

Cortex-M3 Architecture :

Introduction to the LPC1768 microcontroller

- Swarna Prabha Jena

Department of ECE

5/27/2020

1.1. Introduction: Embedded Systems+ Design of Digital Systems. The ARM Cortex-M3

1.2. LC1768: Block Diagram, Memory Map, Susses, Pinout

1.3. LPC1768 exceptions: Types and Vectors, NVIC, Enter+Exit, Priority, CM SIS functions.

1.4. LPC1768 system control modules: Clocking Features, RESET, FAULTs, SYSTICK, Power Management.

1.1. Embedded Systems

3

5/27/2020

What is an Embedded System?

- Interacts with the environment
- Is divided into three stages: 1 INPUT+ 2 PROCESS + 3 OUTPUT
 - □ The processing is based on:
 - □ Combinational logic and sequential circuits
 - \square Microprocessors (μP) Microcontrollers (μC)
 - □ Digital Signal Processor (DSP)
 - □ Programmable Logic Devices (PLDs)
 - □ Programmable Logic Controllers (PLCs)
- In general, they are real-time reactive systems:
 - □ They react to external events and keep continuous interaction
 - □ They are continuously running
 - □ Their work is subjected to external time constraints
 - □ They do concurrently several tasks

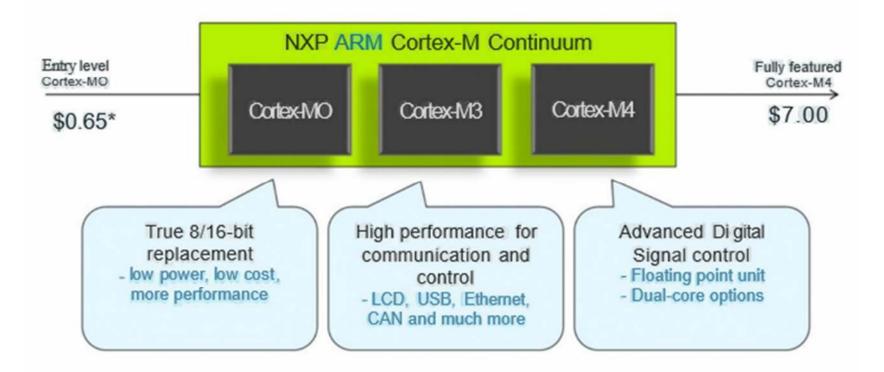
1.1. Design of Digital Systems

A microcontroller (µC) is a chip **that includes in a single chip** all elements needed in a digital system

- the processor (µP, CPU)
- different types and amounts of memory and
- various input/output interfaces and peripherals
- All of them interconnected by uni/bidirectional busses

Therefore:

- Achieving more integration and lower price
- Lower time to marked when implementing a project

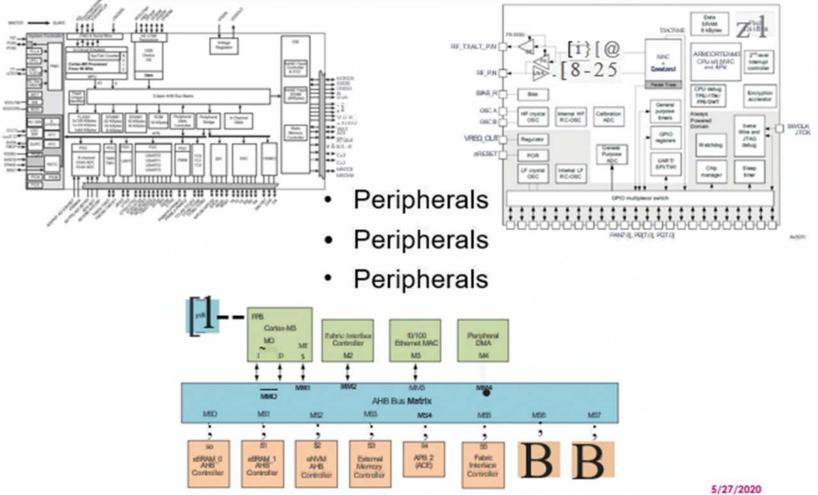

1.1. The ARM Cortex-M3

ARM is a:

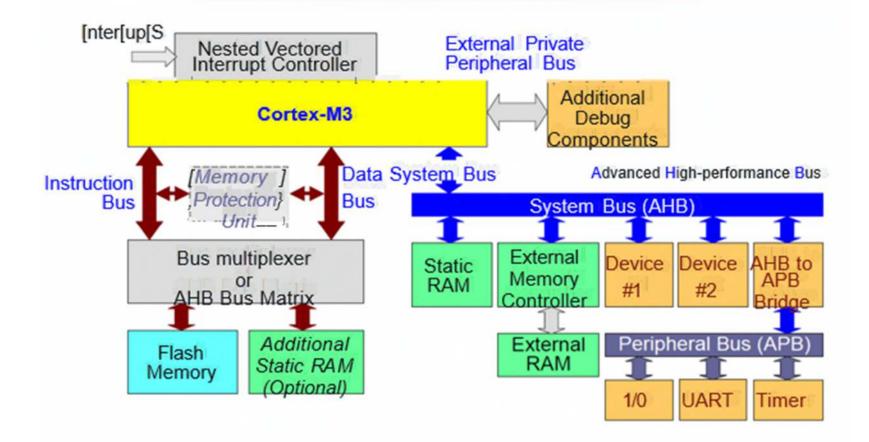
RISC μP

- 17/18 32 bits visible registers in its programmer's model (37 total)
- a Cach~ Memory (upon version)
- Von Neuman architecture (ARM7)
- Harvard architecture (ARM9 and forward)
- The Cortex-M3 $\,\mathrm{C}\,$ builds on the success of the ARM7
- Nonmaskable interrupts for critical tasks
- Deterministic nested vector exceptions
- Atomic bit manipulation
- Optional Memory Protection Unit (MPU)

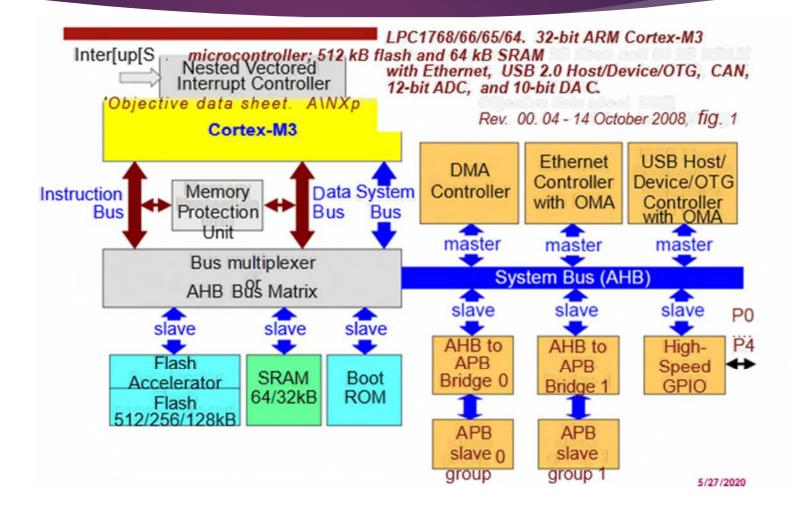
1.1. ARM Cortex Advanced Processors


5/27/2020

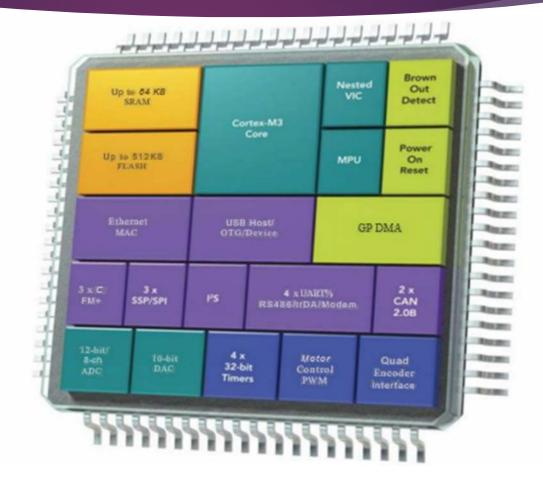
1.1. Cortex-M3: Manufacturers


J/ Z/ / ZUZU

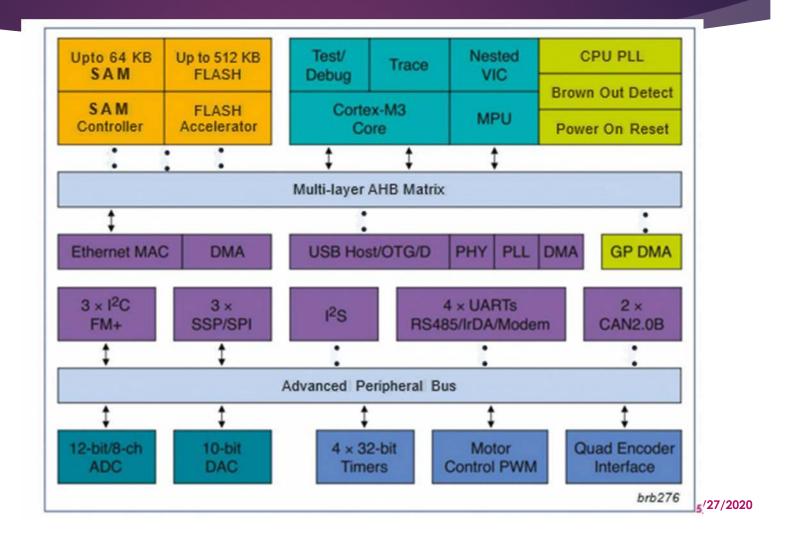
1.1. Manufacturers that incorporate Cortex-M3: Differences?



9


1.2. Cortex-M3: Busses

1.2. LPC17xx: Busses


1.2. LPC17xx: Block Diagram

5/27/2020

12

1.2. LPC17xx: Block Diagram

1.2. LPC17xx: Memory 13 On-chip Flash Maximum 512 KB.

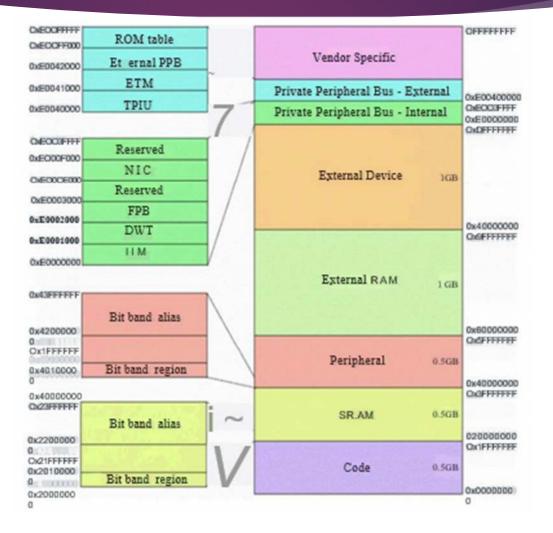
Zero wait-state performance with Flash Accelerator.

On-Chip SRAM

D

- Maximun 64 KB:
 - □ 32 KB SRAM accessible by the CPU and DMA controller on a higher speed bus.
 - Two additional 16 KB SRAM separate slave port on the AHB multilayer matrix.
 - Allows CPU and DMA accesses to be spread over 3 separate RAMs that can be accessed simultaneously.

D On-Chip ROM


- 8 KB ROM.
- Flash program/erase APis.
- Used for booting not customer accessible.

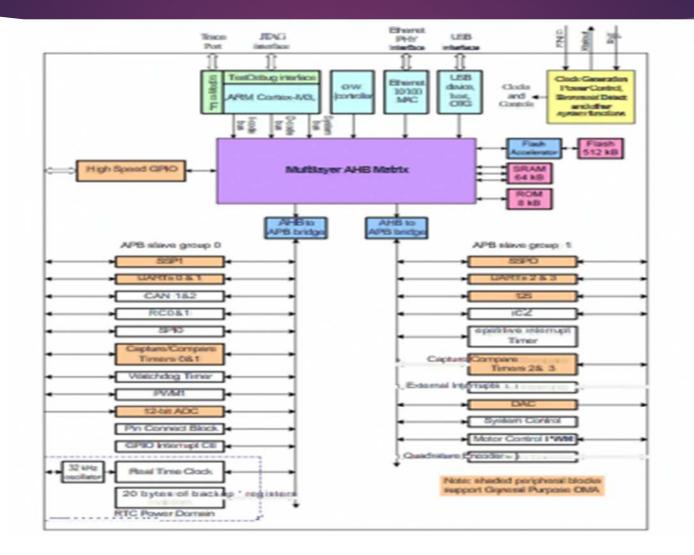
5/27/2020

1.2. LPC17xx: Family

Part Number	Max Clock (MHz)	E	IR	E	USB	E	II	E	E	Ι	I/O Pins	Package
LPC1769	120	512	64	У	Device/Host/OTG	2	у	8	У	3	70	LQFP100
LPC1768	100	512	64	У	Device/Host/OTG	2	У	8	У	3	70	LOFP100
LPC1767	100	512	64	Y	None	0	У	8	У	з	70	LOFP100
LPC1766	100	256	64	У	Device/Host/OTG	2	У	8	У	3	70	LQFP100
LPC1765	100	256	64	N	Device/Host/OTG	2	У	8	У	3	70	LOFP100
LPC1764	100	128	32	У	Device	2	N	8	N	3	70	LQFP100
LPC1759	120	512	64	N	Device/Host/OTG	2	у	6	У	2	52	LOFP80
LPC1758	100	512	64	У	Device/Host/OTG	2	У	6	У	2	52	LOFPO
LPC1756	100	256	32	N	Device/Host/OTG	2	у	6	У	2	52	LOFP80
LPC1754	100	128	32	N	Device/Host/OTG	1	N	6	У	2	52	LQFP0
LPC1752	100	64	16	N	Device	1	N	6	N	2	52	LQFP80
LPC1751	100	32	8	N	Device	1	N	6	N	2	52	LOFP80

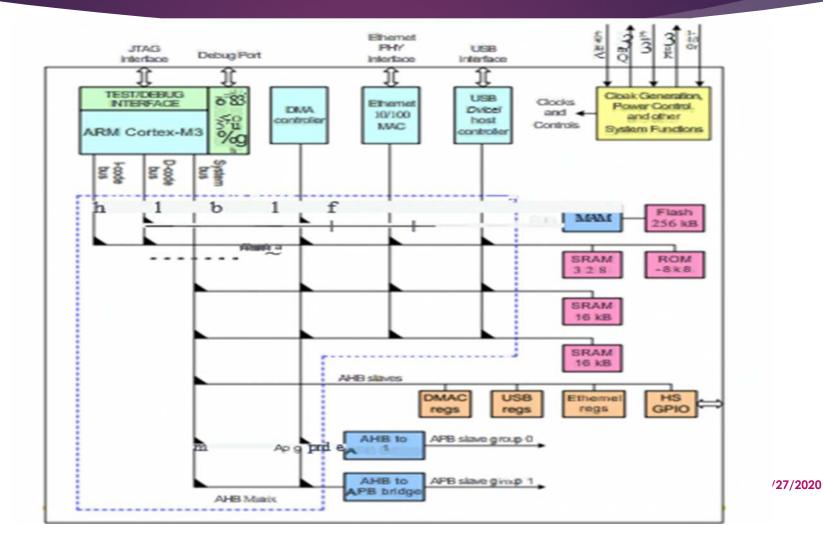
1.2. Cortex-M3: Memory Map

5/27/2020


16

1.2. LPC17xx: Memory Map

Table 3. LPC17xx memory usage and details


Address range	General Use	Address range details and description						
0x0000 0000 to	On-chip non-vda tile	0x0000 0000 - OxOOO7 FFFF For devices with 512 kB of flash memory.						
OX1FFF FFFF	memory	0x0000 0000 - 0x0003 FFFF	For devices with 256of flash memory.					
		0x0000 0000 - 0x0001 FFFF	For devices with 128 B of flash memory.					
		0x0000 0000 - Ox0000 FFFF	For devices with 64B of flash memory.					
		0x0000 0000 - 0x0000 7FFF	For devices with 32 kB of flash memory,					
	On-chip SRAM	0x1000 0000 - 0X1000 7FFF	For devices with 32 B of local SRAM.					
		0x1000 0000 - 0X1000 3FFF	For devices with 16 kB of local SRAM.					
		0x1000 0000 - 0X1000 1FFF	For devices with 8 kB of local SRAM.					
	Boot ROM	OX1FFF 0000 -OX1FFF 1FFF	8 kB Boot ROM with flash services.					
0x2000 0000 to OX3FFF FFFF	On-chip SRAM (typically used for	0x2007 COO0 - OX2OO7 FFFF	AHB SRAM - bank 0 (16 kB), present on devices with 32 kB or 64 kB of total SRAM.					
	peripheral data)	0x2008 0000 - 02008 3FFF	AHB SRAM - bank 1 (18 kB), present on devices with 64 B of total SRAM.					
	GPIO	0x2009 CO00 - OX2009 FFFF	GPIO.					
0x4000 0000 to Ox5FFF FFFF	APB Peripherals	0x4000 0000 - Ox4007 FFFF	APBO Peripherals, up to 32 peripheral blocks 16B each.					
		0x4008 0000 - OX40OF FFFF	APB1 Peripherals, up to 32 peripheral blocks 16 kB each.					
	AHB peripherals	0x5000 0000 - OX51F FFFF	DMA Controller, Ethernet interface, and USB interface.					
OxE000 0000 to Cortex-M3 Private OxEOOF FFFF Peripheral Bus		OxE000 0000 - OXEOOF FFFF	Cortex-M3 related functions, includes the NVIC and System TickTimer.					

1.2. LPC1768: Bus structure

5/27/2020

1.2. LPC1768: Bus structure (Multilayer AHB Matrix)

