
52 Chapter 3

Probability as a tool in genetics    Another method for 
determining the outcome of a genetic cross is to use the 
rules of probability, as Mendel did with his crosses. Prob-
ability expresses the likelihood of the occurrence of a partic-
ular event. It is the number of times that a particular event 
occurs, divided by the number of all possible outcomes. 
For example, a deck of 52 cards contains only one king of 
hearts. The probability of drawing one card from the deck 
at random and obtaining the king of hearts is 1/52, because 
there is only one card that is the king of hearts (one event) 
and there are 52 cards that can be drawn from the deck (52 
possible outcomes). The probability of drawing a card and 
obtaining an ace is 4/52, because there are four cards that are 
aces (four events) and 52 cards (possible outcomes). Prob-
ability can be expressed either as a fraction (4/52 in this case) 
or as a decimal number (0.077 in this case).

The probability of a particular event may be determined 
by knowing something about how the event occurs or how 
often it occurs. We know, for example, that the probability of 
rolling a six-sided die and getting a four is 1/6, because the die 
has six sides and any one side is equally likely to end up on top. 
So, in this case, understanding the nature of the event—the 
shape of the thrown die—allows us to determine the prob-
ability. In other cases, we determine the probability of an event 
by making a large number of observations. When a weather 
forecaster says that there is a 40% chance of rain on a particular 
day, this probability was obtained by observing a large number 
of days with similar atmospheric conditions and finding that 
it rains on 40% of those days. In this case, the probability has 
been determined empirically (by observation).

The multiplication rule    Two rules of probability are 
useful for predicting the ratios of offspring produced in 
genetic crosses. The first is the multiplication rule, which 
states that the probability of two or more independent 
events occurring together is calculated by multiplying their 
independent probabilities.

To illustrate the use of the multiplication rule, let’s again 
consider the roll of a die. The probability of rolling one die 
and obtaining a four is 1/6. To calculate the probability of 
rolling a die twice and obtaining 2 fours, we can apply the 
multiplication rule. The probability of obtaining a four on the 

first roll is 1/6 and the probability of obtaining a four on the 
second roll is 1/6; so the probability of rolling a four on both 
is 1/6 � 1/6 � 1/36 (Figure 3.8a). The key indicator for applying 
the multiplication rule is the word and; in the example just 
considered, we wanted to know the probability of obtaining a 
four on the first roll and a four on the second roll. 

For the multiplication rule to be valid, the events whose 
joint probability is being calculated must be independent—
the outcome of one event must not influence the outcome 

Roll 1

Roll 2

(a) The multiplication rule

(b) The addition rule

1 If you roll a die,…

1 If you roll a die,…

2 …in a large number of sample
rolls, on average, one out of six
times you will obtain a four;…

2 …on average, one out of
six times you'll get a three…

3 …and one out of six
times you'll get a four.

5 …your probability of
getting four is again 1/6;…

6 …so the probability of getting a four
on two sequential rolls is 1/6 � 1/6 = 1/36 .

4 That is, the probability of getting either 
a three or a four is 1/6 + 1/6 = 2/6 = 1/3.

3 …so the probability of obtaining
a four in any roll is 1/6.

4 If you roll the
die again,…

3.8 The multiplication and addition rules can be used to 

determine the probability of combinations of events.

CONCEPTS
The Punnett square is a shorthand method of predicting the geno-

typic and phenotypic ratios of progeny from a genetic cross.

✔ CONCEPT CHECK 4

If an F1 plant depicted in Figure 3.5 is backcrossed to the parent 

with round seeds, what proportion of the progeny will have wrinkled 

seeds? (Use a Punnett square.)

a. 3/4 c. 1/4

b. 1/2 d. 0
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The gametes from the two parents can combine in four 
different ways to produce offspring. Using the multiplication 
rule, we can determine the probability of each possible type. 
To calculate the probability of obtaining TT progeny, for 
example, we multiply the probability of receiving a T allele 
from the first parent (1/2) times the probability of receiving 
a T allele from the second parent (1/2). The multiplication 
rule should be used here because we need the probability of 
receiving a T allele from the first parent and a T allele from the 
second parent—two independent events. The four types of 
progeny from this cross and their associated probabilities are:

 TT (T gamete and T gamete) 1/2 � 1/2 � 1/4 tall

 Tt (T gamete and t gamete) 1/2 � 1/2 � 1/4 tall

 tT (t gamete and T gamete) 1/2 � 1/2 � 1/4 tall

 tt (t gamete and t gamete) 1/2 � 1/2 � 1/4 short

Notice that there are two ways for heterozygous progeny to 
be produced: a heterozygote can either receive a T allele from 
the first parent and a t allele from the second or receive a t
allele from the first parent and a T allele from the second.

After determining the probabilities of obtaining each 
type of progeny, we can use the addition rule to determine 
the overall phenotypic ratios. Because of dominance, a tall 
plant can have genotype TT, Tt, or tT; so, using the addition 
rule, we find the probability of tall progeny to be 1/4 � 1/4 �
1/4 � 3/4. Because only one genotype encodes short (tt), the 
probability of short progeny is simply 1/4.

Two methods have now been introduced to solve genetic 
crosses: the Punnett square and the probability method. At 
this point, you may be asking, “Why bother with probability 
rules and calculations? The Punnett square is easier to under-
stand and just as quick.” For simple monohybrid crosses, the 
Punnett square is simpler than the probability method and 
is just as easy to use. However, for tackling more-complex 
crosses concerning genes at two or more loci, the probability 
method is both clearer and quicker than the Punnett square.

The binomial expansion and probability    When 
probability is used, it is important to recognize that there 
may be several different ways in which a set of events can 
occur. Consider two parents who are both heterozygous 
for albinism, a recessive condition in humans that causes 
reduced pigmentation in the skin, hair, and eyes (Figure
3.9; see also the introduction to Chapter 1). When two par-
ents heterozygous for albinism mate (Aa � Aa), the prob-
ability of their having a child with albinism (aa) is 1/4 and 
the probability of having a child with normal pigmentation 
(AA or Aa) is 3/4. Suppose we want to know the probability 
of this couple having three children, all three with albinism. 
In this case, there is only one way in which they can have 
three children with albinism: their first child has albinism 
and their second child has albinism and their third child 
has albinism. Here, we simply apply the multiplication rule: 
1/4 � 1/4 � 1/4 � 1/64.

CONCEPTS
The multiplication rule states that the probability of two or more 

independent events occurring together is calculated by multiply-

ing their independent probabilities. The addition rule states that 

the probability that any one of two or more mutually exclusive 

events occurring is calculated by adding their probabilities.

✔ CONCEPT CHECK 5

If the probability of being blood-type A is 1/8 and the probability of 

blood-type O is 1/2, what is the probability of being either blood-type 

A or blood-type O?

a. 5/8 c. 1/8

b. 1/2 d. 1/16

The application of probability to genetic crosses
The multiplication and addition rules of probability can be 
used in place of the Punnett square to predict the ratios of 
progeny expected from a genetic cross. Let’s first consider a 
cross between two pea plants heterozygous for the locus that 
determines height, Tt � Tt. Half of the gametes produced by 
each plant have a T allele, and the other half have a t allele; 
so the probability for each type of gamete is 1/2.

of the other. For example, the number that comes up on one 
roll of the die has no influence on the number that comes up 
on the other roll; so these events are independent. However, 
if we wanted to know the probability of being hit on the 
head with a hammer and going to the hospital on the same 
day, we could not simply multiply the probability of being 
hit on the head with a hammer by the probability of going to 
the hospital. The multiplication rule cannot be applied here, 
because the two events are not independent—being hit on 
the head with a hammer certainly influences the probability 
of going to the hospital.

The addition rule    The second rule of probability fre-
quently used in genetics is the addition rule, which states 
that the probability of any one of two or more mutually 
exclusive events is calculated by adding the probabilities 
of these events. Let’s look at this rule in concrete terms. 
To obtain the probability of throwing a die once and roll-
ing either a three or a four, we would use the addition rule, 
adding the probability of obtaining a three (1/6) to the prob-
ability of obtaining a four (again, 1/6), or 1/6 � 1/6 � 2/6 � 1/3
(Figure 3.8b). The key indicators for applying the addition 
rule are the words either and or.

For the addition rule to be valid, the events whose prob-
ability is being calculated must be mutually exclusive, mean-
ing that one event excludes the possibility of the occurrence 
of the other event. For example, you cannot throw a single 
die just once and obtain both a three and a four, because 
only one side of the die can be on top. These events are 
mutually exclusive. 



54 Chapter 3

Suppose we now ask, What is the probability of this 
couple having three children, one with albinism and two 
with normal pigmentation? This situation is more compli-
cated. The first child might have albinism, whereas the sec-
ond and third are unaffected; the probability of this sequence 
of events is 1/4 � 3/4 � 3/4 � 9/64. Alternatively, the first and 
third child might have normal pigmentation, whereas the 
second has albinism; the probability of this sequence is 
3/4 � 1/4 � 3/4 � 9/64. Finally, the first two children might 
have normal pigmentation and the third albinism; the 
probability of this sequence is 3/4 � 3/4 � 1/4 � 9/64. Because 
either the first sequence or the second sequence or the third 
sequence produces one child with albinism and two with 
normal pigmentation, we apply the addition rule and add 
the probabilities: 9/64 � 9/64 � 9/64 � 27/64.

If we want to know the probability of this couple hav-
ing five children, two with albinism and three with normal 
pigmentation, figuring out all the different combinations of 
children and their probabilities becomes more difficult. This 
task is made easier if we apply the binomial expansion.

The binomial takes the form (p � q)n, where p equals 
the probability of one event, q equals the probability of the 
alternative event, and n equals the number of times the event 
occurs. For figuring the probability of two out of five chil-
dren with albinism:

p � the probability of a child having albinism (1/4)

q � the probability of a child having normal pigmentation (3/4)

The binomial for this situation is (p � q)5 because there are 
five children in the family (n � 5). The expansion is:

(p � q)5 � p5 � 5p4q � 10p3q2 � 10p2q3 � 5pq4 � q5

Each of the terms in the expansion provides the probability 
for one particular combination of traits in the children. 
The first term in the expansion (p5) equals the probability 
of having five children all with albinism, because p is the 
probability of albinism. The second term (5p4q) equals the 
probability of having four children with albinism and one 
with normal pigmentation, the third term (10p3q2) equals 
the probability of having three children with albinism and 
two with normal pigmentation, and so forth.

To obtain the probability of any combination of events, 
we insert the values of p and q; so the probability of having 
two out of five children with albinism is:

10p2q3 � 10(1/4)2(3/4)3 � 270/1024 � 0.26

We could easily figure out the probability of any desired 
combination of albinism and pigmentation among five chil-
dren by using the other terms in the expansion.

How did we expand the binomial in this example? 
In general, the expansion of any binomial (p � q)n con-
sists of a series of n � 1 terms. In the preceding example, 
n � 5; so there are 5 � 1 � 6 terms: p5, 5p4q, 10p3q2, 10p2q3,
5pq4, and q5. To write out the terms, first figure out their 
exponents. The exponent of p in the first term always begins 
with the power to which the binomial is raised, or n. In our 
example, n equals 5, so our first term is p5. The exponent of 
p decreases by one in each successive term; so the exponent 
of p is 4 in the second term (p4), 3 in the third term (p3), and 
so forth. The exponent of q is 0 (no q) in the first term and 
increases by 1 in each successive term, increasing from 0 to 
5 in our example.

Next, determine the coefficient of each term. The coeffi-
cient of the first term is always 1; so, in our example, the first 
term is 1p5, or just p5. The coefficient of the second term is 
always the same as the power to which the binomial is raised; 
in our example, this coefficient is 5 and the term is 5p4q. For 
the coefficient of the third term, look back at the preceding 
term; multiply the coefficient of the preceding term (5 in 
our example) by the exponent of p in that term (4) and then 
divide by the number of that term (second term, or 2). So 
the coefficient of the third term in our example is (5 � 4)/2
� 20/2 � 10 and the term is 10p3q2. Follow this procedure 
for each successive term.

Another way to determine the probability of any 
 particular combination of events isn to use the following 
 formula:

P
n

s t
p qs t=

!

! !

where P equals the overall probability of event X with prob-
ability p occurring s times and event Y with probability q
occurring t times. For our albinism example, event X would 
be the occurrence of a child with albinism (1/4) and event Y 
would be the occurrence of a child with normal pigmenta-
tion (3/4); s would equal the number of children with albi-

3.9 Albinism in human beings is usually inherited as a recessive 

trait. [Richard Dranitzke/SS/Photo Researchers.]
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nism (2) and t would equal the number of children with 
normal pigmentation (3). The ! symbol stands for factorial, 
and it means the product of all the integers from n to 1. In 
this example, n � 5; so n! � 5 � 4 � 3 � 2 � 1. Applying 
this formula to obtain the probability of two out of five chil-
dren having albinism, we obtain:
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This value is the same as that obtained with the binomial 
expansion. TRY PROBLEMS 23, 24, AND 25

The Testcross
A useful tool for analyzing genetic crosses is the testcross, in 
which one individual of unknown genotype is crossed with 
another individual with a homozygous recessive genotype 
for the trait in question. Figure 3.7 illustrates a testcross (in 
this case, it is also a backcross). A testcross tests, or reveals, 
the genotype of the first individual.

Suppose you were given a tall pea plant with no infor-
mation about its parents. Because tallness is a dominant 
trait in peas, your plant could be either homozygous (TT)
or heterozygous (Tt), but you would not know which. You 
could determine its genotype by performing a testcross. If 
the plant were homozygous (TT), a testcross would produce 
all tall progeny (TT � tt n all Tt); if the plant were het-
erozygous (Tt), half of the progeny would be tall and half 
would be short (Tt � tt n 1/2 Tt and 1/2 tt). When a testcross 
is performed, any recessive allele in the unknown genotype 
is expressed in the progeny, because it will be paired with 
a recessive allele from the homozygous recessive parent. 

TRY PROBLEMS 17 AND 19

often symbolized by one or more letters and a plus sign (�). 
The letter or letters chosen are usually based on the mutant 
(unusual) phenotype. For example, the recessive allele for 
yellow eyes in the Oriental fruit fly is represented by ye,
whereas the allele for wild-type eye color is represented by 
ye�. At times, the letters for the wild-type allele are dropped 
and the allele is represented simply by a plus sign. In another 
way of distinguishing alleles, the first letter is lowercase if 
the mutant phenotype is recessive and it is uppercase if the 
mutant phenotype is dominant: for example, narrow leaflet 
(ln) in soybeans is recessive to broad leaflet (Ln). Superscripts 
and subscripts are sometimes added to distinguish between 
genes: Lfr1 and Lfr2 represent dominant mutant alleles at 
different loci that produce lacerate leaf margins in opium 
poppies; ElR represents an allele in goats that restricts the 
length of the ears.

A slash may be used to distinguish alleles present in an 
individual genotype. For example, the genotype of a goat that 
is heterozygous for restricted ears might be written El�/ElR

or simply �/ElR. If genotypes at more than one locus are 
presented together, a space separates the genotypes. For 
example, a goat heterozygous for a pair of alleles that produc-
es restricted ears and heterozygous for another pair of alleles 
that produces goiter can be designated by El�/ElR G/g. 

CONCEPTS
The binomial expansion can be used to determine the probability 

of a particular set of events. A testcross is a cross between an 

individual with an unknown genotype and one with a homozy-

gous recessive genotype. The outcome of the testcross can reveal 

the unknown genotype. 

CONNECTING CONCEPTS

Ratios in Simple Crosses
Now that we have had some experience with genetic crosses, let’s 

review the ratios that appear in the progeny of simple crosses, in 

which a single locus is under consideration and one of the alleles is 

dominant over the other. Understanding these ratios and the paren-

tal genotypes that produce them will allow you to work simple 

genetic crosses quickly, without resorting to the Punnett square. 

Later, we will use these ratios to work more-complicated crosses 

entailing several loci.

There are only three phenotypic ratios to understand (Table

3.3). The 3 : 1 ratio arises in a simple genetic cross when both of the 

Genetic Symbols
As we have seen, genetic crosses are usually depicted with 
the use of symbols to designate the different alleles. Low-
ercase letters are traditionally used to designate recessive 
alleles, and uppercase letters are for dominant alleles. Two 
or three letters may be used for a single allele: the recessive 
allele for heart-shaped leaves in cucumbers is designated hl,
and the recessive allele for abnormal sperm-head shape in 
mice is designated azh.

The common allele for a character—called the wild 
type because it is the allele usually found in the wild—is 

Table 3.3  Phenotypic ratios for simple 
genetic crosses (crosses for a 
single locus) with dominance

Phenotypic Genotypes Genotypes
Ratio of Parents of Progeny

3 : 1 Aa � Aa 3/4 A_ : 1/4 aa

1 : 1 Aa � aa 1/2 Aa : 1/2 aa

Uniform progeny AA � AA All AA

aa � aa All aa

AA � aa All Aa

AA � Aa All A_

Note: A line in a genotype, such as A_ , indicates that any allele is possible.



56 Chapter 3

another homozygous variety with seeds that were wrinkled 
and green. When he crossed the two varieties, the seeds of all 
the F1 progeny were round and yellow. He then self-fertilized 
the F1 and obtained the following progeny in the F2 : 315 
round, yellow seeds; 101 wrinkled, yellow seeds; 108 round, 
green seeds; and 32 wrinkled, green seeds. Mendel recog-
nized that these traits appeared approximately in a 9 : 3 : 3 : 1 
ratio; that is, 9/16 of the progeny were round and yellow, 3/16

were wrinkled and yellow, 3/16 were round and green, and 1/16

were wrinkled and green.

The Principle of Independent Assortment
Mendel carried out a number of dihybrid crosses for pairs of 
characteristics and always obtained a 9 : 3 : 3 : 1 ratio in the 
F2. This ratio makes perfect sense in regard to segregation 
and dominance if we add a third principle, which Mendel 
recognized in his dihybrid crosses: the principle of inde-
pendent assortment (Mendel’s second law). This principle 
states that alleles at different loci separate independently of 
one another (see Table 3.2).

A common mistake is to think that the principle of seg-
regation and the principle of independent assortment refer 
to two different processes. The principle of independent 
assortment is really an extension of the principle of segrega-
tion. The principle of segregation states that the two alleles 
of a locus separate when gametes are formed; the principle 
of independent assortment states that, when these two alleles 
separate, their separation is independent of the separation of 
alleles at other loci.

Let’s see how the principle of independent assortment 
explains the results that Mendel obtained in his dihybrid 
cross. Each plant possesses two alleles encoding each charac-
teristic, and so the parental plants must have had genotypes 
RR YY and rr yy (Figure 3.10a). The principle of segregation 
indicates that the alleles for each locus separate, and one 
allele for each locus passes to each gamete. The gametes pro-
duced by the round, yellow parent therefore contain alleles 
RY, whereas the gametes produced by the wrinkled, green 
parent contain alleles ry. These two types of gametes unite 
to produce the F1, all with genotype Rr Yy. Because round is 
dominant over wrinkled and yellow is dominant over green, 
the phenotype of the F1 will be round and yellow. 

When Mendel self-fertilized the F1 plants to produce 
the F2, the alleles for each locus separated, with one allele 
going into each gamete. This event is where the principle of 
independent assortment becomes important. Each pair of 
alleles can separate in two ways: (1) R separates with Y, and 
r separates with y, to produce gametes RY and ry or (2) R
separates with y, and r separates with Y, to produce gametes 
Ry and rY. The principle of independent assortment tells us 
that the alleles at each locus separate independently; thus, 
both kinds of separation occur equally and all four type of 
gametes (RY, ry, Ry, and rY) are produced in equal propor-
tions (Figure 3.10b). When these four types of gametes are 
combined to produce the F2 generation, the progeny con-

parents are heterozygous for a dominant trait (Aa � Aa). The sec-

ond phenotypic ratio is the 1 : 1 ratio, which results from the mating 

of a homozygous parent and a heterozygous parent. The homozy-

gous parent in this cross must carry two recessive alleles (Aa � aa)

to obtain a 1 : 1 ratio, because a cross between a homozygous 

dominant parent and a heterozygous parent (AA � Aa) produces 

offspring displaying only the dominant trait.

The third phenotypic ratio is not really a ratio: all the off-

spring have the same phenotype (uniform progeny). Several com-

binations of parents can produce this outcome (see Table 3.3). A 

cross between any two homozygous parents—either between two 

of the same homozygotes (AA � AA and aa � aa) or between two 

different homozygotes (AA � aa)—produces progeny all having 

the same phenotype. Progeny of a single phenotype also can 

result from a cross between a homozygous dominant parent and a 

heterozygote (AA � Aa).

If we are interested in the ratios of genotypes instead of phe-

notypes, there are only three outcomes to remember (Table 3.4):

the 1 : 2 : 1 ratio, produced by a cross between two heterozygotes; 

the 1 : 1 ratio, produced by a cross between a heterozygote and a 

homozygote; and the uniform progeny produced by a cross 

between two homozygotes. These simple phenotypic and geno-

typic ratios and the parental genotypes that produce them provide 

the key to understanding crosses for a single locus and, as you will 

see in the next section, for multiple loci.

Table 3.4  Genotypic ratios for simple 
genetic crosses (crosses for a 
single locus)

Genotypic Genotypes Genotypes
Ratio of Parents of Progeny

1 : 2 : 1 Aa � Aa 1/4 AA : 1/2 Aa : 1/4 aa

1 : 1 Aa � aa 1/2 Aa : 1/2 aa

Aa � AA 1/2 Aa : 1/2 AA

Uniform progeny AA � AA All AA

  aa � aa All aa

AA � aa All Aa

3.3 Dihybrid Crosses Reveal the 
Principle of Independent Assortment
We will now extend Mendel’s principle of segregation to 
more-complex crosses entailing alleles at multiple loci. Under-
standing the nature of these crosses will require an additional 
principle, the principle of independent assortment.

Dihybrid Crosses
In addition to his work on monohybrid crosses, Mendel 
crossed varieties of peas that differed in two characteris-
tics—a dihybrid cross. For example, he had one homozy-
gous variety of pea with seeds that were round and yellow; 



57Basic Principles of Heredity

sist of 9/16 round and yellow, 3/16 wrinkled and yellow, 3/16

round and green, and 1/16 wrinkled and green, resulting in a 
9 : 3 : 3 : 1 phenotypic ratio (Figure 3.10c).

Relating the Principle of Independent 
Assortment to Meiosis
An important qualification of the principle of indepen-
dent assortment is that it applies to characters encoded by 
loci located on different chromosomes because, like the 
principle of segregation, it is based wholly on the behav-
ior of chromosomes in meiosis. Each pair of homologous 
chromosomes separates independently of all other pairs in 
anaphase I of meiosis (see Figure 2.17); so genes located 
on different pairs of homologs will assort independently. 
Genes that happen to be located on the same chromosome 
will travel together during anaphase I of meiosis and will 
arrive at the same destination—within the same gamete 
(unless crossing over takes place). Genes located on the same 
chromosome therefore do not assort independently (unless 
they are located sufficiently far apart that crossing over takes 
place every meiotic division, as will be discussed fully in 
Chapter 7). 

F1 generation

�

Round, yellow
seeds

P generation

F2 generation

Wrinkled, green
seeds

Gametes

Gametes

RY ry

RR YY

Round, yellow
seeds

Rr Yy

rr yy

Fertilization

Self–fertilization

RR YY Rr Yy RR Yy Rr YY

Rr Yy rr yy rr Yy

RR Yy Rr yy Rr Yy

Rr YY rr Yy Rr Yy rr YY

Rr yy

RR yy

ryRY Ry rY

RY

RY

ry

rY

ry Ry

Ry

rY

(a)

(b)

(c)

Results

Question: Do alleles encoding different traits 
separate independently?

Experiment

Methods

Phenotypic ratio
9 round, yellow �� 3 round, green ��

3 wrinkled, yellow �� 1 wrinkled, green

Conclusion: The allele encoding color separated
independently of the allele encoding seed shape,
producing a 9 �� 3 �� 3 �� 1 ratio in the F2 progeny.

3.10 Mendel’s dihybrid crosses revealed the principle of 

independent assortment.

CONCEPTS
The principle of independent assortment states that genes encod-

ing different characteristics separate independently of one anoth-

er when gametes are formed, owing to the independent separa-

tion of homologous pairs of chromosomes in meiosis. Genes 

located close together on the same chromosome do not, however, 

assort independently.

✔ CONCEPT CHECK 6

How are the principles of segregation and independent assortment 

related and how are they different?

Applying Probability and the Branch Diagram 
to Dihybrid Crosses
When the genes at two loci separate independently, a dihy-
brid cross can be understood as two monohybrid crosses. 
Let’s examine Mendel’s dihybrid cross (Rr Yy � Rr Yy) by 
considering each characteristic separately (Figure 3.11a). 
If we consider only the shape of the seeds, the cross was 
Rr � Rr, which yields a 3 : 1 phenotypic ratio (3/4 round and 
1/4 wrinkled progeny, see Table 3.3). Next consider the other 
characteristic, the color of the seed. The cross was Yy � Yy,
which produces a 3 : 1 phenotypic ratio (3/4 yellow and 1/4
green progeny). 

We can now combine these monohybrid ratios by using 
the multiplication rule to obtain the proportion of progeny 
with different combinations of seed shape and color. The 
proportion of progeny with round and yellow seeds is 3/4
(the probability of round) � 3/4 (the probability of yel-
low) � 9/16. The proportion of progeny with round and 

www.whfreeman.com/pierce4e�
Set up your own 
crosses and explore 

Mendel’s principles of heredity in Animation 3.1.
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green seeds is 3/4 � 1/4 � 3/16; the proportion of progeny 
with wrinkled and yellow seeds is 1/4 � 3/4 � 3/16; and the 
proportion of progeny with wrinkled and green seeds is 
1/4 � 1/4 � 1/16.

Branch diagrams are a convenient way of organizing all 
the combinations of characteristics (Figure 3.11b). In the 
first column, list the proportions of the phenotypes for one 
character (here, 3/4 round and 1/4 wrinkled). In the second 
column, list the proportions of the phenotypes for the sec-
ond character (3/4 yellow and 1/4 green) twice, next to each 
of the phenotypes in the first column: put 3/4 yellow and 1/4
green next to the round phenotype and again next to the 
wrinkled phenotype. Draw lines between the phenotypes in 
the first column and each of the phenotypes in the second 

column. Now follow each branch of the diagram, multiply-
ing the probabilities for each trait along that branch. One 
branch leads from round to yellow, yielding round and 
yellow progeny. Another branch leads from round to green, 
yielding round and green progeny, and so forth. We calculate 
the probability of progeny with a particular combination 
of traits by using the multiplication rule: the probability 
of round (3/4) and yellow (3/4) seeds is 3/4 � 3/4 � 9/16. The 
advantage of the branch diagram is that it helps keep track 
of all the potential combinations of traits that may appear 
in the progeny. It can be used to determine phenotypic or 
genotypic ratios for any number of characteristics.

Using probability is much faster than using the Punnett 
square for crosses that include multiple loci. Genotypic and phe-
notypic ratios can be quickly worked out by combining, with the 
multiplication rule, the simple ratios in Tables 3.3 and 3.4. The 
probability method is particularly efficient if we need the prob-
ability of only a particular phenotype or genotype among the 
progeny of a cross. Suppose we needed to know the probability 
of obtaining the genotype Rr yy in the F2 of the dihybrid cross 
in Figure 3.10. The probability of obtaining the Rr genotype in a 
cross of Rr � Rr is 1/2 and that of obtaining yy progeny in a cross 
of Yy � Yy is 1/4 (see Table 3.4). Using the multiplication rule, we 
find the probability of Rr yy to be 1/2 � 1/4 � 1/8.

To illustrate the advantage of the probability method, 
consider the cross Aa Bb cc Dd Ee � Aa Bb Cc dd Ee. Suppose 
we wanted to know the probability of obtaining offspring 
with the genotype aa bb cc dd ee. If we used a Punnett square 
to determine this probability, we might be working on the 
solution for months. However, we can quickly figure the 
probability of obtaining this one genotype by breaking this 
cross into a series of single-locus crosses:

 Progeny cross Genotype Probability

 Aa � Aa aa 1/4
 Bb � Bb bb 1/4
 cc � Cc cc 1/2
 Dd � dd dd 1/2
 Ee � Ee ee 1/4

The probability of an offspring from this cross having 
genotype aa bb cc dd ee is now easily obtained by using the 
multiplication rule: 1/4 � 1/4 � 1/2 � 1/2 � 1/4 � 1/256. This 
calculation assumes that genes at these five loci all assort 
independently. 

�

Rr Yy

Round, yellow

Rr Yy

Round, yellow

Expected
proportions for
both characters

3/4 R_
Round

1/4 rr
Wrinkled

3/4 Y_
Yellow

R_ Y_ 
3/4 � 3/4 = 9/16
Round, yellow

R_ yy 
3/4 � 1/4 = 3/16
Round, green

1/4 yy
Green

3/4 Y_
Yellow

1/4 yy
Green

rr Y_
1/4 � 3/4 = 3/16
Wrinkled, yellow

rr yy
1/4 � 1/4 = 1/16
Wrinkled, green

Expected
proportions for

second character
(color)

3/4 Y_
Yellow

1/4 yy
Green

Expected
proportions for
first character

(shape)

�Rr Rr

3/4 R_
Round

1/4 rr 
Wrinkled

 � Rr Yy Rr Yy

Cross Cross

(b)

(a)

1 The dihybrid cross is broken
into two monohybrid crosses…

2 …and the probability
of each character
is determined.

3 The individual characters and the associated probabilities
are then combined by using the branch method.

�Yy Yy

3.11 A branch diagram can be used to determine the 

phenotypes and expected proportions of offspring from a 

dihybrid cross (Rr Yy � Rr Yy).

CONCEPTS
A cross including several characteristics can be worked by break-

ing the cross down into single-locus crosses and using the multi-

plication rule to determine the proportions of combinations of 

characteristics (provided that the genes assort independently).
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The Dihybrid Testcross
Let’s practice using the branch diagram by determining the 
types and proportions of phenotypes in a dihybrid testcross 
between the round and yellow F1 plants (Rr Yy) obtained 
by Mendel in his dihybrid cross and the wrinkled and 
green plants (rr yy), as depicted in Figure 3.12. Break the 
cross down into a series of single-locus crosses. The cross 
Rr � rr yields 1/2 round (Rr) progeny and 1/2 wrinkled (rr)
progeny. The cross Yy � yy yields 1/2 yellow (Yy) progeny 
and 1/2 green (yy) progeny. Using the multiplication rule, 
we find the proportion of round and yellow progeny to be 
1/2 (the probability of round) � 1/2 (the probability of yel-
low) � 1/4. Four combinations of traits with the following 
proportions appear in the offspring: 1/4 Rr Yy, round yellow; 
1/4 Rr yy, round green; 1/4 rr Yy, wrinkled yellow; and 1/4
rr yy, wrinkled green. 

Cross Cross

Rr Yy

Round, yellow

rr yy

Wrinkled, green

Expected
proportions for
both characters

1/2 Rr
Round

1/2 rr
Wrinkled

1/2 Yy
Yellow

Rr Yy 
1/2 � 1/2 = 1/4
Round, yellow

Rr yy 
1/2 � 1/2 = 1/4
Round, green

1/2 yy
Green

1/2 Yy
Yellow

1/2 yy
Green

rr Yy
1/2 � 1/2 = 1/4
Wrinkled, yellow

rr yy
1/2 � 1/2 = 1/4
Wrinkled, green

Expected
proportions for

second character

�Yy

1/2 Yy
Yellow
1/2 yy
Green

yy

Expected
proportions for
first character

�Rr rr

1/2 Rr
Round
1/2 rr
Wrinkled

�Rr Yy rr yy

�

3.12 A branch diagram can be used to determine the 

phenotypes and expected proportions of offspring from a 

dihybrid testcross (Rr Yy � rr yy).

Worked Problem

Not only are the principles of segregation and independent 
assortment important because they explain how heredity 
works, but they also provide the means for predicting the 
outcome of genetic crosses. This predictive power has made 
genetics a powerful tool in agriculture and other fields, and 
the ability to apply the principles of heredity is an important 
skill for all students of genetics. Practice with genetic prob-
lems is essential for mastering the basic principles of hered-
ity; no amount of reading and memorization can substitute 
for the experience gained by deriving solutions to specific 
problems in genetics.

Students may have difficulty with genetics problems 
when they are unsure of where to begin or how to organize 
the problem and plan a solution. In genetics, every prob-
lem is different, and so no common series of steps can be 
applied to all genetics problems. Logic and common sense 
must be used to analyze a problem and arrive at a solution. 
Nevertheless, certain steps can facilitate the process, and 
solving the following problem will serve to illustrate these 
steps.

In mice, black coat color (B) is dominant over brown 
(b), and a solid pattern (S) is dominant over white spotted 
(s). Color and spotting are controlled by genes that assort 
independently. A homozygous black, spotted mouse is 
crossed with a homozygous brown, solid mouse. All the F1

mice are black and solid. A testcross is then carried out by 
mating the F1 mice with brown, spotted mice.

a. Give the genotypes of the parents and the F1 mice.

b. Give the genotypes and phenotypes, along with their 
expected ratios, of the progeny expected from the 
testcross.

• Solution
Step 1. Determine the questions to be answered. What 
question or questions is the problem asking? Is it asking for 
genotypes, genotypic ratios, or phenotypic ratios? This 
problem asks you to provide the genotypes of the parents and 
the F1, the expected genotypes and phenotypes of the progeny 
of the testcross, and their expected proportions.

Step 2. Write down the basic information given in the 
problem. This problem provides important information 
about the dominance relations of the characters and 
about the mice being crossed. Black is dominant over 
brown, and solid is dominant over white spotted. 
Furthermore, the genes for the two characters assort inde-
pendently. In this problem, symbols are provided for the 
different alleles (B for black, b for brown, S for solid, and
s for spotted); had these symbols not been provided, you 
would need to choose symbols to represent these alleles. 
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It is useful to record these symbols at the beginning of the 
solution:

 B—black S—solid
 b—brown s—white spotted

Next, write out the crosses given in the problem.

P Homozygous � Homozygous
black, spotted brown,solid

F1 Black, solid

Testcross Black, solid � Brown, spotted

¡

Step 3. Write down any genetic information that can be 
determined from the phenotypes alone. From the phe-
notypes and the statement that they are homozygous, you 
know that the P-generation mice must be BB ss and bb SS.

The F1 mice are black and solid, both dominant traits, and 
so the F1 mice must possess at least one black allele (B)
and one solid allele (S). At this point, you cannot be cer-
tain about the other alleles; so represent the genotype of 
the F1 as B_ S_, where _ means that any allele is possible.
The brown, spotted mice in the testcross must be bb ss,
because both brown and spotted are recessive traits that 
will be expressed only if two recessive alleles are present. 
Record these genotypes on the crosses that you wrote out 
in step 2:

P

F1 Black, solid
B_ S_

Testcross Black, solid � Brown, spotted
B_ S_ bb ss

¡

Homozygous � Homozygous
black, spotted brown, solid

BB ss bb SS 

Step 4. Break the problem down into smaller parts.
First, determine the genotype of the F1. After this geno-
type has been determined, you can predict the results of 
the testcross and determine the genotypes and pheno-
types of the progeny from the testcross. Second, because 
this cross includes two independently assorting loci, it 
can be conveniently broken down into two single-locus 
crosses: one for coat color and the other for spotting. 
Third, use a branch diagram to determine the proportion 
of progeny of the testcross with different combinations of 
the two traits.

Step 5. Work the different parts of the problem. Start by 
determining the genotype of the F1 progeny. Mendel’s fi rst 
law indicates that the two alleles at a locus separate, one 

going into each gamete. Thus, the gametes produced by the 
black, spotted parent contain B s and the gametes produced 
by the brown, solid parent contain b S, which combine to 
produce F1 progeny with the genotype Bb Ss:

P

Gametes Bs bS

F1 Bb Ss

5

¡ ¡

Homozygous � Homozygous
black, spotted brown, solid

BB ss bb SS 

Use the F1 genotype to work the testcross (Bb Ss � bb ss), 
breaking it into two single-locus crosses. First, consider the 
cross for coat color: Bb � bb. Any cross between a heterozy-
gote and a homozygous recessive genotype produces a 1 : 1 
phenotypic ratio of progeny (see Table 3.3):

Bb � bb
    

¡

 1/2 Bb black
 1/2 bb brown

Next, do the cross for spotting: Ss � ss. This cross also 
is between a heterozygote and a homozygous recessive 
genotype and will produce 1/2 solid (Ss) and 1/2 spotted (ss)
progeny (see Table 3.3).

Ss � ss
    

¡

 1/2 Ss solid
 1/2 ss spotted

Finally, determine the proportions of progeny with com-
binations of these characters by using the branch diagram.

Ss solid Bb Ss black, solid

Bb black � �

ss spotted Bb ss black, spotted

� �

Ss solid bb Ss brown, solid

bb brown � �

ss spotted bb ss brown, spotted

� � 1�4
1�2

1�2

1�2

1�4
1�2

1�2
1�2

1�2

1�4
1�2

1�2

1�2

1�4
1�2

1�2
1�2

1�2

¡¡

¡¡
¡

¡

¡

¡

Step 6. Check all work. As a last step, reread the problem, 
checking to see if your answers are consistent with the infor-
mation provided. You have used the genotypes BB ss and 
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3.4 Observed Ratios of Progeny 
May Deviate from Expected 
Ratios by Chance
When two individual organisms of known genotype are 
crossed, we expect certain ratios of genotypes and pheno-
types in the progeny; these expected ratios are based on the 
Mendelian principles of segregation, independent assort-
ment, and dominance. The ratios of genotypes and pheno-
types actually observed among the progeny, however, may 
deviate from these expectations.

For example, in German cockroaches, brown body color 
(Y) is dominant over yellow body color (y). If we cross a 
brown, heterozygous cockroach (Yy) with a yellow cock-
roach (yy), we expect a 1 : 1 ratio of brown (Yy) and yellow 
(yy) progeny. Among 40 progeny, we therefore expect to see 
20 brown and 20 yellow offspring. However, the observed 
numbers might deviate from these expected values; we 
might in fact see 22 brown and 18 yellow progeny.

Chance plays a critical role in genetic crosses, just as it 
does in flipping a coin. When you flip a coin, you expect a 
1 : 1 ratio—1/2 heads and 1/2 tails. If you flip a coin 1000 
times, the proportion of heads and tails obtained will prob-
ably be very close to that expected 1 : 1 ratio. However, if you 
flipped the coin 10 times, the ratio of heads to tails might be 
quite different from 1 : 1. You could easily get 6 heads and 4 
tails, or 3 heads and 7 tails, just by chance. You might even 
get 10 heads and 0 tails. The same thing happens in genetic 
crosses. We may expect 20 brown and 20 yellow cockroaches, 
but 22 brown and 18 yellow progeny could arise as a result 
of chance.

The Goodness-of-Fit Chi-Square Test
If you expected a 1 : 1 ratio of brown and yellow cock-
roaches but the cross produced 22 brown and 18 yellow, 
you probably wouldn’t be too surprised even though it 
wasn’t a perfect 1 : 1 ratio. In this case, it seems reasonable 
to assume that chance produced the deviation between the 

expected and the observed results. But, if you observed 25 
brown and 15 yellow, would the ratio still be 1 : 1? Some-
thing other than chance might have caused the deviation. 
Perhaps the inheritance of this character is more compli-
cated than was assumed or perhaps some of the yellow 
progeny died before they were counted. Clearly, we need 
some means of evaluating how likely it is that chance is 
responsible for the deviation between the observed and the 
expected numbers.

To evaluate the role of chance in producing deviations 
between observed and expected values, a statistical test 
called the goodness-of-fit chi-square test is used. This test 
provides information about how well observed values fit 
expected values. Before we learn how to calculate the chi 
square, it is important to understand what this test does and 
does not indicate about a genetic cross.

The chi-square test cannot tell us whether a genetic 
cross has been correctly carried out, whether the results 
are correct, or whether we have chosen the correct genetic 
explanation for the results. What it does indicate is the 
probability that the difference between the observed and the 
expected values is due to chance. In other words, it indicates 
the likelihood that chance alone could produce the deviation 
between the expected and the observed values.

If we expected 20 brown and 20 yellow progeny from 
a genetic cross, the chi-square test gives the probability that 
we might observe 25 brown and 15 yellow progeny sim-
ply owing to chance deviations from the expected 20 : 20
ratio. This hypothesis, that chance alone is responsible for 
any deviations between observed and expected values, is 
sometimes called the null hypothesis. When the probability 
calculated from the chi-square test is high, we assume that 
chance alone produced the difference (the null hypothesis is 
true). When the probability is low, we assume that some fac-
tor other than chance—some significant factor—produced 
the deviation (the null hypothesis is false).

To use the goodness-of-fit chi-square test, we first deter-
mine the expected results. The chi-square test must always 
be applied to numbers of progeny, not to proportions or 
percentages. Let’s consider a locus for coat color in domestic 
cats, for which black color (B) is dominant over gray (b). 
If we crossed two heterozygous black cats (Bb � Bb), we 
would expect a 3 : 1 ratio of black and gray kittens. A series 
of such crosses yields a total of 50 kittens—30 black and 20 
gray. These numbers are our observed values. We can obtain 
the expected numbers by multiplying the expected propor-
tions by the total number of observed progeny. In this case, 
the expected number of black kittens is 3/4 � 50 � 37.5 and 
the expected number of gray kittens is 1/4 � 50 � 12.5. The 
chi-square (�2) value is calculated by using the following 
formula:

�2
2

=
−

�
( )observed expected

expected

bb SS in the P generation. Do these genotypes encode the 
phenotypes given in the problem? Are the F1 progeny pheno-
types consistent with the genotypes that you assigned? The 
answers are consistent with the information.

 Now that we have stepped through a genetics 
problem together, try your hand at Problem 30 at the 
end of the chapter.
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where � means the sum. We calculate the sum of all the 
squared differences between observed and expected and 
divide by the expected values. To calculate the chi-square 
value for our black and gray kittens, we first subtract the 
number of expected black kittens from the number of 
observed black kittens (30 � 37.5 � �7.5) and square this 
value: �7.52 � 56.25. We then divide this result by the 
expected number of black kittens, 56.25/37.5 � 1.5. We 
repeat the calculations on the number of expected gray 
kittens: (20 � 12.5)2/12.5 � 4.5. To obtain the overall chi-
square value, we sum the (observed - expected)2/expected 
values: 1.5 � 4.5 � 6.0.

The next step is to determine the probability associated 
with this calculated chi-square value, which is the probabil-
ity that the deviation between the observed and the expected 
results could be due to chance. This step requires us to com-
pare the calculated chi-square value (6.0) with theoretical 
values that have the same degrees of freedom in a chi-square 
table. The degrees of freedom represent the number of ways 
in which the expected classes are free to vary. For a good-
ness-of-fit chi-square test, the degrees of freedom are equal 
to n � 1, where n is the number of different expected phe-
notypes. In our example, there are two expected phenotypes 

(black and gray); so n � 2, and the degree of freedom equals 
2 � 1 � 1.

Now that we have our calculated chi-square value and 
have figured out the associated degrees of freedom, we are 
ready to obtain the probability from a chi-square table 
(Table 3.5). The degrees of freedom are given in the left-
hand column of the table and the probabilities are given at 
the top; within the body of the table are chi-square values 
associated with these probabilities. First, find the row for 
the appropriate degrees of freedom; for our example with 
1 degree of freedom, it is the first row of the table. Find 
where our calculated chi-square value (6.0) lies among the 
theoretical values in this row. The theoretical chi-square 
values increase from left to right and the probabilities 
decrease from left to right. Our chi-square value of 6.0 
falls between the value of 5.024, associated with a prob-
ability of 0.025, and the value of 6.635, associated with a 
probability of 0.01. 

Thus, the probability associated with our chi-square 
value is less than 0.025 and greater than 0.01. So there is less 
than a 2.5% probability that the deviation that we observed 
between the expected and the observed numbers of black 
and gray kittens could be due to chance.

Table 3.5 Critical values of the �2 distribution

 P

df 0.995 0.975   0.9    0.5    0.1  0.05* 0.025   0.01  0.005

 1 0.000 0.000 0.016 0.455 2.706 3.841 5.024 6.635 7.879

 2 0.010 0.051 0.211 1.386 4.605 5.991 7.378 9.210 10.597

 3 0.072 0.216 0.584 2.366 6.251 7.815 9.348 11.345 12.838

 4 0.207 0.484 1.064 3.357 7.779 9.488 11.143 13.277 14.860

 5 0.412 0.831 1.610 4.351 9.236 11.070 12.832 15.086 16.750

 6 0.676 1.237 2.204 5.348 10.645 12.592 14.449 16.812 18.548

 7 0.989 1.690 2.833 6.346 12.017 14.067 16.013 18.475 20.278

 8 1.344 2.180 3.490 7.344 13.362 15.507 17.535 20.090 21.955

 9 1.735 2.700 4.168 8.343 14.684 16.919 19.023 21.666 23.589

10 2.156 3.247 4.865 9.342 15.987 18.307 20.483 23.209 25.188

11 2.603 3.816 5.578 10.341 17.275 19.675 21.920 24.725 26.757

12 3.074 4.404 6.304 11.340 18.549 21.026 23.337 26.217 28.300

13 3.565 5.009 7.042 12.340 19.812 22.362 24.736 27.688 29.819

14 4.075 5.629 7.790 13.339 21.064 23.685 26.119 29.141 31.319

15 4.601 6.262 8.547 14.339 22.307 24.996 27.488 30.578 32.801

P, probability; df, degrees of freedom.

*Most scientists assume that, when P < 0.05, a significant difference exists between the observed and the 

expected values in a chi-square test.
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CONCEPTS
Differences between observed and expected ratios can arise by 

chance. The goodness-of-fit chi-square test can be used to evalu-

ate whether deviations between observed and expected num-

bers are likely to be due to chance or to some other significant 

factor.

✔ CONCEPT CHECK 7

A chi-square test comparing observed and expected progeny is car-

ried out, and the probability associated with the calculated chi-square 

value is 0.72. What does this probability represent?

a. Probability that the correct results were obtained

b. Probability of obtaining the observed numbers

c. Probability that the difference between observed and expected 

numbers is significant

d. Probability that the difference between observed and expected 

numbers could be due to chance

Cross

Self-fertilize

+

+

+

P generation

F1 generation

F2 generation
105 purple

45 white

Purple
flowers

Purple
flowers

White
flowers

Phenotype Observed Expected

Purple

White

Total 150

45 1/4�150 =  37.5

105 3/4�150 = 112.5

�2 =
(O – E)2

E
�

�2 =
(105–112.5)2

112.5
(45–37.5)2

37.5

�2 =
56.25
112.5

56.25
37.5

�2 = 0.5 1.5  =  2.0

�

Degrees of freedom = n –1
Degrees of freedom = 2–1=1

Probability (from Table 3.5)

0.1 < P < 0.5

A plant with purple flowers
is crossed with a plant with
white flowers, and the F1 are
self-fertilized…

…to produce 105 F2
progeny with purple flowers
and 45 with white flowers
(an apparent 3:1 ratio).

The probability associated with
the calculated chi-square value
is between 0.10 and 0.50,
indicating a high probability
that the difference between
observed and expected values 
is due to chance. 

…and then the chi-square
value is calculated.

The expected values are
obtained by multiplying
the expected proportion
by the total,…

Conclusion: No significant difference
between observed and expected values.

3.13 A chi-square test is used to determine the probability that 

the difference between observed and expected values is due to 

chance.

Most scientists use the 0.05 probability level as their 
cutoff value: if the probability of chance being responsible 
for the deviation is greater than or equal to 0.05, they accept 
that chance may be responsible for the deviation between 
the observed and the expected values. When the probability 
is less than 0.05, scientists assume that chance is not respon-
sible and a significant difference exists. The expression sig-
nificant difference means that some factor other than chance 
is responsible for the observed values being different from 
the expected values. In regard to the kittens, perhaps one of 
the genotypes had a greater mortality rate before the prog-
eny were counted or perhaps other genetic factors skewed 
the observed ratios.

In choosing 0.05 as the cutoff value, scientists have 
agreed to assume that chance is responsible for the devia-
tions between observed and expected values unless there 
is strong evidence to the contrary. Bear in mind that, 
even if we obtain a probability of, say, 0.01, there is still 
a 1% probability that the deviation between the observed 
and the expected numbers is due to nothing more than 
chance. Calculation of the chi-square value is illustrated 
in Figure 3.13. TRY PROBLEM 35

Gregor Mendel discovered the principles of heredity. His 
success can be attributed to his choice of the pea plant as an 
experimental organism, the use of characters with a few easily 
distinguishable phenotypes, his experimental approach, the 
use of mathematics to interpret his results, and careful 
attention to detail.

Genes are inherited factors that determine a characteristic. 
Alternate forms of a gene are called alleles. The alleles are 
located at a specific place, a locus, on a chromosome, and the 

•

•

set of genes that an individual organism possesses is its 
genotype. Phenotype is the manifestation or appearance of a 
characteristic and may refer to a physical, biochemical, or 
behavioral characteristic. Only the genotype—not the 
phenotype—is inherited.

The principle of segregation states that an individual 
organism possesses two alleles encoding a trait and that these 
two alleles separate in equal proportions when gametes are 
formed.

•

CONCEPTS SUMMARY
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