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A B S T R A C T   

Rice is a crop of primary importance in regions, where two-thirds of the world’s starving population reside. 
Recent climate change projections anticipate spatial shift in precipitation pattern and increase of flooding events 
that may have negative effects on rice yield and economic returns. Efforts for increasing rice production in areas 
prone to submergence stress will directly benefit hundreds of millions of people dependent on rice as their staple 
food. This necessitates an objective review of physiological mechanisms and management practices, which could 
sustain crop productivity under partial or complete submergence. Submergence usually reduces photosynthesis 
rate that results in quick depletion of the carbohydrate reserve and ultimately the plant dies. Varieties intro-
gressed with SUB1A QTL maintains higher activity of alcohol dehydrogenase and low rate of chlorophyll 
degradation and thus exhibits better survival under submergence. Prolonged submergence results in a significant 
reduction in soil redox potential and the heavy influx of flood water promotes runoff, volatilization and deep 
percolation which leads to loss of sizeable amount of nutrients and ultimately causes nutrient deficiency in soil. 
Thus, to ensure optimum yield, it is essential to alter the nutrient schedule when plant is subjected to submer-
gence stress. Agronomic management practices like seed priming, higher seed rates, alteration in crop geometry 
and other improved seeding methods enhance production efficiency by boosting germination, early growth and 
optimum partitioning of photosynthates to vegetative and reproductive parts. This review critically explores the 
complex problems faced by rice crop during submergence, physiological mechanisms that helps plant to cope up 
the submergence stress, as well as available cost-effective management strategies to arrest the yield decline.   

1. Introduction 

Submergence stress affects over 22 million ha rice area (Sarkar et al., 
2006) and cause an annual yield loss of over 600 million to 1billion US$ 
annually in Asian countries (Dey and Upadhaya, 1996; Herdt, 1991). 
This issue is likely to get aggravated, as the flood affected areas are 
anticipated to increase substantially in the era of global warming 
(Coumou and Rahmstorf, 2012; IPCC, 2007). 

Generally, two types of flooding affect rice, one is flash flooding 
(rapid rise of water levels with submergence of crop for 1–2 weeks) and 
another is stagnant flooding where water level exceeds 100 cm depth 
and remains stagnant at these depths for several weeks. The semi- 
aquatic nature of rice plant makes it capable of growing under water-
logged and/or submerged condition for a considerable period. This is 
possible due to elongation of submerged shoot organs at faster rates by 

developing aerenchyma, that allow sufficient internal transport of oxy-
gen to submerged plant parts from the re-emerged elongated shoot 
(Jackson and Ram, 2003; Magneschi and Perata, 2009). The process of 
energy generation and detoxification of fermented products through 
coleoptile elongation lead to survival under the conditions of low oxy-
gen (Miro et al., 2017). The germination and early seedling growth stage 
of rice has been found to be highly intolerant to submergence (Ismail 
et al., 2009; Angaji et al., 2010; Joshi et al., 2013). Apart from germi-
nation, submergence also brings many morphological and physiological 
changes in rice plant. During submergence, rice plant survives by 
elongation of leaf sheath and blade at seedling stage and internodes at 
vegetative growth stage (Haque, 1974). If the flooding duration exceeds 
2–3 weeks, even the submergence tolerant varieties try to expose their 
leaf tip above the water surface for ensuring survival (Sarkar and 
Bhattacharjee, 2011; Colmer et al., 2014). Since this elongation process 
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is an energy extensive process, which curtails the availability of energy 
required for post submergence plant growth, and thus it adversely af-
fects the post submergence survival (Singh et al., 2001; Das et al., 2005). 
The presence of turbid water or luxuriant algal growth on water surface 
hinders the light transmission through the floodwater, which results in 
decrease in photosynthesis (Setter et al., 1995; Bhaduri et al., 2020). The 
submerged plants maintains its metabolism by utilizing the reserve 
carbohydrate and due to slow photosynthesis rate the reserve is 
exhausted very soon and ultimately the plant dies (Sarkar and Panda, 
2009; Luo et al., 2014). The ability of a variety to tolerate submergence 
depends on the amount of carbohydrate present in plant parts (Emes 
et al., 1988; Chaturvedi et al., 1995; Mallik et al., 1995). The restricted 
shoot elongation in submergence-tolerant rice varieties helps to 
conserve carbohydrate reserves which is helpful in restarting the 
development process upon de-submergence (Ismail et al., 2009; Kawano 
et al., 2009). Thus, post flood availability of carbohydrate is important 
for recovery from submergence shock (Chaturvedi et al., 1996; Singh 
et al., 2001; Ram et al., 2002). Since, tolerant landrace seedlings have 
the ability to conserve about 30–50 % more non-structural carbohydrate 
(NSC) as compared to sensitive genotypes, hence their post flood re-
covery rate is faster (Chaturvedi et al., 1996; Sarkar, 1998). Three 
hormones namely ethylene, abscisic acid (ABA) and gibberellins (GA) 
are responsible for changes in internode elongation during flooding 
(Kende et al., 1998; Van Der Straeten et al., 2001; Vriezen et al., 2003). 
Due to enhanced synthesis and entrapment of ethylene under submerged 
conditions, the underwater leaf senescence is accelerated (Singh et al., 
2014). Presence of hydrophobic wax on rice leaves creates a gas film, 
which helps with respiration and photosynthesis under submergence. 
Leaf Gas Film (LGF) reduced in planta accumulation of ethylene due to 
its better dissipation during submergence, thereby delaying the process 
of ethylene induced leaf senescence under submergence (Chakraborty 
et al., 2020). 

Numerous novel agronomic approaches can be deployed to enhance 
rice tolerance for submergence like selection of suitable rice variety, 
higher seed rate, seed priming, optimum sowing depth, seedling age, 
wider spacing, pre & post nutrient/amendments application and appli-
cation of certain growth regulators (Munda et al., 2016; Bishoyi et al., 
2017). Anaerobic germination (AG) tolerant genotypes of rice could 
overcome the problem of crop establishment (under flooded/ sub-
merged condition) under direct seeded rice (DSR) conditions (Ismail 
et al., 2009; Miro et al., 2017; Chamara et al., 2018; Lal et al., 2018; 
Kumar et al., 2016a,b). Further, SUB1 introgressed varieties can tolerate 
10–18 days of complete submergence, thus submergence & AG intol-
erant lines can be considered ideal for submerged conditions (Lal et al., 
2018). Submergence causes poor rice seedling establishment, which can 
be compensated with optimum or higher seed rate in DSR (Sharma and 
Ghosh, 1998; Lal et al., 2018; Illangakoon et al., 2018) and higher 
seedlings m− 2 in transplanted rice (Reddy et al., 1990). Seed priming 
and seed coating materials also help to prolong viability of seeds under 
submergence (Ella et al., 2010; Serna-Saldivar, 2010; Mora et al., 2013; 
Chamara et al., 2018). In similar context, fresh and viable seeds were 
found to be more useful; as flooding decreases the activities of super-
oxide dismutase (SOD) & catalase, however, it increases lipid peroxi-
dation in older seeds (Ella et al., 2010). Since, older seedlings are taller, 
sturdier, and healthier with more mature tissues and high carbohydrate 
storage and hence are more tolerant to submergence and water-logging 
(Singh et al., 2005; Ram et al., 2009; Bhowmick et al., 2014; Gautam 
et al., 2017). Planting depth of more than 1 cm and beyond led to anoxic 
condition due to sharp decrease in redox potential whereas too much 
shallow sowing (0.5 cm) leads to floating of developing young seedlings 
above the water surface and ultimately leads to poor crop establishment 
(Vartapetian and Jackson, 1997; Magneschi and Perata, 2009; Miro and 
Ismail, 2013; Chamara et al., 2018). Wider spacing ensures higher un-
derwater radiation, which leads to higher photosynthesis and less 
senescence and thus it imparts higher post submergence recovery as 
compared to closer spacing (Bhaduri et al., 2020). 

Rice soils undergo many physical and chemical changes during 
submergence. Besides changes in soil properties, one of the most 
limiting environmental factor under submergence is the slow diffusion 
of important gases like oxygen and carbon dioxide (Armstrong, 1979). 
Similarly, there is a significant change in the redox potential, which 
varies from +400 mv (near the surface of a flooded soil), to − 300 mv (at 
about 1 cm sub-surface soil). Beyond this depth, a sharp decline of ox-
ygen creates highly anaerobic or anoxic condition that not only affects 
nutrient availability but also causes accumulation of some phytotoxic 
compounds (Armstrong and Drew, 2002; Pezeshki and De Laune, 2012). 
The change in nutrient dynamics (Kumar et al., 2019) under submerged 
condition makes it compulsory to alter the nutrient schedule so that the 
submerged plant can recover from the stress quickly and optimum yield 
can be ensured. Innovative nutrient management practices like appli-
cation of N (post-submergence) and basal P enhanced NSC content, 
survival percentage and reduced shoot elongation, which could increase 
plant survival and productivity under submergence (Gautam et al., 
2014; Htwe et al., 2019; Mamun et al., 2017). 

Considering the global significance of rice in safeguarding the global 
food as well as nutritional security, it is imperative to gather information 
on the agronomic and physiological responses of rice when exposed to 
submergence stress. In this review, we attempted to summarize the 
available research results on physiological mechanism of submergence 
tolerance and effectiveness of various management strategies for 
enhancing resilience to submergence stress. Thus, the present review 
will help in understanding the fundamental mechanism of submergence 
tolerance, new research insights of innovative management practices for 
mitigating submergence stress. 

2. Physiological mechanisms of submergence tolerance in rice 

Rice owing to its semi-aquatic nature deploys several physiological 
and biochemical mechanisms that enables it to adapt to different kinds 
of flooding stresses. Submergence tolerance being an intricate trait, is 
attributed to several physiological or agronomic characteristics. To cope 
up the oxygen shortage states (hypoxic or anoxic) arising due to sub-
mergence, plant deploys stage specific tolerance/adaptation 
mechanism. 

2.1. Germination stage submergence tolerance mechanisms (metabolic 
and escape strategy) 

Due to the reduced production costs and mechanization in the last 
decade, farmers are adopting wet and dry direct seeding in rain-fed and 
irrigated fields in Asia (Kumar and Ladha, 2011). However, because of 
heavy rainfall, uneven soil leveling, or poor drainage, these areas 
experience flooded conditions post sowing. When rice plants encounter 
this flooding stress during germination, the plant tissues are exposed to 
oxygen deficiency. As a response to the flooding, metabolic and mo-
lecular responses are reprogrammed to withstand anaerobic conditions 
(Dwivedi et al., 2018). Rice plant has evolved various survival strategies 
(Metabolic adaptation and/or escape) under hypoxia (low O2) or anoxia 
(zero O2) (Lee et al., 2009; Ma et al., 2020; Loreti and Striker, 2020) for 
tolerance to submergence (Fig. 1). 

Due to relatively low amount of ATP produced under anaerobic 
conditions, anaerobic germination (AG) is a highly challenging process. 
Tolerant rice genotypes display fast germination and coleoptile elon-
gation, anaerobic metabolism is enhanced by efficient starch-to sugars 
hydrolysis, and rapid emergence above the water surface (Lee et al., 
2009). It has been observed that tolerant and susceptible rice genotypes 
show differences in their physiology and gene expression. Early (12–24 
hours after seed imbibition) increase in the activity of key 
starch-hydrolyzing enzymes such as α-amylase, alcohol dehydrogenase1 
(ADH1) and pyruvate decarboxylase (PDC) followed by late rise in 
ethylene accumulation are together closely linked with improved AG 
(Ismail et al., 2009). Important aspects contributing to rice AG abilities 
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when compared to other cereals are its soluble carbohydrate content, 
higher fermentation rates, and efficient energy use (Mustroph et al., 
2006). Rice has ability to reprogramme its physiology and growth in 
response to O2 deficiency, which has been confirmed through omic data 
linked with different metabolic and signaling routes. Transcript profiling 
of rice coleoptiles germinated under anaerobic conditions points to-
wards a significant modulation of the transcripts responsible for car-
bohydrate assimilation and metabolism (Hsu and Tung, 2017). These 
modulations comprising of up-regulation of the enzymatic steps essen-
tial for pyruvate metabolism, up-regulation of genes encoding enzymes 
involved in cell expansion, and ethylene response factors, and a dra-
matic down regulation of gene encoding enzymes needing oxygen for 
their activity, suggests presence of a strategy that conserves energy 
required for upregulation of genes (Lasanthi-Kudahettige et al., 2007). 

CIPK15 (Calcineurin B-like interacting protein kinase 15), is 
involved in sugar sensing during anaerobic germination besides pro-
moting rice coleoptile elongation under low oxygen (Lee et al., 2009). 
Under complete submergence, lower ADH activity along with reduced 

cell elongation and cell division during coleoptile growth was observed 
in ADH1-deficient rice mutants due to lower ATP levels (Takahashi 
et al., 2011). Under low O2 conditions, sugar metabolism in both 
endosperm and embryo via glycolysis to ethanol fermentation needs 
higher ADH1 activity (Takahashi et al., 2014). Kretzschmar et al. (2015) 
identified OsTPP7, a trehalose-6-phosphate phosphatase gene, that 
modulates T6P/sucrose ratios which regulates the carbohydrates parti-
tioning between the growing embryo and coleoptile tissues under 
anaerobic germination. Auxin regulated cell elongation is mainly 
credited for rapid coleoptile elongation under submergence (Kawai and 
Uchimiya, 2000). During germination under anoxic conditions, gene 
expression studies have revealed upregulation of expansin genes 
(Lasanthi-Kudahettige et al., 2007; Huang et al., 2000; Cho and Kende, 
1997). In AG, high carbohydrate storage plays a key role i.e., varieties 
with AG potential have higher reserves of carbohydrates in the form of 
starch and sugars that supports germination under anoxic conditions 
(Raymond et al., 1985). To support rapid coleoptile elongation, root 
development is delayed thereby aiding in allocating the resources 

Fig. 1. Mechanisms regulating germination stage submergence tolerance in rice. CIPK15-SnRK1A-MYBS1 (CIPK15- Calcineurin B-Like (CBL) Protein-Interacting Ser/ 
Thr PROTEIN KINASE; SnRK1A- Sucrose nonfermenting 1-Related protein Kinase 1A; MYBS1- Myeloblastosis (MYB) Sucrose 1) pathway induces or suppresses 
α-amylase expression. 
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towards coleoptile development. As coleoptiles approach the water 
surface, root growth is initiated due to higher O2 levels (Ismail et al., 
2009), indicating that root development is facilitated due to O2 acqui-
sition post coleoptile rapidly reaching the water surface. Different 
mechanisms regulating germination stage submergence tolerance in rice 
have been summarized in Fig. 1. Nevertheless, the thorough under-
standing on mechanism of tolerance to AG demands more scientific in-
sights; hence, research efforts are in progress globally to reveal the 
underlying mechanism. 

2.2. Vegetative stage submergence tolerance mechanisms (quiescence 
strategy) 

In lowland flood prone areas, rice plants are more regularly sub-
merged for approximately 1–2 weeks. Most rice cultivars, when sub-
merged due to flash floods, elongate their leaves towards water surface 
for oxygen. However, due to large amount of energy requirement for 
shoot elongation, such cultivars cannot survive after water level recedes, 
leading to loss of yield. The underlying physiological mechanisms of rice 
plants tolerant to vegetative stage submergence due to flash floods are 
different from that adopted for anaerobic germination and deep-water 
flooding. Some varieties of Indica spp. survive submergence due to 
flash floods by adopting a unique “quiescent strategy” i.e., they suppress 
their growth to save valuable carbohydrate reserves until the water re-
treats, and later use this conserved energy for recovery and regeneration 
once floodwater recedes. In this adaptive strategy, the submerged stem 
undergoes minimal or no elongation (Sarkar, 1998; Almeida et al., 2003; 
Panda and Sarkar, 2014). A typical indigenous landrace, FR13A, possess 
the major QTL Submergence 1 (SUB1) that contributes for major 
phenotypic variation (about 70 %) of the flash flood submergence 
tolerance (Xu and Mackill, 1996; Toojinda et al., 2003) (Table 1). The 
relevant region responsible for this significant phenotypic variation was 
narrowed down by biparental linkage mapping which comprises a group 
of transcription factor genes of AP2/ERF (APETALA2/Ethylene Response 
Factor) super family, SUB1A, SUB1B, and SUB1C (Xu and Mackill, 
1996). Out of these three genes, SUB1A is the gene that imparts toler-
ance to flash flood submergence (Xu et al., 2006). SUB1A, delays 
dark-induced senescence through the conservation of carbohydrate re-
serves and chlorophyll in the photosynthetic tissue (Fukao et al., 2012). 
The submergence tolerant allele SUB1A-1, at a site essential for its 

protein function has a Single Nucleotide Polymorphism (SNP) respon-
sible for an amino acid substitution (Singh and Sinha, 2016; Xu et al., 
2006). Since introgression of the SUB1A-1 allele does not have serious 
effect on grain yield and quality while providing flash flood tolerance, 
hence, it has been extensively used to develop varieties tolerant to flash 
floods in several countries of Asia (Bailey-Serres et al., 2010). 

2.2.1. Quiescence Strategy of flash flood tolerance 
Many researchers have investigated the molecular mechanism 

behind the SUB1A mediated quiescent strategy in rice (Voesenek and 
Bailey-Serres, 2015; Bailey-Serres and Voesenek, 2010) (Fig. 2). SUB1A 
belongs to group VII of the AP2/ERF (APETALA2/ethylene-responsive 
element binding factors) super family (ERFVII), whose members are 
highly conserved submergence–up-regulated genes in angiosperms 
(Reynoso et al., 2019). Introgression or over expression of SUB1A-1 
conferred significant submergence tolerance in the susceptible cultivars 
viz., Swarna and IR64 lines that lack SUB1A-1 or have the SUB1A-2 
allele, but, due to a point mutation within the coding region SUB1A-2 
allele is non-functional (Xu et al., 2006; Fukao et al., 2006; Singh et al., 
2009; Singh and Sinha, 2016). Transcriptomic approach was employed 
to elucidate the mechanism of SUB1A-1-mediated tolerance. This anal-
ysis revealed that the downstream genes related to hormone responses, 
anaerobic respiration and antioxidant systems were regulated by SUB1A 
(Jung et al., 2010; Locke et al., 2018). Under submergence, due to sur-
rounding water, endogenous ethylene in rice is entrapped, which in turn 
leads to its accumulation in rice tissue (Sasidharan and Voesenek, 2015). 
Higher endogenous levels of ethylene results in reduction of ABA levels 
by inducing an abscisic acid (ABA) degradative enzyme (Saika et al., 
2007), which results in enhanced responsiveness to GA and subsequent 
shoot elongation (Kende et al., 1998). Ethylene induces expression of 
SUB1A-1 (Xu et al., 2006), however, SUB1A-1 restricts both ethylene 
production and GA responsiveness, that suppresses elongation of shoot 
in flash flood–tolerant rice under submergence (Fukao and 
Bailey-Serres, 2008; Fukao et al., 2006). GA responsiveness is reduced 
due to SUB1A-1 induced accumulation of GA repressor protein such as 
Slender Rice1 (SLR1) (Fukao and Bailey-Serres, 2008). SUB1A is also 
known to differentially regulate brassinosteroid (BR) pathway to 
mediate submergence tolerance response in rice. SUB1A-1 induces 
transcriptional regulation of BR biosynthetic genes resulting in 
increased brassinosteroid levels after submergence, which in turn 

Table 1 
Identified traits, QTLs and genes that improve submergence tolerance in rice.  

Trait QTL Gene and annotated protein Chromosome Tolerance mechanism Reference 

Flash flood tolerance qSUB1 
(Sub1) 

SUB1A 
AP2/ERF family 
transcription factor 

9 Reduced elongation growth and carbohydrate consumption during 
submergence 

Xu and Mackill, 
1996; 
Xu et al., 2006 

Internode elongation 

qTIL12 
SNORKEL1 (SK1), SK2 
AP2/ERF family 
transcription factor 

12 
Rapid elongation of internodes (20− 25 cm/day) that can reach upto a 
length of several meters in deep water to escape submergence 

Hattori et al., 
2007; 
Hattori et al., 
2009 

qTIL1 SD1 (OsGA20ox2) 
Gibberellin 20-oxidase 

1 SD1 protein directs increased synthesis of gibberellins, largely GA4, 
which promotes internode elongation 

Hattori et al., 
2007; 
Kuroha et al., 
2018 

Underwater 
Photosynthesis LGF1 

OsHSD1 
C30 primary alcohol 
synthesis 

11 
Leaf gas films facilitates gas exchange, supply of carbohydrates to roots 
for survival, regeneration and growth 

Pedersen et al., 
2009; 
Winkel et al., 
2013; 
Kurokawa et al., 
2018 

Anaerobic 
germination 

qAG-9-2 
OsTPP7 
Trehalose-6-phosphate 
phosphatase 

9 
OsTPP7 modulates T6P/sucrose ratios which regulate the partitioning 
of carbohydrate reserves to the actively growing embryo and coleoptile 
tissues under anaerobic germination 

Angaji et al., 
2010; 
Kretzschmar 
et al., 2015 

Speedy recovery post 
submergence 

Not 
mapped 

AGPPase (ADP glucose 
pyrophosphorylase) Not assigned 

AGPPase facilitates greater accumulation of non-structural 
carbohydrates (NSC) which is available for speedy recovery post 
submergence 

Panda and 
Sarkar 2012; 
Singh et al., 
2014  
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induces GA catabolic enzyme OsGA2ox7 that suppresses GA levels 
(Schmitz et al., 2013). Recently, MAPK signal transduction network has 
been implicated in the functioning of SUB1A-1 protein. It is involved in 
imparting submergence tolerance by facilitating the phosphorylation of 
the SUB1A-1 during submergence, and directly regulating its expression 
through a MPK3-SUB1A1 positive regulatory loop (Singh and Sinha, 
2016). Das et al. (2005) reported that levels of non-structural carbohy-
drates (NSC) maintained during post submergence, was the pooled 
result of both the amount used during submergence and initial level 
before submergence. A high quantity of NSC pre and post submergence 
is very important for continuous supply of energy for active metabolism 
during and post-submergence recovery respectively (Das et al., 2005, 
2009; Sarkar and Panda, 2009). Tissue specific expression studies using 
SUB1A-1 promoter driven GUS reporter gene revealed the specific role 
of SUB1A-1 in suppressing leaf elongation under submergence stress in 
the tolerant plants (Singh et al., 2010). To further understand the 
complex mechanisms of SUB1A-1 mediated quiescent strategy of sub-
mergence tolerance, further study of ERFVII downstream genes is 
needed. 

2.2.2. Role of leaf gas film (LGF) 
Besides SUB1A-1 mediated submergence tolerance through forcing 

quiescence on rice seedlings, leaf gas film on hydrophobic cuticles 
during submergence was known to be an adaptive mechanism to 
enhance plant gas exchange under water (Colmer and Pedersen, 2008; 
Pedersen et al., 2009). Due to hydrophobic surface, rice leaves can 
maintain a thin layer of gas on the surface, which allows maintaining 
respiration and photosynthesis under submergence. Leaf surface consists 
of different structures such as the papillae, and epicuticular waxes that 
are the major contributors to leaf hydrophobicity (Kotula et al., 2009; 
Ensikat et al., 2011). Leaf hydrophobicity in rice is mainly due to 
epicuticular wax platelets on the leaf surface (Koch and Barthlott, 2009; 
Herzog et al., 2018). Kurokawa et al. (2018) identified Leaf Gas Film 1 
(LGF1) as the gene responsible for leaf gas films in rice. LGF1 regulates 
synthesis of C30 primary alcohol, which is essential for leaf hydropho-
bicity and gas films on submerged leaves (Fig. 2). Underwater photo-
synthesis increased by 8.2 fold due to leaf gas film, contributing to 
submergence tolerance (Kurokawa et al., 2018). A recent study reported 
that the presence of SUB1 in the genetic background influenced LGF 
thickness and it was also shown that LGF resulted in reduced in planta 
accumulation of ethylene due to its better dissipation, thereby delaying 

the process of ethylene induced leaf senescence under submergence 
(Chakraborty et al., 2020). 

2.3. Vegetative stage submergence tolerance mechanisms (escape 
strategy) 

During the rainy season, periodic flooding is a regular phenomenon 
in South and Southeast Asia resulting in stagnant water upto 2 m deep 
for several weeks. To adapt to this kind of periodic flooding, deep-water 
rice has developed an escape strategy (Catling, 1992). Mechanism of 
tolerance to deepwater stagnation in rice differs from flash floods 
induced submergence tolerance. Deepwater rice in shallow water grows 
normally but with rising water levels during heavy floods, it increases its 
height. To escape anoxic or hypoxic conditions, deepwater rice cultivars 
are capable of increasing their height by about 25 cm d–1 so as to 
maintain contact with the air and light for photosynthesis (Bailey-Serres 
and Voesenek, 2008; Vergara et al., 1976). In contrast to the submer-
gence tolerant rice varieties that enter into a quiescence mode by 
conserving storage carbohydrates, in deep water flooding, tolerant rice 
varieties use stored carbohydrates as the source of energy for the elon-
gation of stem. Physiological and transcriptome analysis have revealed 
the role of plant hormones viz ethylene, abscisic acid (ABA), gibberellic 
acid (GA), and jasmonic acid (JA) in the deepwater response (Minami 
et al., 2018; Kende et al., 1998). Studies involving genetic manipulation 
and hormone application have assisted in unravelling the physiology of 
the deepwater flooding response in rice. Ethylene biosynthesis is acti-
vated in rice plant upon submergence, which in turn controls gibberellic 
acid and ABA synthesis. Internode elongation is positively regulated by 
Ethylene and GAs, while JA and ABA are believed to act antagonistically 
to GA-induced internode elongation. It is the ratio of gibberellic acid/-
ABA that determines whether a plant follows the strategy of quiescence 
or stem elongation (Das et al., 2005; Sauter, 2000; Kende et al., 1998). In 
deepwater rice, increased ethylene concentration in stems triggers 
synthesis of gibberellic acid and subsequent internode elongation 
(Hattori et al., 2009 and Métraux and Kende, 1983), but in non deep-
water rice varieties, no such internode elongation is induced by 
ethylene. Under hypoxic conditions, 1-Aminoacyclopropane 1-carbox-
ylate synthase (ACS) activity was induced, which is a key enzyme in 
ethylene biosynthesis pathway (Zarembinski and Theologis, 1997; 
Cohen and Kende, 1987). Role of ACC synthase (ACS) in the rapid stem 
elongation of deepwater rice have been confirmed by expression studies 

Fig. 2. Mechanisms regulating vegetative stage flash flood submergence tolerance in rice. SLR1 = SLENDER RICE1; SLRL1-SLR-LIKE1, both are negative regulators 
of GA signaling. LGF1= Leaf Gas Film 1. 

A. Kumar et al.                                                                                                                                                                                                                                  



Environmental and Experimental Botany 186 (2021) 104448

6

on OsACS1 and OsACS5 genes (Van der Straeten, 2001; Zarembinsky 
and Theologis, 1997). Expansins, proteins known to mediate long-term 
extension of isolated cell walls, contribute to the growth of the major 
vegetative organs of rice and ultimately to survival of deepwater rice 
under submergence (Cho and Kende, 1997). Rapid internode elongation 
was also attributed to GA induced expression of α-expansin and 
β-expansin genes (Lee and Kende, 2001, 2002; Fig. 3). 

Three major and two minor QTLs have been identified to be associ-
ated with the deepwater response through genetic linkage analysis 
studies (Nemoto et al., 2004; Tang et al., 2005; Hattori et al., 2008; 
Kawano et al., 2008; Nagai et al., 2012). Hattori et al. (2009) identified 
SNORKEL1/SNORKEL2 (SK1/2) genes that initiates deepwater response 
by encoding ERFs involved in ethylene signaling. SK1/2 are absent in 
other cultivated rice but, found only in deepwater rice varieties (Zhao 
et al., 2018; Hattori et al., 2009). The SK1/2 regulated downstream 
factors are yet to be known. SUB1 locus, also consists of a cluster of three 
OsERFVIIs that are related to SK1/2 but works differently (Xu et al., 
2006). 

ERFVIIs SNORKEL1 and 2 transcriptionally regulates the escape 
strategy in certain deepwater cultivars while in other varieties, tran-
scription factor OsEIL1 regulates gibberellin production (Hattori et al., 
2009; Kuroha et al., 2018). In each of these above cases, the deepwater 
rice plant adapts to flooding by stimulating internode elongation to 
grow above the water level, thereby preventing the onset of hypoxia in 
cells due to gas exchange with the atmosphere. Recently, Kuroha et al. 
(2018) through a combination of genome-wide association (GWAS) and 
linkage mapping studies identified SEMIDWARF1 (SD1) (Table 1) as a 
gene that is responsible for promoting internode elongation in response 
to submergence. SD1 encodes OsGA20ox2 (O. sativa gibberellin 20 ox-
idase 2), that mainly catalyzes the biosynthesis of gibberellin, leading to 
the increased levels of bioactive GA4, which is known to promote greater 
internode elongation than that of GA1. In deep water rice-specific hap-
lotypes, upon submergence higher levels of SD1 transcripts were accu-
mulated which was independent of SK1/2 but found to work in synergy 
with SK1/2 in promoting internode elongation (Kuroha et al., 2018). 
Based on their study, Kuroha et al. (2018) proposed “ethyl-
ene-gibberellin relay” a model of signaling mechanism for internodal 
elongation under submergence in deepwater rice. Gomez-Ariza et al. 
(2019) recently reported the transcription factor Premature Internode 
Elongation 1 (PINE1) that increases GA responsiveness and subsequent 
internodal elongation. Further understanding of the GA-mediated 
deepwater response needs to be generated through discovery of QTLs 

for GA responsiveness and their relationships with PINE1 in deepwater 
rice. 

3. Management approaches for enhancing resilience towards 
submergence 

Being a semi-aquatic plant, rice elongates its submerged shoot organs 
at faster rate and develops aerenchyma, which facilitates sufficient in-
ternal transport of oxygen to submerged parts (Magneschi and Perata, 
2009), and consequently alleviates stress caused by anaerobic condition 
(Setter et al., 1997; Jackson and Ram, 2003). Submergence/ flooding 
conditions in rice field during seed germination can be a result of many 
factors like early, high and erratic rainfall, uneven field leveling, or 
deliberately flooding (after sowing) for weed suppression (Magneschi 
and Perata, 2009; Kumar et al., 2016a,b; Roy et al., 2011). Although rice 
shows tolerance to anaerobic environment during seed germination, 
however, this anoxic rice germination is only limited to its coleoptile 
emergence (rather root development) and partial growth, which is not 
enough to tolerate this stress (Magneschi and Perata, 2009). During 
submergence, rice seed germination undergoes alcoholic fermentation 
that supplies energy for normal respiration under limited oxygen. This 
energy facilitates rice seed germination that leads to rapid elongation of 
coleoptiles, and as a result the shoots comes out of the water surface and 
thus overcomes this anaerobic stress (Ismail et al., 2009). When cole-
optile emerges above water surface, the scavenging of reactive oxygen 
species (ROS) begins (Ismail et al., 2009, 2012; Kirk et al., 2014; Colmer 
et al., 2014). These processes lead to survival under the hypoxic or 
anoxic conditions (Miro et al., 2017). 

As puddle-transplanted rice is water, energy and labor intensive 
system, hence it is gradually being replaced by direct seeded rice (DSR) 
as the demand for water, energy and labour for DSR is comparatively 
less (Kumar et al., 2019, 2017). However, the success of DSR is chal-
lenging in rainfed areas, as flooding and/or water-logging in these areas 
is a common phenomenon which cause complete crop establishment 
failure (Ismail et al., 2009, 2012; Angaji et al., 2010). Although, under 
anaerobic condition rice seeds germinate by virtue of coleoptiles elon-
gation, but is unable to develop roots and leaves (Ella and Setter, 1999). 
Varieties capable to germinate even in flooded soil condition could be 
beneficial for DSR system in rainfed and irrigated systems, where early 
flooding can check weed growth (Ismail et al., 2012, 2013). Anaerobic 
germination tolerant genotypes of rice could overcome the problem of 
crop establishment (under flooded/ submerged condition) associated in 

Fig. 3. Mechanisms regulating vegetative stage submergence tolerance (several weeks to months long) in rice.  
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DSR. These genotypes break starch into simple sugars at a faster rate and 
have faster germination and coleoptiles elongation (Miro et al., 2017). 

3.1. Agronomic management for submergence tolerance 

3.1.1. Selection of suitable variety 
It was early 1940s and 1950s that the landraces with submergence 

tolerance were first reported (Fig. 4). The accessions FR43B and FR13A 
from Odisha, India and Goda Heenati, Thavalu, and Kurkaruppan from 
Sri Lanka were known for complete submergence tolerance (Mackill, 
1996; Vergara and Mazaredo, 1975). In 1940s, FR13A was selected from 
the local Indica cultivar Dhallaputia from Odisha, India and its seeds 
were collected and preserved at IRRI seed bank during early 1960s and 
systematically screened for submergence tolerance in the 1970s. FR13A 
stood out as exceptionally tolerant to submergence stress with nearly 
100 % of 10-day-old seedlings surviving 7 days of complete submer-
gence (HilleRisLambers and Vergara, 1982; Vergara and Mazaredo, 
1975). Breeding for submergence tolerance began in late 1970s and by 
early 1980s, high yielding varieties with submergence tolerance were 
developed, but their agronomic performance was poor. A complete 
timeline of research accomplishments in the last seven decades that led 
to understanding of submergence tolerance and release of mega- rice 
varieties with submergence tolerance in Asia is presented in Fig. 4. 

Anaerobic germination tolerant rice genotypes can be a viable op-
tion, where early flooding or submergence prevails (Chamara et al., 
2018), as these anaerobic condition not only suppresses weeds but also 
reduces rice seed germination. Under flooded conditions, AG tolerant 
genotypes need an optimum temperature (24–26 ◦C) for seed germina-
tion and seedling survival, as alpha-amylase activity decreases both in 
low and high water temperatures. These genotypes were found to be less 
affected by low O2 and light transmission in water (Ella et al., 2010). 
Under submergence condition some of the AG-tolerant varieties like 
Ciherang AG1+Sub1 and IR 64 + AG1 were found to perform better in 
terms of seedlings/m2 and stand establishment as compared to local 
check variety in Sri Lanka (Illangakoon et al., 2018). Researchers 
introgressed submergence tolerance SUB1A QTL in submergence intol-
erant rice cultivars to impart submergence tolerance in them (Fukao 
et al., 2006; Septiningsih et al., 2009). These rice cultivars showed better 
survival under submergence (Panda and Sarkar, 2012) as it maintained 

higher activities of alcohol dehydrogenase and low rate of chlorophyll 
degradation in comparison with non SUB1A cultivar (Sarkar et al., 
2014). To harness the benefits of SUB1A QTL, many submergence 
tolerant varieties like ‘Swarna SUB1’ were bred through marker-assisted 
back crossing (Neeraja et al., 2007). Later, many mega varieties tolerant 
to submergence, viz. Samba Mahsuri SUB1, IR64 SUB1, CR1009 SUB1, 
BR11 SUB1 and Thadokkam1 SUB1 were developed (Singh et al., 2009). 
Swarna SUB1 was then released in Bangladesh, India and Indonesia; in 
Bangladesh, BR11 SUB1 was released; and in Philippines and Indonesia, 
IR64 SUB1 was released (Sarkar, 2012). Despite having this tolerance, 
these varieties cannot be used in direct seeding of rice because of their 
sensitivity towards limited oxygen during germination. Imparting AG 
tolerance to these high-yielding varieties will enhance yield under 
submerged condition and ultimately will lead to increased profitability 
of rice farmers (Lal et al., 2018). DSR encounter yield loss due to severe 
weed competition, where it can reach upto 100 % yield loss in absence of 
control measures (Rao et al., 2007; Mahajan and Chauhan, 2013). It was 
found that the AG lines showed higher germination percentage and gave 
better performance under varying flooding stress. Varieties like IR64-AG 
NILs (IR64-AG131 and IR64-AG132 AG tolerant but submergence 
intolerant) were observed to be have 121 % and 98 % higher germina-
tion compared to IR64-Sub1 (submergence tolerant; AG intolerant), and 
IR64 (submergence & AG intolerant) respectively (Lal et al., 2018). 
Besides anerobic germination, plant types with moderate stem elonga-
tion, owing to their slower rates of metabolism are considered suitable 
for flood-prone lowland and submerged conditions (Setter and Laureles, 
1996; Sharma, 1999). 

With the help of modern molecular marker technologies, it is now 
possible to map and clone the genes for submergence tolerance. Several 
traits linked with flood tolerance in rice have been well studied and 
QTLs have also been identified for these traits (Fig. 5). Among various 
types of flooding stress, due to its unique stem elongation ability, 
deepwater rice captured the attentions of rice geneticists first. For the 
evaluation of deepwater traits, total internode length (Vergara and 
Mazaredo (1978) and position of the lowest elongated internode 
(Inouye, 1983) were proposed. Xu and Mackill (1996) mapped a major 
QTL SUB1 on rice chromosome 9 for vegetative stage submergence 
tolerance in FR13A, which was responsible for nearly 70 % of the 
phenotypic variation (Table 1). Different QTL mapping studies for 

Fig. 4. Timeline of research accomplishments in the last Seven decades that led to understanding of submergence tolerance and release of mega-rice varieties with 
submergence tolerance in Asia. 
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submergence tolerance traits are summarized in Fig. 5. 

3.1.2. Seed rate 
Direct seeded crop before the onset of monsoon has better submer-

gence tolerance as compared to recently transplanted crop (Sharma, 
1995a). Submergence generally leads to poor rice seedling establish-
ment, which can be compensated with use of optimum or higher seed 
rate in DSR (Sharma and Ghosh, 1998; Lal et al., 2018) and seedlings 
area− 1 in transplanted rice (Reddy et al., 1990) as depicted in Table 2, 
Fig. 6. Illangakoon (2018) emphasized that high seeding rate (100 kg 
ha-1 as compared to 60 kg ha-1 under DSR) and introducing better 
AG-tolerant varieties can attribute to better crop establishments (13–15 
% increment) as well as panicle densities (15 %) and consequently give 
higher grain yield under submerged condition. These findings support 
the findings of Lal et al. (2018), where increasing seed rate significantly 
increased emergence and seedling establishment under DSR, and highest 
increment was with use of AG tolerant genotypes. Higher seed rates, 
improved seeding methods and nutrient application enhance tolerant 
genotype production efficiency by boosting germination, early growth 
and partitioning of photosynthates to different plant parts (Ashraf and 

Foolad, 2005). The practice of high density seeding (under DSR), 
vigorous seedling (under TPR) and basal N fertilization (Sharma and 
Ghosh, 1999) has the potential to enhance yield of lowland rice prone to 
submergence. However, higher seed rate may lead to intense interplant 
competition, and under excessive flooding the situation becomes worst 
due to loss of plant dry matter. This loss can be compensated with higher 
rate of N fertilization (Reddy et al., 1986), as increase in N-fertilizer dose 
along with higher seed rate suppress tiller mortality and increase panicle 
weight (Sharma and Ghosh, 1998). During nursery raising, lower seed-
ing density resulted into better root length and dry matter accumulation 
in seedlings that consequently gave higher yield (Bhowmik et al., 2014). 
This may be due to better seedling vigour (Kumar et al., 2012) as it is 
directly linked to tillering ability and grain yield of rice (Tekrony and 
Egli, 1991). Plant geometry and density also affects yield of hybrid rice 
exposed to submergence condition. Islam et al. (2013) reported higher 
yield under plant geometry of 20 × 10 cm and one seedling hill-1 

(Table 3), whereas, more seedlings and less spacing create competition 
among plants. 

Fig. 5. A summary tree showing works of QTL mapping studies for submergence tolerance traits in rice. VSST = vegetative stage submergence tolerance; LGF = Leaf 
Gas Film; CE = coleoptile elongation; TIL = total internode length; AG = Anaerobic germination; LEI, = Lowest elongated internode; RIE = Rate of internode 
elongation; IE = Internode elongation; NEI = Number of elongated internodes. 
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3.1.3. Seed priming 
Seed priming is a regulated hydration process, wherein the seeds are 

soaked in water or any suitable solution and re-dried to its original state 
in such a way so that the germination related metabolic activities starts, 
but radical emergence does not initiate. It helps the seedling to perform 

better under adverse condition such as extreme temperature and excess 
moisture by triggering germination at rapid and uniform rate (Bradford, 
1986; Farooq et al., 2006a, 2019; Ella et al., 2010; Ismail et al., 2012; 
Javed et al., 2021; Mei et al., 2017). Hussain et al. (2016) reported a 
significant increase in seed developmental process, when rice seeds were 

Table 2 
Role of seed rate in enhancing grain yield under submergence stress.  

Submergence depth and duration Varieties Seed rate (kg 
ha− 1) 

Yield (t ha− 1) Location Reference 

5 cm (5− 21 days) IR64 
IR64-Sub1 
IR64-AG131 
IR64-AG132 

40 vs 60 1.84 vs 2.09 
(14 %↑) 
2.29 vs 2.49 
(9%↑) 
3.59 vs 3.71 
(3%↑) 
3.64 vs 3.80 
(4%↑) 

NRRI, Cuttack, 
Odisha, India 

Lal et al., 2018  

IR64 vs IR64 SUB1 
IR64 vs IR64-AG132 
IR64 vs IR64-SUB1 
IR64 vs IR64-AG132 

40 
40 
60 
60 

1.84 vs 2.29 
(24 %↑)1.84 vs 3.64(98 %↑)2.09 vs 
2.49(19 %↑)2.09 vs 3.80(82 
%↑) 

5 cm upto 21 days 
Bg 366 
CiherangAG1+SUB1 
IR 64 + AG1 

60 vs 100 

2.3 vs 4.5 
(95 %↑) 
2.0 vs 4.0 
(100 %↑)2.1 vs 2.8(33 
%↑) 

RRDI, Ibbagamuwa, Sri 
Lanka 

Illangakoon et al., 
2018 

Fluctuating depth (between 5–99 cm) Nalini 

22 vs 44* 
44 vs 88 
88 vs 132 
132 vs 176 

1.92 vs 2.28 
(19 %↑) 
2.28 vs 2.40 
(5 %↑) 
2.40 vs 2.71 
(13 %↑) 
2.71 vs 2.68 
(1%↓) 

NRRI, 
Cuttack, India 

Sharma and Ghosh, 
1998 

Natural submergence throughout the 
season Gayatri 88 vs 132 

2.93 vs 3.02 
(3%↑) 

NRRI, 
Cuttack, India 

Sharma and Ghosh, 
1999 

Natural submergence 
(twice- 40–50 cm depth for 6 days 
&30–40 cm depth for 4 days) 

Swarna Sub-1 25 vs 40 g/m2 

(Nursery) 
5.29 vs 4.86 
(8%↓) 

Rice Research Station, 
Chinsurah, WB 

Bhawmick et al., 
2014 

15− 20 cm continuous flooding S-201 

120 vs 240 
240 vs 480 
480 vs 840 
(seeds/m2) 

8.68 vs 9.5 
(9 %↑) 
9.5 vs 9.98 
(5 %↑) 
9.98 vs 10.58 
(6%↑) 

Colusa, California, US Miller et al., 1991  

* (1000 grain weight of variety Nalini =22 g; seeds m− 2 converted to kg ha-1-seed rate). ↑ = increase, ↓ = decrease. 

Fig. 6. Agronomic management strategies for maximizing yield under submergence stress.  
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exposed to with 60 μM selenium (chemical priming) and 100 mg L− 1 

salicylic acid (hormonal priming) for enhancing submergence tolerance 
in rice. Hydro-priming as a seed treatment was found to improve the 
survival of rice seeds by about 40 % as compared to non-primed seed by 
increasing the activity of α-amylase, soluble sugars synthesis and starch 
degradation (Illangakoon et al., 2016; Mulbah and Adjetey, 2017). 
Iron-coated primed rice seeds exhibit better seed germination qualities 
as compared to unprimed and non-iron coated rice seeds (Mori et al., 
2012). Hormone priming (salicylic acid at 150 ppm), significantly 
increased the tiller by 53 % over control (Kareem et al., 2013), whereas 
Osmotic priming (PEG at 40 %) significantly increased the number of 
productive tillers per hill by 82 % above control (Kareem et al., 2013). 
Use of 2% of Jamun (Syzygium cumini) leaf extract improved establish-
ment of seedling under flooded condition (Sarkar, 2012). Seed priming 
affects the concentration of soluble sugars and starch in germinating rice 
seeds (Ella et al., 2010) as well as activities of many enzymes involved in 
germination process like total amylase and alcohol dehydrogenase 
(Farooq et al., 2006b; Sarkar, 2012). Appropriate seed coating agents is 
also helpful in thickening the pericarp, as pericarp cells have many 
protective phenolic compounds (Serna-Saldivar, 2010; Mora et al., 
2013; Chamara et al., 2018; Afzal et al., 2020). 

3.1.4. Seed/seedling age 
When flooding or submergence is anticipated, then fresh and viable 

seeds should be used because flooding decreases survival percentage of 
old seeds due to decline in the concentration of antioxidant metabolites 
like superoxide dismutase (SOD) and catalase and increase in oxidative 
degradation of lipids (Ella et al., 2010). Aged seedlings has significant 
effect on crop in main field. After submergence, it affects crop survival, 
growth of crop stand, days to 50 % flowering and maturity, yield attri-
butes and consequently grain and straw yields (Mishra and Salokhe, 
2008; Himeda, 1994). Older seedlings (35–45 days) gave better per-
formance (Table 3) in submerged situations as compared to younger 
ones (Gautam et al., 2017; Bhowmick et al., 2014). Younger seedlings 
when exposed to submergence exhibited less survival rate, growth after 
recovery, allometric parameters, carbohydrate content, and photosyn-
thetic rate. Whereas, older seedlings were taller, sturdier, and healthier, 
had more mature tissues, greater dry biomass and carbohydrate storage 
at the time of transplanting, consequently, their tolence level was 
improved (Singh et al., 2005; Ram et al., 2009; Bhowmick et al., 2014; 
Gautam et al., 2017). 

3.1.5. Method and depth of sowing 
Drum seeding of AG tolerant varieties as compared to broadcasting 

in DSR system has been reported to give higher yield (Lal et al., 2018). 
Santhi et al. (1999) and Narasimman et al. (2000) also reported 

significantly higher number of panicles m− 2 and higher grain yield 
under drum seeding. 

Sowing depth exhibits significant effect on the rice seedling emer-
gence under flooding. Seed sowing at 2 cm depth was found to be more 
adversely affected in terms of crop establishment as compared to 1 cm or 
less (Chamara et al., 2018). In a flooded soil the redox potential near the 
soil surface is around +400 mv which decreases upto − 300 mv at 
around 1 cm soil depth, however, beyond this depth, a sharp decline of 
oxygen is observed, which creates highly anaerobic or anoxic condition. 
The decrease in redox potential beyond 1 cm depth affect nutrient dy-
namics as well as accumulation of some phytotoxic compounds (Pon-
namperuma, 1975; Armstrong and Drew, 2002; Pezeshki and De Laune, 
2012) which consequently cause poor crop establishment. 

Furthermore, a shallow sowing depth of 0.5 cm under flooded con-
ditions, resulted into weak vertical stand of plants, possibly because of 
exposure of the upper portion of developing seedlings, above the soil 
surface. Hence, the rice plant stand becomes vulnerable to lodging even 
with slower external wind forces (Chamara et al., 2018). Additionally, 
too much shallow sowing (0.5 cm) leads to development of floating 
young seedlings above the water surface, because the elongation of 
coleoptiles develops more porous aerenchyma, which gives buoyancy to 
the seedlings (Vartapetian and Jackson, 1997; Magneschi and Perata, 
2009; Miro and Ismail, 2013,) and this high buoyant force and lack of 
anchoring roots of seedlings leads to low crop establishment (Chamara 
et al., 2018). 

3.1.6. Spacing 
Wider spaced plants (row to row: 20 cm and plant to plant: 15 cm and 

more) showed more tolerance to submergence even under the 12 days of 
complete submergence. Compared to closer spacing, wider spacing led 
to higher underwater radiation penetration (thus higher photosynthesis 
and less senescence compared to closer spacing), higher initial non- 
structural carbohydrate (NSC) content, slower NSC depletion rate, and 
higher antioxidant enzyme for stress recovery (Bhaduri et al., 2020). The 
plant spacing and density for hybrid rice was optimized by Islam et al., 
2013, who reported the optimum geometry as 20 × 10 cm and density as 
one seedling hill− 1 for getting highest yield under submergence 
condition. 

3.2. Nutrient management for mitigating submergence stress 

The influx of water during submergence causes loss of significant 
amount of nutrients due to several losses like runoff, volatilization, and 
deep percolation which not only causes nutrient deficiency in soil but 
also adversely affects the crop growth. Generally, rice farmers are of the 
opinion that rice crops exposed to submergence may not give response to 

Table 3 
Role of crop geometry in enhancing grain yield under submergence stress.  

Submergence duration and depth variety Crop Geometry Grain yield (t 
ha− 1) 

Location References 

Natural submergence (twice- 40–50 cm depth for 6 days & 
30–40 cm depth for 4 days) 

Swarna Sub-1 Seedling age (days) 
30 vs 44 

4.92 vs 5.23 
(6%↑) 

Rice Research Station, 
Chinsurah, WB 

Bhawmick et al., 
2014 

5− 7 cm continuous flooding Koshihikari Seedling age (days) 
14 vs 21 

7.93 vs 7.66 
(3 %↑) 

Chiba, Japan Chapagain 
and Yamaji, 2010 

5− 7 cm continuous flooding Koshihikari Spacing (cm) 
30 × 30 cm vs 30 ×
18 cm 

8.01 vs 7.58 
(5 %↓) 

Chiba, Japan Chapagain 
and Yamaji, 2010 

10− 12 cm continuous standing water Aloran (hybrid 
variety) 

Spacing (cm) 
25 × 20 cm vs 20 ×
10 cm 

4.3 vs 7.5 
(74 %↑) 

BRAC, Bangladesh Islam et al., 2013 

10− 12 cm continuous 
standing water 

Aloran 
(hybrid variety) 

Seedling/hill 
1 vs 2 seedling 
1 vs 3 seedlings 
(Spacing-20 cm ×
15 cm) 

5.5 vs 6.4 
(16 %↑) 
5.5 vs 5.9 
(7 %↑) 

BRAC, Bangladesh Islam et al., 2013 

Natural submergence Gayatri Seedling/m2 

115 vs 155 
2.93 vs 3.02 
(3 %↑) 

NRRI, 
Cuttack, India 

Sharma and Ghosh, 
1999  
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post flood applied fertilizers and hence, most of the farmers are reluctant 
to go for fertilizer application in the post flood scenario. Floodwater 
sometimes deposits, nutrient rich sediments and benefits the crops; 
however, the high fertility mainly benefits the succeeding post-flood 
crops. The submerged crops are significantly damaged by the flood-
water which results in poor crop establishment (Sarangi et al., 2015). 
The mineral nutrient content of rice seedlings in adequate amount at 
both pre and post-submergence is necessary for coping the flooding 
stress, and quick post flood recovery (Singh et al., 2016). Under flash 
floods, rice plants are subjected to two drastic environmental changes: 
(i) During complete submergence, plants faces transition from aerobic to 
hypoxic condition and (ii) when the floodwater recedes they face tran-
sition from hypoxic to aerobic condition. For adaptation to these 
changing environments, the plant must have physiological mechanism 
to cope up the changes. Therefore, proper nutrient management for 
flood-prone areas may help the plant in production of metabolites, 
which may lead to better crop establishment. Application of nutrients 
particularly N, P and K under submergence/post submergence condition 
helps the rice crop in tiller regeneration, maintaining high chlorophyll 
and NSC, regulating enzyme activity and cation-anion balance (Table 4, 
Fig. 7). These morphological and physiological changes are instrumental 
in imparting greater stress resistance to plants (Gautam et al., 2014; 
Jackson and Ram, 2003; Marschner, 2012; Singh et al., 2018). This 

clearly signifies the importance of proper nutrient management strategy 
for enhancing rice production and productivity in submergence-affected 
areas. 

3.2.1. Nitrogen management 
Adequate and timely nitrogen (N) fertilization promotes tillering and 

photosynthetic efficiency and decreases gaseous loss of N (Chatterjee 
et al., 2018). The improved photosynthesis enhances biomass produc-
tion and ensures optimum grain yield even under complete submergence 
(Fig. 7). As a precautionary measure, to avoid damage to crop due to 
submergence, generally farmers apply N in nursery, which results in N 
enrichment of seedlings. During submergence, the higher N content in 
these seedlings results in more aboveground growth over belowground 
growth, which results in depletion of soluble carbohydrate stored in 
upper plant parts (Ella and Ismail, 2006). Besides, the high N content 
also increases the succulence/softness of shoots, which promotes shoot 
elongation. The higher shoot elongation confuses the plant with sense of 
ageing, which results in increased accumulation of ethylene in plant 
parts (Gautam et al., 2015). Thus, due to pre-submergence N applica-
tion, the carbohydrate partitioning and shoot-root ratio is influenced 
adversely, which results in lower number of phyllochron and poor sur-
vival (Ella and Ismail, 2006; Gautam et al., 2014). For fast recovery 
under post submergence condition, plants need energy for maintenance 
and metabolism and this is primarily supported by stable chlorophyll 
system and higher levels of NSC (Das et al., 2005; Panda et al., 2008). 
Due to presence of turbidity in floodwater, there is deposition of silt 
particles on leaf surface. The silt particle blocks the stomata and ham-
pers the stomatal conductance, which results in lower concentration of 
starch and sugar in leaves (Palada and Vergara, 1972). Post submer-
gence foliar spray of urea removes the adhered silt particle from the leaf 
surface due to the force applied by the water-urea solution. The desilting 
of leaf surface enables the plants to regain optimum photosynthesis and 
better survival. Gautam et al., 2014; 2015 reported higher level of chl a 
and b, NSC, Pn rate which lead to higher plant survival when N was 
applied as foliar spray under post-submergence condition. They also 
reported a positive correlation between NSC and plant survival and 
negative correlation between shoot elongation and plant survival. These 
correlations established the importance of chlorophyll stability and 
higher NSC levels in plants for rapid recovery from submergence stress. 

3.2.2. Phosphorus management 
Mineral nutrition of phosphorus (P) is essential for optimum growth 

and development of rice. Generally, rice farmers avoid application of P, 
however, in submergence prone areas it is well proved that P application 
has the potential to mitigate the adverse effects of submergence 
(Table 4; Fig. 7). Right method of P application for better efficacy 
against submergence is application in the nursery and as basal dose in 
the main field before submergence rather in the floodwater. Addition of 
P in floodwater accelerates algal growth, and hence the submerged plant 
faces stress for CO2 and light (Ramakrishnayya et al., 1999). Complete 
submergence increases ethylene synthesis and its accumulation in 
different plant parts, which is a major reason for chlorophyll degrada-
tion, leaf senescence, lowering of stomatal conductance and intercel-
lular CO2 concentration as well as denaturing of the photosynthetic 
machineries leading to lower photosynthetic rate of the submerged 
plants (Mackill et al., 2012; Ismail et al., 2012; Fukao and Bailey-Serres, 
2008). Pre submergence application of P along with N, significantly 
increased initial seedling vigor and shoot carbohydrate concentration. It 
facilitated better survival and regeneration during post submergence 
recovery phase in several lowland rice varieties. Basal P application 
lowered ethylene accumulation in shoots during submergence and 
hence the photosynthetic rate was enhanced during post submergence 
recovery phase (Gautam et al., 2015; Ramakrishnayya et al., 1999). 

3.2.3. Potassium management 
Submergence induces significant reduction in stomatal conductivity 

Table 4 
Effect of different nutrient application strategy on physiological and agronom-
ical responses of rice subjected to submergence stress.  

Nutrient 
application 

Physiological and 
agronomical response 

Reference 

Post flood 
nitrogen 
application as 
foliar spray  

• Spraying removes adhered 
silt particles from leaf 
surface  

• Maintains chlorophyll 
stability and assimilate 
partitioning  

• Increases antioxidant 
metabolite activity 

Gautam et al., 2014a, 2015; 
Panda et al., 1979; Ella and 
Ismail, 2006;  
Crafts-Brandner, 1992;  
Rios-Gonzalez et al., 2002;  
Shin et al., 2005; Kovacik and 
Backor, 2007, Slit, 1999;  
Jackson and Ram, 2003. 

Basal phosphorus 
application  

• Promotes better survival 
during submergence and 
recovery during post- 
submergence  

• Maintains initial seedling 
vigour and shoot 
carbohydrate 
concentration  

• Lowers ethylene 
accumulation during 
submergence 

Gautam et al., 2014b;  
Ramakrishnayya et al., 1999; 
Fukao and Bailley – Serres, 
2008; Jackson and Ram, 
2003. 

Basal potassium 
application  

• Maintains good growth and 
metabolism  

• Helps in activation of 
several enzymes  

• Enhances photosynthetic 
pigments and 
photosynthetic capacity  

• Helps in stomatal 
movement and turgor 
regulation  

• Increases plant nutrient 
uptake 

Demidchik, 2014; Shabala 
and Pottosin, 2014; Ashraf 
et al., 2011; Marschner, 
2012; Singh et al., 2014;  
Cakmak, 2005, Gautam et al., 
2014a,2014b, 2016. 

Basal silica 
application  

• Prevents crop lodging and 
imparts erectness to leaves  

• Enhances N responsiveness 
of rice  

• Reduces stem elongation, 
leaf senescence, lodging, 
chlorosis and depletion of 
NSC  

• Alleviates many abiotic 
stresses like flooding, 
lodging, freezing etc.  

• Enhance antioxidant 
defence abilities 

Tamai and Ma, 2008; Ma 
et al., 1989; Munir et al., 
2003; Ho et al., 1980; Lal et 
al 2015; Epstein, 1994;  
Marschner et al., 1990;  
Okamoto, 1969; Sadanandan 
and Vergese, 1969; Gautam 
et al., 2016.  
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(Pang et al., 2004; Polacik and Maricle, 2013) which affects the nutrient 
uptake to the aboveground plant parts (Table 4; Fig. 7). Under sub-
mergence, hypoxic/anoxic condition prevails, which immediately ar-
rests the root functioning and leads to severe potassium (K) deficiency in 
the root (Marschner, 1995; Malik et al., 2002). Application of K imparts 
waterlogging/submergence resistance in plants by activating plant 
growth, metabolism and activity of several enzymes (Pang et al., 2006; 
Mugnai et al., 2011; Dwivedi et al., 2017). Exogenous application of K 
facilitates higher K+, Ca2+, Mn2+ and Fe2+ accumulation and enhances 
plant growth, photosynthetic pigments and photosynthetic capacity that 
ultimately helps in mitigating the adverse effects of submergence 
(Ashraf et al., 2011). Application of K fertilizers increased antioxidant 
metabolite activity, and improved post submergence survival and re-
covery (Gautam et al., 2016; Cakmak, 2005). Thus, application of nu-
trients like K along with N and P has been proved beneficial for post 
submergence recovery and ensuring optimum grain yield. 

3.2.4. Silicon management 
Silicon (Si) plays a prominent role in enhancing lodging resistance 

and maintaining the erectness of leaves (Table 4). The erect posture of 
leaves permit higher light transmittance and thus enhances photosyn-
thesis (Tamai and Ma, 2008). Application of higher dose of N fertilizer 
promotes lodging and thus limits the grain yield production. Use of Si 
along with N prevents the lodging of rice crop as it increases culm 
strength and leaf erectness (Ma et al., 1989; Munir et al., 2003). Silicon 
enjoys a synergistic relationship with N, and hence combined applica-
tion of N and Si is known to augment productivity of lowland rice fields 
(Lal et al., 2015b; Mohanty et al., 2020, 2021). Researchers have proved 
that Si nutrition mitigate many abiotic stresses like flood, drought and 
freezing (Epstein, 1994; Kumar et al., 2019) by strengthening the cell 
walls of culms, hulls, leaves and roots. Moreover, Si helps in increasing 
the photosynthesis by maintaining erectness of rice leaves and clumps, 
which helps in greater light interception. Application of basal Si com-
bined with post-flood N increased post flood recovery by increasing 
emergence of green leaf and leaf area index, ultimately leading to op-
timum grain yield. Silicon application helped in recovery of the partially 
damaged tillers, reduced elongation, lodging, leaf senescence, and 
chlorosis which led to higher survival percentage, enhanced photosyn-
thetic rate, antioxidant metabolite activity and ultimately optimum 
grain yield (Sharma, 1995b; Lal et al., 2015a; Gautam et al., 2016). 

4. Conclusions and future research needs 

Major rice growing belts of the world suffer from the menace of 
submergence, which is likely to be aggravated under the anticipated 
climate change scenarios. Submergence tolerance being a complex trait, 
is influenced by several physiological or morphological characteristics. 
Early flood affects rice germination in the areas with wet and dry direct 
seeding, by creating hypoxic conditions, whereas flash flood affects rice 
crop severely by affecting its growth and development. Therefore, un-
derstanding the mechanisms of submergence tolerance in rice due to 
these different types of flooding at different growth stages is important 
to come up with innovative management practices for mitigating the 
adverse effects. At vegetative stage, when tolerant rice genotypes are 
subjected to flash flood induced submergence, they enter into a quies-
cence mode and utilize the non-structural carbohydrates once water 
level recedes after 10–14 days. Tolerance mechanism to flooding during 
germination stage comprises rapid elongation of the coleoptile to 
emerge from shallow waters to escape from submergence. Similar 
escape strategy is being identified as a mechanism in periodic flooding 
that causes several weeks to months long deep submergence. 

Besides identification of landmark QTL for submergence tolerance 
SUB1A, and other QTLs like LGF1, OsTPP7, SK1/2, that led to devel-
opment of submergence tolerant rice varieties, specific management 
practices have also been designed and developed for resilience to un-
favorable conditions. To enhance the grain yield of flood-prone lowland 
rice various management practices like high-density seeding for DSR, 
vigorous seedling for TPR and basal N fertilization have been developed. 
Various seed priming practices have been very effective for ensuring 
higher seedling survival rate, emergence, shoot and root growth under 
flooded conditions. Nutrient management practices like application of 
N, P, and K under and/ post submergence aids in the recovery of rice 
crop by regenerating tillers, maintaining higher NSC content and regu-
lating enzymatic activity. Productivity of lowland rice fields is very well 
augmented by combined application of N and Si due to their synergistic 
interactions. 

With contemporary climate change predicted to trigger the incidence 
of flooding, cryptic genetic variation available in wild rice gene pools 
may help breeders to develop modern rice varieties having greater 
resilience towards submergence. Identification and introgression of 
landmark SUB1A gene led to development of submergence tolerant rice 
varieties that can withstand flash floods lasting upto two weeks. In 
addition, a recent study on deepwater rice–specific SD1 haplotype, 
proposed ethylene-gibberellin relay model, which establishes direct 

Fig. 7. Nutrient management strategies for maximizing yield under submergence.  
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molecular link between ethylene signaling and gibberellin biosynthesis. 
This was confirmed by transcriptional gain-of-function allele of the 
Green Revolution semi dwarf (SD1) gene that triggered elongation of 
stem, enabling it to survive under flooding conditions (Kuroha et al., 
2018). Utilisation of genetic factors like OsTPP7 for anaerobic germi-
nation and periodic flooding will further aid in developing breakthrough 
rice varieties tolerant to flash flood induced submergence stress. Wild 
rice gene pools should be explored for identifying superior alleles of the 
SUB1A gene that can impart greater tolerance to submergence. With the 
advent of CRISPR/Cas system, genome-editing technologies have been 
drastically advanced (Doudna and Charpentier, 2014). These advanced 
technologies can be employed in crop improvement to facilitate func-
tional modification of genes regulating useful traits. Efficient utilization 
of both conventional and new technologies like CRISPR/Cas can greatly 
help in developing climate resilient rice varieties. In summary, 
continuing the studies on understanding of unknown factors governing 
tolerance to various types of submergence stress and developing effec-
tive management practices and balanced use of both conventional and 
modern technologies will help in imparting submergence tolerance in 
modern rice varieties. Besides SUB1A-1 mediated submergence toler-
ance, leaf gas film on hydrophobic cuticles during submergence is also 
known to impart tolerance against submergence stress. Rice genotypes 
should be evaluated for longer leaf gas film retention during submer-
gence, to significantly increase underwater photosynthesis during pro-
longed submergence. 
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