps and yellow sticky traps for white fly                                  | Variable                         | IPM      | FP      |
|------------------|----------------------------------------------------------------------------------------------------|----------------------------------|----------|---------|
|                  | Three sprays of NSKE @ 5%<br>Need based spray of imidacloprid 17.8 SL                              | Number of chemical sprays        | 2.70     | 7.20    |
| F                | For L. orbonalis                                                                                   |                                  |          |         |
|                  | Pheromone traps installed @ 5/acre for monitoring of borer                                         | Cost of cultivation<br>( Rs/ ha) | 24340.36 | 25863   |
| $\triangleright$ | Clipping of borer damaged shoots<br>3- 4 releases of egg parasite, <i>T. chilonis</i> @1.0 lakh/ha | Yield (q/ ha)                    | 454.14   | 390.62  |
| ≻<br>5           | Need based spray (ETL > 5%) of Emmamectin benzoate                                                 | Gross return (Rs/ ha)            | 90827.94 | 78124.0 |
|                  | SG @ 100 g/acre formulated<br>Collection & destruction of borer affected fruits                    | Net return (Rs/ ha)              | 66487.56 | 52261   |
|                  | Soil application of Neem cake @ 250 kg/ha at 25 & 60                                               | C:B ratio                        | 1:3.69   | 1:3.02  |

days along the plant rows against nematodes













## Diamondback Moth (*Plutella xylostella*)

- Sensitive to sub lethal dose of pesticides
- **Quick development of resistance**
- Critical period
- □ Importance of NE: *Cotesia plutellae*
- Occurrence in moderately high temperature condition
- Relative host preference





#### **Combination of different intercropping effective in DBM management**

| Crop combination          | Effect     | Reference                                                                   |
|---------------------------|------------|-----------------------------------------------------------------------------|
| Cabbage + tomato (1:1)    | Repellent  | Talekar et al., 1986<br>Timbreilla and Nyako, 2001<br>Facknath et al., 1999 |
| Cabbage + garlic (1:1)    | Repellent  | Talekar et al., 1986                                                        |
| Cabbage + clover (1:1)    | Repellent  | Talekar et al., 1986                                                        |
| Cabbage + coriander (1:1) | Repellent  | Talekar et al., 1986<br>Facknath, 1996                                      |
| Cabbage + marigold (1:1)  | Repellent  | Talekar et al., 1986                                                        |
| Cabbage + lucern          | Repellent  | Meena and Lal, 2002                                                         |
| Cabbage + onion           | Repellent  | Timbreilla and Nyako, 2001                                                  |
| Cabbage + spearmint       | Repellent  | Timbreilla and Nyako, 2001                                                  |
| Cabbage + mustard         | Attractant | Srinivasan, 1991<br>Srinivasan and Krishnamoorthy, 1991                     |
| Cabbage + mustard         | No effect  | Umashankar et al., 2007<br>Meena and Lal, 2002                              |



Egg laying preference of diamondback moth on cruciferous in laboratory condition

Egg laying preference, larval and pupal population of DBM on cruciferous hosts (Net house)

| Host plant         | No. of egg/leaf           |                     |  |
|--------------------|---------------------------|---------------------|--|
|                    | No choice                 | Multiple<br>choice  |  |
| Cabbage            | 12.33 <sup>c</sup>        | 4.67 <sup>b</sup>   |  |
| Knol-khol          | 1.00 <sup>e</sup>         | 4.00 <sup>bc</sup>  |  |
| Broccoli           | 3.33 <sup>d</sup>         | 1.67 <sup>d</sup>   |  |
| Cauliflower        | 2.33 <sup>de</sup>        | 3.67 <sup>bcd</sup> |  |
| Chinese<br>cabbage | 23.00 <sup>b</sup>        | 9.00ª               |  |
| Mustard            | <b>26.67</b> <sup>a</sup> | 2.33 <sup>cd</sup>  |  |
| C.D. at 5%         | 1.98                      | 2.04                |  |

| Host plants        | No. of<br>egg/plant<br>(3 DAR) | Larvae/pl<br>ant (14<br>DAR) | No. of<br>pupae/plant |
|--------------------|--------------------------------|------------------------------|-----------------------|
| Cabbage            | 114.25 <sup>bc</sup>           | 18.50 <sup>bc</sup>          | 20.00 <sup>b</sup>    |
| Knol-khol          | 68.75 <sup>cd</sup>            | 9.75 <sup>ce</sup>           | 10.75 <sup>c</sup>    |
| Broccoli           | <b>24.75</b> <sup>d</sup>      | 19.25 <sup>bc</sup>          | 18.75 <sup>b</sup>    |
| Cauliflower        | 98.5b <sup>c</sup>             | 12.25 <sup>ce</sup>          | 4.75 <sup>c</sup>     |
| Chinese<br>cabbage | 374.00ª                        | 52.75ª                       | 45.25ª                |
| Mustard            | 148.50 <sup>b</sup>            | 24.00 <sup>b</sup>           | 21.00 <sup>b</sup>    |
| C.D. at 5%         | 61.04                          | 10.32                        | 7.30                  |

- In 'NO Choice Test' mustard harboured maximum eggs (26.67/leaf) followed by Chinese cabbage and cabbage
- In 'Multiple Choice Test' Chinese cabbage most preferred with maximum of 9.00 eggs/leaf
- Greater preference of Chinese cabbage for egg laying (374 eggs/plant), larval (52.75/plant) and pupal (45.25/plant) population.



## Comparative population of DBM larvae in cabbage and Chinese cabbage



#### 7 6 6 6 5.2 5 **DBM** per plant $T_3 \sim T_4^*$ 4 2.8 3 2 1 0 **T1 T2** Т3 **T4 Treatments**

## DBM population in trap crop planted in different patterns



| T1 | I. | Border                |
|----|----|-----------------------|
| Т2 | I  | Cris-Cross            |
| Т3 | -  | Two side – one middle |
| T4 | -  | One middle            |

#### Satpathy et al., 2010



#### COLE CROPS

- For DBM management
- Growing paired mustard rows as trap crop with 25 cabbage rows (first row 15 days before, second 25 days later
- Dichlorovos (0.1%)spray only in mustard to kill the trapped DBM larvae.
- □ Need based NSKE (5%) spray
- Such practices conserve Cotesia plutellae, a dominant natural enemy
- Fine tuning with using Chinese cabbage (Brassica rapa subsp. pekinensis) as trap crop improved the attraction/trapping of DBM larvae 9 times more than mustard

#### For Spodoptera management

- In early cauliflower and cabbage,
- Hand removal and destruction of egg masses
- □ Three foliar spray of SINPV @ 300 LE/ha at 10 days interval.
  - For Aphid management
- Coriander as border crop
- □ Spray of entomopathogenic fungal (*Verticillium lecani*) formulation 500g/ha at 10 days interval



#### Chinese cabbage as trap crop



Coriander as Border crop



#### **IPM Interventions in Cabbage**

NCIPM

- Raised seed bed
- Spray quinalphos or carbaryl in nursery for stem borer (Hellula undalis) in rainy season crop
- Mustard as trap crop for every 25 rows of cabbage.
- Spray mustard with dichlorovos 76EC@ 0.1%
- Use of light traps @ 3/acre for adults of DBM. Spray of Bt (1g/litre) if DBM 1.0/plant or NSKE 5% (3 sprays) or novaluron 10 EC @ 100 ml/acre (18-25 DAP) or spinosad 45 SC
- Collection and destruction of egg masses
- Installation of pheromone traps @ 10/ha for mass trapping
- Light traps are also effective
- Spray S/NPV 250LE (2 x  $10^9$ )in the evening for early instars
- Collect & destroy egg masses of *P. brassicae;* spray any contact insecticide like quinalphos

| IPM Plot | N <u>on-IPM</u>                                                |                                                            |
|----------|----------------------------------------------------------------|------------------------------------------------------------|
| 6        |                                                                | 16                                                         |
| 62.13    |                                                                | 58.31                                                      |
| 1,07,348 |                                                                | 1,06857                                                    |
| 21155    |                                                                | 44390                                                      |
| 82222    |                                                                | 62,866                                                     |
| 1:5.07   |                                                                | 1:2.40                                                     |
|          | IPM Plot<br>6<br>62.13<br>1,07,348<br>21155<br>82222<br>1:5.07 | IPM Plot Non-IPM   6 62.13   1,07,348 21155   82222 1:5.07 |











## Tomato Fruit Borer (H. armigera)

- Polyphagous nature
- Influence of alternate hosts
- Fruit development stage
- □ Irregular in occurrence monitoring
- Natural enemies

| State            | Damage (%) |
|------------------|------------|
| Karnataka        | 56 %       |
| Punjab           | 65 %       |
| Tamil Nadu       | 50 %       |
| Uttar Pradesh    | 36 %       |
| Himachal Pradesh | 24 %       |





#### Helicoverpa occurrence in multi-crop environment





Parasitisation by *Campoletis chlorideae* to tomato Fruit Borer under natural condition



| Application Rate                                 | Spray Round | Application Time     | Spray Interval |
|--------------------------------------------------|-------------|----------------------|----------------|
| 300 LE/ha                                        | 4           | Flowering initiation | 8 days         |
| 250 LE along with NSKE 4%<br>& ½ dose Endosulfan | 3           | 45 DAT               | 10 days        |
| 300 LE                                           | 2           | After flowering      | 15 days        |
| 500 - 700 LE                                     | 3           | 50% flowering        | 10 days        |

#### Augmentation of NE

| Natural enemies                  | Release rate       | Impact                                 |
|----------------------------------|--------------------|----------------------------------------|
| T. chilonis (egg parasitoid)     | 2,50,000/ha weekly | Significant reduction in fruit damage  |
| T. brasiliensis (egg parasitoid) | 2,50,000/ha        | 51.3 % parasitization of eggs          |
| T. pretiosum (egg parasitoid)    | 2,50,000/ha        | 6.45% less infestation over control    |
| T. pretiosum (egg parasitoid)    | 5,00,000/ha        | 7.92% less infestation over control    |
| T. pretiosum (egg parasitoid)    | 50,000/ha          | 55.90 % reduction in larval population |



## Effect of *T. brasiliensis* on Tomato Fruit Borer Damage





## ΤΟΜΑΤΟ

#### For fruit borer management

- Two rows of marigold as trap crop
- Fourteen rows of tomato
- Two releases of *T. brassiliensis* @ 50,000 parasitized eggs/ha based on pheromone based monitoring
  - first coinciding with flowering initiation and second 10 days later
  - spray of HaNPV @ 350 LE /ha twice
  - Inundative release of *T. brassiliensis* @ 2,50,000 eggs/ha alone beginning with fruiting could reduce 16% fruit infestation



Tomato with marigold



Marigold flowers with fruit borer



#### **IPM INTERVENTIONS IN TOMATO**

#### Nursery

• Covering nursery with nylon net for white fly

#### Main field

- Transplant marigold as trap crop (1 row /14 rows of tomato) 15 days older than tomato seedlings
- Spray imidacloprid 17.5 SL/ @ 0.4 ml/l for whitefly/ aphids
- Pheromone traps @ 5/ha for monitoring of H. armigera eggs at flowering
- Spray of *Ha*NPV 250 LE/ha
- Regular collection & destruction of borer damaged fruits
- Need based spray of pesticides like rynaxypyr







Muslin net coverage



Staking









| Ν   | CI | Ρ | NЛ    |
|-----|----|---|-------|
| 1 1 | U  | Г | 1 V I |

| Parameter                                             | IPM          | FP       |
|-------------------------------------------------------|--------------|----------|
| Number of sprays                                      | 5.3          | 9.7      |
| Cost of sprays (Rs/ ha)                               | 6012.<br>5   | 9173.0   |
| Cost of cultivation<br>(Rs/ha) including pl.<br>prot. | 86482<br>.5  | 88496.5  |
| Mean yield (Q/ha)                                     | 369.1        | 330.2    |
| Gross return (Rs/ha)*                                 | 3,16,5<br>00 | 283143   |
| Net return (Rs/ha)                                    | 23001<br>7.5 | 194646.5 |
| C:B ratio                                             | 1:3.65       | 1:3.19   |

*Ha*NPV



#### **IPM Interventions for Chilli**



| Parameter                                | IPM    | FP     |
|------------------------------------------|--------|--------|
| No. of sprays                            | 11     | 25.0   |
| Total cost of<br>cultivation (Rs/<br>ha) | 26280  | 33150  |
| Mean yield<br>(q/ha)                     | 15     | 10     |
| Gross return (Rs/<br>ha)                 | 96900  | 64600  |
| Net return (Rs/<br>ha)                   | 70620  | 31450  |
| C:B ratio                                | 1:3.68 | 1:1.94 |

- Spray neem product @ 5% or spinosad 45 SC @ 75 g a.i. / ha against thrips. Need based application of fipronil or acephate be given if population of thrips is still high.
- Application of biopesticide abamectin @ 5% for mites management.
- If both thrips & mites are seen together, spray of difenthiuron or fenpropathrin 30 EC @ 0.5 ml/litre is very useful.
- Erect pheromone traps @ 5/ ha for H. armigera for monitoring of adults moths
- 1-2 sprays of HaNPV /S/NPV 250 LE/ha in initial stages or spray rynaxypyr 20 SC as and when needed.
- Spray of dimethoate 30 EC for aphids

□ Integrated module: seedling dip with Imidacloprid 1 ml/l, spray of Buprofezin 1 ml/ll 25 DAT, Fipronil 0.2 g/l 35 DAT, *V. lecanii* 5 g/l 45 DAT, Chlorfenapyr 1 ml/li 55 DAT, Neem oil 1% at 65 DAT. found most effective in reducing mite (75.48%) and thrips on was 59.44 in chilli (Kashi Anmol )





## Okra Shoot and Fruit Borer (Earias vittella)

- Shoot Earias
- Sruit Earias + Helicoverpa
- Seasonal status
- Staphylinid on jassid

#### Multiplication of predator (P. variicornis)

| Prey item     | No. consumed | Mean  | % consumption |
|---------------|--------------|-------|---------------|
| Corcyra eggs  | 26 - 70      | 46.13 | 43 - 100      |
| Jassid nymphs | 1 - 28       | 12.60 | 50.83 - 66.98 |







#### IPM technology for the management for insect pests in okra

- Nursery Netting to protect from whitefly infection.
- ST with Imidacloprid/Thiomethoxam 3 g/kg seed control whitefly population upto 30 DAS and minimize YMV incidence
- ST with thiamethoxam/imidacloprid 3 g/kg + polymer 40 ml/kg seed improved chemical persistency upto 62 days for jassids management
- NSKE 4% with half recommended dose of propenofos showed synergistic action and found effective against fruit borer.

| Treatments                                         | Jassids/ plant |                    |                   |                   |                   |                    |
|----------------------------------------------------|----------------|--------------------|-------------------|-------------------|-------------------|--------------------|
|                                                    | 25 DAS         | 32 DAS             | 39 DAS            | 46 DAS            | 53 DAS            | Mean               |
| T3 – Thiamethoxam @ 3 g/kg + Polymer<br>@ 40 ml/kg | 0.00           | 0.23 <sup>cd</sup> | 1.16 <sup>c</sup> | 3.80 <sup>d</sup> | 8.43 <sup>b</sup> | 2.70 <sup>e</sup>  |
| T7 – Thiamethoxam @ 3 g/kg                         | 0.00           | 0.46 <sup>cd</sup> | 2.40 <sup>c</sup> | 4.26 <sup>d</sup> | 9.93 <sup>b</sup> | 3.35 <sup>cd</sup> |
| T9 – Polymer @ 40 ml/kg                            | 0.86           | 1.13ª              | 10.03ª            | 11.06ª            | 14.56ª            | 7.53ª              |
| T10 – Control                                      | 0.63           | 1.00ª              | 10.23ª            | 10.40ª            | 15.26ª            | 7.50 <sup>a</sup>  |
| CD (0.05%)                                         | 0.13           | 0.30               | 1.29              | 2.02              | 2.43              | 0.74               |



## Pest management module

- Target pests: Jassids and shoot and fruit borer
- Crop

Okra (var. VRO- 6)

- Season
- Kharif

| Modules      | Pre<br>treatment | Av.<br>popn/3<br>leaves | Fruit<br>damage | PPOC* | Yield (q/ha) |
|--------------|------------------|-------------------------|-----------------|-------|--------------|
| Biointensive | 6.79             | 4.19                    | 13.77           | 51.96 | 180.0        |
| Integrated   | 6.94             | 3.96                    | 9.55            | 66.67 | 212.0        |
| Chemical     | 7.29             | 2.92                    | 13.13           | 54.19 | 220.3        |
| Control      | 7.49             | 7.32                    | 28.66           |       | 89.2         |
| SEM±         | 0.10             | 0.16                    | 1.63            |       | 0.83         |
| CD(0.05)     | NS               | 0.57                    | 5.22            |       | 2.87         |

**Biointensive modules:** Pongamia oil 1% at 25 DAS, V. lecanii 4 g/lat 35 DAS, Bt 1ml/l at 45 DAS, NSKE 4%@5ml/l at 55 DAS and *B. bassiana* 2g/l at 65 DAS.

Integrated module: Installation of yellow sticky traps, Rynaxpyre 0.15ml/l at 25 DAS, NSKE 4%@5ml/l at 35 DAS, Emamectin benzoate 0.5ml/l at 45 DAS, Bt 1ml/l at 55 DAS and NSKE 4% 5ml/l at 65 DAS.

**Chemical module:** Thiamethoxam 0.5gm/l at 25 DAS, Indoxacrb 0.5ml/l at 35 DAS, Dimethoate 2ml/l at 45 DAS, Emmamectin benzoate 0.5g/l at 55 DAS and Cypermethrin 1ml/l at 65 DAS.

**Chemical module: effective against jassids** 

Integrated module: effective against shoot and fruit borer with higher yields.



## Conclusion

- Many potential elements of pest management in vegetable crops and others have been studied and recommended but most are not sufficiently advanced to be of value to end users in practical sense under field conditions.
- Role of public-private partnership in production, distribution and quality control of different components of IPM such as resistant varieties, natural plant products, biopesticides and natural enemies is imperative, otherwise we will continue to talk of alternative methods of control for another many years.

## **GREY AREAS**

- No records on current pest situation and outbreaks for most of the regions/crops/pests
- Only the physical targets of the IPM component distribution and fund utilization generally achieved
- □ The generic IPM modules (>75) of DPPQ & S confusing: as most of them have not been field validated
- □ Weak pest monitoring system, almost nonexistent for various crops



## Our motto is

# Prosperity to farmers and health for all

## **Thank You**

Sixteenth century Painting by <u>Giuseppe Arcimboldo</u>. A man assembled from food he eats.