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ABSTRACT
Production of food, fodder and
plant vegetation declined rapidly
around the world due to climate
change, increase in saline areas
and loss of productive lands. A
major challenge of sustainable
development goals is increasing
crop yield and food security by
using non-conventional plants in
agriculture. Hence, there is a
need to develop halophyte based
saline agriculture to meet grow-
ing demands to feed the world
population. Halophytes are the
natural inhabitants of salt conta-
minated degraded soils in diverse environments and offer a multitude of potential
applications for sustaining crop productivity. Salt tolerance in halophytes is associated
with the plant eco-physiological adaptation that play important roles in their survival
and especially adaptation to adverse conditions. Priority attention is required to exploit
saline lands and halophytes for economic purposes that will ultimately reduce energy,
fresh water and food crises. High nutritional values, resistance to soil containments and
production of industrially important products from halophytes offer solutions to apply
biotechnological applications that could play an essential role in the production of
food, fodder and medicinal supplements. The reclamation of degraded lands, removal
of pollutants and the production of alternative energy sources are other emerging
fields of applications of these groups of extremophile plants. To increase economic
potential and agro-management systems, revegetation and rehabilitation of halophytes
are recommended for landscaping, phytoremediation and effluent purification. This
review summarizes the perspective of halophytes existence in saline, arid and semi-arid
regions as promising alternative sources for industrial applications.
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Introduction

Food security is threatened by an exceptional increase in the world popula-
tion while climate change and rapid industrialization impact agricultural
sustainability (Anderson et al., 2020). Earth temperature has increased
approximately 1 �C globally in the last century and it has been predicted
that it could further rise in coming decades (Rohde et al., 2013). Due to
global warming, arable land loss will be increased significantly (two folds)
by the end of this century (Salvia et al., 2019). An aging population is
another global issue as it requires vast supply of healthy foods. In addition,
populations migrating to saline arid areas that leads to problems of water
shortage, local poverty, social instability and health issues (Kwak, 2019). To
subsist the global crisis of food, energy supply and environmental changes,
new non-conventional and economically valuable crops are required to
ensure continuous industrial development. Therefore, utilizations of mar-
ginal saline lands and brackish water are important for the sustainable
development of agriculture (Khan & Qaiser, 2006). The world population is
estimated to be about 9.5 billion by 2050, which will double the food
requirement and will increase daily calorie intake (FAO & UNICEF, 2018).
Water is a renewable resource but due to its global distribution, it is lim-
ited for human and animal consumption. About 2.5% of total water is of
fresh water, from which nearly two third is frozen in glaciers (Mikosch
et al., 2020).
Because of various environmental factors such as exiguous rainfall, water

contamination dismal irrigation and poor agricultural systems, our pro-
ductive lands are becoming more and more saline. (Mishra & Tanna,
2017). About 7% of total world area is affected by salinity and 20% area is
damaged by excess salt accumulation (Gangwar et al., 2020; Mora et al.,
2020). Approximately 10% of the annual crop yield is reduced due to salin-
ity (Panta et al., 2014; Yue et al., 2020). High concentration of sodium in
the soils are harmful to plant growth, germination, transpiration, photosyn-
thesis, membrane properties, hormone regulation, enzymatic activity and it
leads to the production of reactive oxygen species in plant tissues which
result in plant death (Oney-Birol, 2019). Salinity today is a key restraint to
agricultural productivity (Shahzad et al., 2019). Salinity when combine with
heat, drought, flooding and heavy metal stress can even be more harmful
to plant growth and physiological performance. Temperature above the
optimal range discerned as heat stress for plants which interrupts cellular
homeostatic, decelerates growth and development and sometimes causes
mortality (Balfag�on et al., 2019). Drought severely affects approximately
20% of the world agricultural lands and leads to the reduction of water
content, closure of stomata, leads to cell shrinkage and reduces gas
exchange which arrests photosynthesis (Cosgrove, 1987; Kogan et al., 2019).
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Changes in the soil moisture content in water deficit conditions interrupts
rates of carbon storage, carbon cycling dynamics and structures of micro-
bial community which subsequently cause land degradations (Vicente-
Serrano et al., 2020).

Potential of halophytes to provide sustainable solutions for
economic purposes

Salinity and other stresses are consecutive global processes and cannot be
solved by simple measures. Therefore, integrative approaches are required
to mitigate stress responses of plants by utilizing plants that are already salt
resistant for future agricultural and industrial applications, particularly in
semi-arid and arid regions. These plants can resist toxic levels of NaCl
which can be injurious for other plants as they possess morphological fea-
tures or adaptive mechanisms to grow better under saline condition
(Garza-Torres et al., 2020).

Introduction to halophytes

Plants that can grow and complete their life cycle in high salt concentra-
tions (up to 200mM NaCl and more) are termed as halophytes. The plant
kingdom contains a small group of species belonging to halophytes (1%)
which evolved highly unique abilities for salt resistance through adaptive
features in harsh environmental conditions (Yuan et al., 2019). Halophytes
have polyphyletic origins where less than 5% species of Poaceae, Fabeaceae
and Asteraceae families are halophytes. Individuals of halophytes show
diversity in habitats and their eco-physiological responses toward different
stress conditions. Halophytes have received increased attention in the last
few years as they became model species in salt tolerance research. In add-
ition, they are also a potential source of biomass, fuel wood, medicinal
products, forage, edible oil, bioenergy, and for landscaping and ornamental
applications (Table 1). In addition, halophyte are also used for phytoreme-
diation of polycyclic aromatic hydrocarbons from contaminated saline areas
(Shang et al., 2020). Among all abiotic stresses, salinity is the most promin-
ent stress factor that limits plant growth in degraded landscape areas in

Table 1. Multifunctional uses of halophytes for industrial applications.
Species Applications References

Crithmum maritimum Ornamental, vegetable, medicine Houta et al., 2011
Atriplex hortensis Food, fodder, fuel, fiber, medicine Stihi et al., 2008
Aster tripolium Pharmaceutical, cosmetics, vegetable Lopes et al., 2016
Mesembryanthemum Crystallinum Ornamental ground cover, medicine, vegetable Seo & Ju, 2019
Sporobolus virginicus Ground cover, food, domestic forage Rao et al., 2017
Pennisetum Clandestinum Ground cover, food, biofuels Seeman et al., 2016
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Pakistan and worldwide (Ijaz et al., 2020). Salinity impacts the growth of
salt sensitive plants known as glycophytes compared to halophytes like
mangroves e.g. Avicinia marina. Plant species which can grow in saline
flooding conditions and are termed as hydro-halophytes while those halo-
phytes which grow in saline arid soil are known as xerophytes (Grigore &
Toma, 2017).

Mechanisms of salt tolerance in halophytes

Halophytes have evolved different salt tolerance mechanisms to survive and
grow optimally through an adapted metabolic steady state in a saline envir-
onment as compare to glycophytes (Figure 1) (Niu et al., 1993). Halophytes
follow mainly two strategies for salt resistance, salt tolerance and salt

Figure 1. Adaptations in halophytes to survive in saline lands with brackish water irrigation.
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avoidance, in order to grow, germinate, reproduce and complete their life
cycles (Sabovljevic & Sabovljevic, 2007).

Salt tolerance

Halophytes can resist salt stress via cellular, tissue specific and whole plant
mechanisms by adapting their morphological, anatomical and physiological
status (Niu et al., 1993; Shoukat et al., 2020). Succulence causes an increase
in cell size, decrease in growth or surface area of tissues leading to higher
water content which helps the plant to cope with salinity stress. Proline,
glycine betaine, sugars and polyols are compatible solutes to provide an
osmotic balance to the ionic load in vacuoles while not interfering with
other biochemical reactions (Figure 2). Some halophytes produce proline
analogues under salt stress to survive due to their ability to protect the pro-
tein turnover machinery, stabilize proteins and prevent enzymes from
denaturation (Shoukat et al., 2020; Thakur & Sharma, 2005). For example
4-hydroxy-N-methyl proline is a proline analogue found in Melanleuca
bracteata (Nelson et al., 1998).

Salt avoidance

Avoidance of NaCl is very useful mechanisms in halophytes for salinity
resistant and longtime survival under adverse environmental conditions.
The lower stomatal conductance reduce transpiration stream and the xylem

Figure 2. Mechanism of abiotic stress tolerance in halophytes by osmolytes accumulations gen-
erated by stress conditions.
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loading of NaCl to maintain salt up to sub-toxic levels. Salt tolerant plant
avoid the salt uptake by lower root development and physiological exclu-
sion of toxic ions by root membranes.

Salt exclusion

Salt exclusion is defined as the plant’s ability to exclude NaCl through fil-
tration at the surface of the root. Membranes of roots protect salt accumu-
lation in the cytoplasm by excluding most of the sodium and chloride in
the soil solution or by salt accumulation at root and root/stem junctions
(Godfrey et al., 2019). This in turn reduce the shoot Naþ and Cl- loading
and protect plants from salt toxicity. The pericyclic and xylem parenchyma
cells, root cortex and phloem cells are the key locations for salt exclusion
in plants. Blocking Naþ influx into the root by salt exclusion is performed
by several transporters activated by the SOS (salt overly sensitive) signaling
pathway and nonselective cation channels (Tester, 2003). Two important
members of the nonselective cation channels may be the cyclic nucleotide-
gate channels (the CNGCs) and the glutamate-activated channels (the
GLRs). In the Ca2þ-insensitive pathway, nonselective cation channels
(NSCCs) pathways like HKT1 (high-affinity potassium transporter), KUP
(Kþ uptake permeases), and HAK (high affinity Kþ transporter) may be
involved (Munns, 2005; Tester, 2003).
The regulation of the sodium exclusion is highly associated with the salt

tolerance ability of the plant. For example, Phragmites communis accumu-
late much more salts in the roots that prevent salt from entering the shoot
while allowing water to pass through. Grasses from Agropyron, Aeluropus,
Puccinellia and Distichlis genera exclude sodium ions significantly
Thinopyrum has aptness to sustain negative membrane potential in roots
which leads to a greater retention of potassium ions in shoots (Flowers &
Colmer, 2008; Roy & Chakraborty, 2014). For instance, Phragmites karka,
excludes additional salts from the plant body to protect themselves from
the toxic effects of salinity through leaf senescence and leaf shedding
(Acosta-Motos et al., 2017; Franco et al., 1997; Hameed et al., 2012). Plant
roots undergo some physiological and structural changes to avoid high salt
concentration through salt exclusion. Salinity leads to a shorter growth and
to salt-induced alterations in the chemical and physical properties of the
cell walls of the root tips. NaCl stress increases the membrane surface in
root cells which show an increase in the quantity of vesicles in the epider-
mis and middle cortex cells (Koyro, 1997). The number of mitochondria
increase in the epidermal and in the cortex cells after salt stress thus indi-
cating an additional supply of energy for osmotic adaptation and for select-
ive uptake and transport processes (Aslamsup et al., 2011; Koyro, 1997:
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Mckay et al., 1994). Most of the salts excluded from mangroves, including
Kandelia, Bruguiera, Ceriops, Rhizohora, Avicennia, Sonneratia, Lumnitzera,
Laguncularia and Aegiceras genera, is through roots (Krauss & Ball, 2013;
Slama et al., 2015; Wang et al., 2011).

Salt secretion

The word salt glands refers to plant structures and functional mechanisms
that directly involved in removal of excessive salt through secretion to
avoid cell damage. Specialized salts glands are present in some halophytes
for the excretion of additional salts onto the plant’s leaf surfaces which is a
well-known mechanism for regulating mineral content. Salt secretion with
salt glands are recorded in 50 species in 14 angiosperm dicotyledonous
families and divided in four major flowering plants groups: Caryophyllales,
asterids, rosids and Poaceae (Marcum & Murdoch, 1990; Santos et al.,
2016). Plant are divided in two sub groups 1) recretohalophytes and 2)
secreters on the basis of the salt glands (Breckle, 1990; Liphschitz et al.,
1974). Functionally there are two division in halophytes for salt secretions
1) directly secrete salts to the surface of the leaf (exo-recretohalophytes),
and 2) and plants that collect salt in the vacuole of a specialized bladder
cell (endo-recretohalophytes) (Breckle, 1990; Ding et al., 2010). From struc-
tural perspective most of the salt glands appear largely epidermal in origin
and thus found principally on the trichomes (Esau, 1965).
Salt glands evaporate the water and the salts still remain on the leaf, this

is the most common mechanisms, while some plants shed their older leaves
in order to avoid excess salts accumulation in younger and growing tissues
(Rozentsvet et al., 2017). Halophytes have some specialized glands to
exclude salts, these glands are present on every aerial part of the plant and
are rich in mitochondria. These are transit cells, not storage cells, due to
lack of central vacuoles; water evaporates from these glands and salts
remain on the leaf surface in the form of crystals which are blown away by
wind or air (Flowers et al., 2010; Maathuis et al., 1992). Salt glands are
categorized into four groups, salt bladders, multicellular salt glands, bicellu-
lar salt glands and unicellular vacuolated secretory hairs. 50% of halophytes
contain salt bladders which store up to 1M NaCl and other salts which
have to be transported from roots to leaves. In the growing plant body, salt
bladders sequester excessive sodium from metabolically active cells.
Bladders have 10 times bigger diameter than epidermal cells and have a
1000 times higher volume hence sequester higher amounts of sodium than
traditional leaf vacuoles. Ions need to cross the plasma membrane, pass the
cytoplasm and get loaded into vacuoles of the salt damper (Shabala et al.,
2014; Yuan et al., 2019). Salt bladders acts as a secondary epidermis as they
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help reducing water loss and UV-induced damage to the photosynthetic
apparatus. In Chenopodium quinoa, salt bladders are present on the stem,
upper or lower leaf surface and panicles. In quinoa epidermal bladder, cells
protect the photosystem from UV damage (Ruiz et al., 2016). In
Mesembryanthemum crystallinum epidermal bladders, cells accumulate
water and metabolites like beta-alanine, malate, flavonoids, cysteine, pinitol,
inositol, and calcium oxalate crystals, hence provide protection through
reactive oxygen species (ROS) scavenging (Morokuma et al., 2020). Salt
glands secrete cations especially sodium ions, for instance in Tamarix
aphylla cation excretion is as follows: divalent cation>monovalent cation
(Berry, 1970), in Glaux maritima Naþ >Kþ > Ca2þ (Rozema, 1977) and in
Limonium vulgare Naþ > Kþ > Ca2þ (Waisel, 1972). Long-term adapta-
tion to the saline environment is selective secretion of salts. Still, the mech-
anism for the preferential secretion of certain ions has not been explained
in detail yet (Kobayashi, 2007). The excretion pathway of salts via the bicel-
lular salt glands is not well understood (Oi et al., 2014).

Purpose of halophyte cultivation

Halophytes are very useful for agricultural, ecological and industrial pur-
poses due to the production of valuable products in their tissues (Jayatissa
et al., 2008). Salt resistant plants are important for the maintenance of the
ecological balance toward agricultural and nonagricultural economic out-
comes (Nikalje et al., 2019). Halophytes can be exploited for important bio-
active metabolites for commercial value and could be cultivated for food,
fodder/forage, fuel and medicinal crops on saline lands with the help of
salty water irrigation. Many salt resistant plants are hyper-accumulators of
different heavy metals and salts and are being utilized for environmental
remediation. Halopyrum mucronatum shoots accumulate 644mg/kg iron,
63mg/kg zinc and 9.2mg/kg chromium (Liang et al., 2017). Ipomoea pes-
caprae accumulates 3.3mg/kg lead in their shoots while Heliotropium bacci-
ferum shoots contain 20.5mg/kg lead or >20mg/kg ions (Mujeeb et al.,
2020). For instance, Salsola imbricate plants grown on industrial area store/
sequester 10mg/kg lead and 98mg/kg sodium ions in their shoots (Nikalje
et al., 2019).

Identification of genes that improve salt tolerance

Genes which are regulated under salt stress can be recognized either at
RNA or protein levels but finding the key genes is still improbable, because
a multitude of mechanism are operating concurrently to mitigate salt stress.
Hence, it is very important to highlight those mechanisms in detail to
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develop a better understanding of stress tolerance and utilize the knowledge
in crop improvement using biotechnological aspects (Flowers & Muscolo,
2015; Kosov�a et al., 2013). Halophytic genomes are more complex due to
the presence of additional transposons in gene sequences. Overexpression
of aquaporins can improve a plant’s tolerance to abiotic stress. SpAQP1 is
an aquaporin gene in Sesuvium portulacastrum that has been used to
enhance salt tolerance in transgenic tobacco plants (Chang et al., 2016). Liu
et al. (2017) observed improved salt tolerance of Arabidopsis by inserting
PutNHX1 and SeNHX1 genes from Puccinellia tenuiflora and Salicornia
europaea. NAC is one of the largest family of stress responsive transcrip-
tion factors in plants where NAC (NAM, AATAF and CUC) is the com-
bination of three transcription factor (Hu et al., 2006). NAC transcription
factors shows organ specific expression and the level of expression is
affected by stress stimuli. NAC transcription factors have very complex
networks of signal transduction (Samo et al., 2019). Under abiotic stresses,
NAC transcription factors play a vital role in ABA-dependent and
ABA-independent pathways, NAC proteins and their corresponding cis-act-
ing elements (NACRS) are responsible for constituting NAC regulons
(Figure 3). Overexpression of these factors in transgenic plants also stimu-
late other stress responsive genes like RD20, RD29A, COR47, RD29B and
GSTF6 (Flowers et al., 1977; Wu et al., 2018). Overexpression of RD26 for
instance leads to stress-induced morphological changes in plants such as
larger leaf blades and shorter petioles in RD26-overexpressing plants while

Figure 3. Role of NAC transcription factors in plant stress tolerance.
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smaller leaf blades and longer petioles were found in RD26-repressed plants
(Nakashima et al., 2012).
Under stress, most plants slow down cell growth to secure resources to

overcome stress conditions. CBF/DREB transcription factors binds to the
DRE/CRT element. DRE/CRT element present in the promoter of stress
responsive genes which leads to the ectopic expression of CBF/DREB pro-
teins. CBF/DREB proteins influence the cell division and expansion
machinery under stress. However, CBF1 and DREB1A both improve cold
stress tolerance at 1 �C and even more at 10 �C in Arabidopsis
(Chinnusamy & Zhu, 2003; Li et al., 2012; Sahu & Shaw, 2009; Zhu, 2001).
In Paspalum vaginatum, the metallothioneine gene plays a vital role in

salt tolerance. Under salt stress, Spartina alterniflora upregulates the expres-
sion of genes like cation transport protein, plasma membrane protein 3
and vacuolar ATPase (Roy & Chakraborty, 2014). The expression of the
AcBADH gene from Atriplex centralasiatic and SlBADH gene from Suaeda
liaotungensis enhances glycine betaine accumulation in roots and leaves
which is known to protect organisms against salinity stress. The vacuolar
Hþ-pyrophosphatase promoter from Thellungiella halophila (TsVP1) was
cloned and compared with the AVP1 promoter from Arabidopsis thaliana.
Sequence analysis indicated that both promoters have seven same motifs at
similar positions. Transgenic Arabidopsis were produced with expression of
the GUS reporter gene to determine in which tissues these promoters are
active. The GUS reporter gene with TsVP1 promoter had strong expression
(5fold) in roots under salt stress (Sun et al., 2010). In spinach, 300mM
NaCl induced BADH expression by 3 fold while in barley by 8 folds, which
indicates that the BADH gene expression is induced by salinity (Karthik
et al., 2014; Yin et al., 2002; Yu et al., 2014; Yuan et al., 2016). Glycine
betaine and choline both play important roles is osmotic adjustment of
plants under stress conditions. They act as osmo-protectant protecting the
sub-cellular structures, transcriptional and translational machineries and
intervene as molecular chaperones in refolding of enzymes and help in sta-
bilizing photosystem II to avoid oxidative stress (Wani, 2013).

Improvement of halophytic biomass by growth promoting bacteria

Plant growth promoting (PGP) bacteria are involved in various metabolic
interactions that influence plant fitness and soil quality, thereby increasing
agricultural productivity and stability of soil (Rajput et al., 2019).
Microorganisms that have plant growth promoting traits are an effective
strategy to alleviate biotic or abiotic stress effects on plants through several
stress resistant mechanisms (Busby et al., 2017). These microbes improve
soil-water-plant relationships, exploit phyto-hormonal signaling and trigger
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various mechanisms to enhance stress tolerance. PGP bacteria improve
plant growth by direct or indirect mechanisms. In direct mechanisms, PGP
rhizo-bacteria enhance plant growth by nitrogen fixation for plant use,
ammonia production, solubilization of mineral phosphate, sequestration of
iron for plants, production of phytohormones and improve biological plant
pathogen control. In indirect mechanisms, PGP rhizo-bacteria prevent
infectious diseases of plant roots, induce systematic resistance responses to
enhance defense against pathogens and induced the production of hydro-
gen cyanide which chelate iron and make it available to plant roots (Figure
4) (Paul & Lade, 2014; Qin et al., 2017).
Microbes associated with the rhizosphere of halophytes can tolerate up

to 30% of NaCl concentration and improve soil fertility and quality to
enhanced plant growth under stress environments (Ruppel et al., 2013).
Azospirillum halopraeferens and Bacillus licheniformis increase Salicornia
bigelovii growth when irrigated with seawater. Salicornia brachiata tolerates
saline stress by reducing ethylene production by 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase activity (Handa & Mattoo, 2010; Kirby,
2016; Rahman et al., 2017). Rhizobium promotes plant growth as it is nitro-
gen fixing bacteria and nitrogen is required for the synthesis of nucleic
acids, enzymes, proteins and chlorophyll hence it is very important for
plant growth and development (Ju et al., 2020). Basidiomycota and
Ascomycota are very effective metal detoxifying fungal agents which can
boost salt resistance of plants by improving the mineral and potassium ion
uptake, maintaining the sodium potassium ratio and osmotic balance by

Figure 4. Mechanism of plant growth promoting rhizobacteria for enhancement of halo-
phytes growth.
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increasing osmolytes concentrations inside plant cells (Bukhori et al., 2020).
Trichoderma harzianum induces the growth of Suaeda salsa by increasing
water uptake, the concentration of proline, organic acids, soluble sugars,
amino acids, superoxide dismutase activity and decreasing malondialdehyde
concentration (Ma et al., 2018). Accumulation of compatible solutes accom-
modates the ionic balance of vacuoles without disrupting intracellular bio-
chemical reactions, have minimal effect on pH and the capacity to preserve
enzymes activities. Cryptococcus neoformans, Stagonospora nodorum,
Aspergillus niger and Fusarium graminearum synthesize trehalose which pro-
tects plants cells by preventing protein denaturation under osmotic stress con-
ditions (Cervantes-Ch�avez et al., 2016; Zhang et al., 2019). Sulfate reducing
bacteria develop metal tolerance in Spartina maritime by sulfate reduction
which produces hydrogen sulfide that can react with heavy metal ions to form
insoluble metal sulfides or reduce metal directly into less toxic or less soluble
forms by enzymatic reactions (Quillet et al., 2012; Nikalje et al., 2017).

Application of biochar and compost and their mixture

Soil health is very important for plant growth and food production, thus
degraded soils require new sustainable technologies to recoup. Biochar is a
solid material formed from thermal decomposition of plants while the
transforming biomass forms into bio-oil and syngas as byproduct (Cha
et al., 2016). For the improvement of soil health and crop yield, biochar is
applied due to its multiple benefits; it energizes soil fertility, as it adds
nutrients to the soil like potassium, phosphorus and micronutrients or
holds nutrients from the soil itself, and positively affects useful microorgan-
isms (Debode et al., 2020). Biochar application rates less than 5% biochar
could be sufficient to recover degraded soils (Zheng et al., 2018). Biochar
increases the pH of the soil which reduces the acidity of contaminated soil,
minimizes methane or nitrous oxide emissions. Biochar is also capable of
conservation of soil water retentions thus reducing drought effects on crop
yields (Rawat et al., 2019).
Biochar and compost seem useful for biomass production as found in

Phragmites karka due to efficient water retention and improved photosyn-
thesis (Abideen et al., 2020). For instance, application of sole biochar
improved the water supply of Chenopodium quinoa in sandy soil (Buss
et al., 2012). Growth of Sesbania canabina and Kosteletzkya virginica
increased by 1.5% by the application of biochar and compost while the
total biomass increased by 309% and 70%, respectively (Luo et al., 2017;
Qin et al., 2017). However, biochar has several limitations, including
adverse physical changes to the soil as well as to soil biota, leading to
leaching of nutrients, and contaminant mobility (Nair et al., 2017). In order
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to abolish the harmful effects of biochar it is recommended to combine
biochar with other soil amendments like compost (Abideen et al., 2020).
Combination of biochar and compost exerts synergic effects on soil fertility,
crop yield and reduces soil contaminant mobility. Combination of biochar
and compost at the rate of 1.5% significantly increased the growth of
Sesbania canabina, Phragmites karka and Kosteletzkya virginica while com-
bination at the rate of 10% leads to the harmful impacts on growth (Adli,
2019; Wu et al., 2017).

Role of humic acid in plant salt tolerance mechanisms

Humic acid is not a fertilizer but a soil component that can enhance
photosynthesis, respiration, cell membrane permeability, water holding cap-
acity, phosphate uptake and it reduces the uptake of sodium ions or toxic
elements (Guo et al., 2019). Humic acid provide energy to soil microbes
thus making soil more fertile improving root growth by stimulating auxin
signaling (Gayathri et al., 2020). Humic acid stimulates Hþ-ATPase activity
in cell membranes which has very important roles in many biochemical
pathways and it also influences many metabolic processes like photosyn-
thesis, respiration and nucleic acid synthesis (Matuszak-Slamani et al.,
2017). Humic acid increases the concentration and activity of reactive oxy-
gen species scavenging enzymes and anti-oxidative enzymes to disable oxy-
gen free radicles produced in plants under salt stress (Ullah et al., 2018). In
Terminalia arjuna, plant height, number of leaves, leaf area, concentration
of chlorophyll, total carotenoids, nitrogen, calcium, phosphorus and proline
are significantly increased under humic acid treatments (El-Kady &
Borham, 2020). Root traits and aboveground biomass of Lycium rutheni-
cum increased by 60.57% when treated with humic acid (Feng et al., 2020).

Role of gibberellin, auxin and ascorbic acid in salt tolerance

Phytohormones are synthesized and translocated in different tissues and
consequently, hormone transporters are essential for precise regulation of
plant growth and development. Phytohormones are also called plant growth
regulators and act as chemical messengers involved in the regulation of
plant responses against stresses (El-Maboud, 2019). Salt stress rapidly indu-
ces the abscisic acid level by activation of abscisic acid biosynthesis genes
like zeaxanthin oxidase and ABA-aldehyde oxidase as it helps in osmatic
adjustment by closing stomata and through accumulation of osmo-protec-
tants (Rasheed et al., 2019). When abscisic acid was sprayed on Prosopis
strombulifera under salinity, it had higher levels of soluble carbohydrates
and improved root development (Llanes et al., 2019). Suaeda maritima
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exhibited a higher growth rate with abscisic acid treatment under saline
conditions (Somasundaram, 2019). Auxin plays an important role in
organogenesis, cell elongation, tissue development and apical dominance in
plants. Under high salt stress, plants produce auxins by overexpression of
auxin biosynthesis gene like YUCCA3 (Bouzroud et al., 2019). Halotropism
is a response of plant roots to avoid a saline environment. Limonium
bicolor contain multicellular glands which show positive halotropism by
regulating auxin under salt stress (Leng et al., 2019). Tamarix aphylla
showed 79% maximum rooting response under 2mg/l auxin treatment
(Sharma et al., 2018). Gibberellins produced by environmental and develop-
mental stimuli, interact with other hormones to regulate metabolic path-
ways hence they are involved in seed germination, endosperm mobility,
flowering, leaf expansion and stem elongation. Under salt stress, gibberel-
lins interact with polyamines to regulate ion accumulation in plant tissues
(Gonzalez & Palomares, 2019; Zulfiqar et al., 2019). Ahmed et al. (2014)
studied the seed germination rate of Halogeton glomeratus, Lepidium latifo-
lium, and Peganum harmala under different salt treatments (0-400mM
NaCl) and with kinetin, thiourea and gibberellin application. Dormancy
increased progressively with increased salt treatments, while gibberellins
induced seed germination observed only in Lepidium latifolium. Kinetin
enhanced seed germination of Halogeton glomeratus and Peganum harmala
but not in Lepidium latifolium while thiourea improved seed germination
in all tested species under all saline treatments.
In many halophytes, such as Limonium stocksii, ascorbic acid, a non-

enzymatic antioxidant, plays a key role in salt tolerance which improves
plant growth by quenching reactive oxygen species. Synthesis of ascorbic
acid under stress conditions improves cell wall expansion, cell cycle pro-
gression, recycling of a-tocopherol (lipid soluble antioxidant) and enhances
synthesis of flavonoids and anthocyanin to protect plants from photo-dam-
age under saline conditions (Hameed et al., 2015). Ascorbic acid
(40–60mM) and 96% ethanol improve the seed germination rate by 10-
30% in Crithmum maritimum under salt stress (Meot-Duros & Magn�e,
2008). Pretreatment of seeds with ascorbic acid reduces the injurious salin-
ity effects in Atriplex stocksii and Suaeda fruticose while in Arthrocnemum
macrostachyum, Haloxylon stocksii, Desmostachya bipinnata and Aeluropus
lagopoides seed germination remained unchanged (Khan et al., 2006).

Current status (from past to present)

Halophytes can be an important source of plant-derived products for
industrial applications by utilizing biotechnological methods which will be
described in the following. For the increasing human population,
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agricultural prime lands and freshwater resources should be allocated for
growing food crops. In contrast, millions of hectors of saline lands can be
used for the cultivation of halophytes having conventional benefits with the
help of biotechnological tools.

Applications of halophytes in industrial purposes

Use of halophytes as food and fodders

Halophytic biomass contains numerous edible components which can be a
useful resource for dietary fibers, essential minerals, fatty acids, bioactive
compounds and essential amino acids (Feng et al., 2018). Arthrocnemum
indicum and Halocnemum strobilaceum are good sources of nutrients con-
taining high levels of protein, fatty acids, fibers, minerals and vitamin C
(Khan et al., 2020). The fatty acid profiles of some halophytes grips attrac-
tion for the production of cooking oil with high poly-unsaturation ranging
between 70% and 80% equivalent to conventional seed oils (Khan &
Qaiser, 2006). Shoots of various halophytes are used as vegetables, salads
and pickles like Salicornia bigellovi, Suaeda maritima and Portulaca olera-
cea. Salicornia europaea has dietary fibers and flavonoids, used for treat-
ment of obesity (Duarte et al., 2018; Kim et al., 2019). Salicornia europaea
can be used to produce an edible oil while Salicornia bigelovii is a good
source of omega-3 polyunsaturated fatty acids. Seeds of Salvadora oleoides,
Suaeda fruticose, Halogeton glomeratus, Haloxylon stocksii and Salvadora
persica contain optimal edible oil quality (Boestfleisch et al., 2014;
Karthivashan et al., 2018; Weber et al., 2007). Crithmum maritimum,
Triglochin maritima and Halimione portulacoides have been used as food
for a long time. Triglochin maritima has ten times more proline while
Halimione portulacoides has higher concentrations of glycine betaine than
most other plants (Boestfleisch & Papenbrock, 2017). A polar lipidome
profiling approach characterized more than 200 lipids species in fresh
branch tips of Salicornia ramosissima and leaves of Halimione portulacoides
which demonstrated that halophytes are a nutritional source of food
(Maciel et al., 2020). Mzoughi et al. (2019) explored the nutritional and
antioxidant properties of halophytes from the Salicorniaceae and
Amaranthaceae families. All species had high levels of proteins, fatty acids,
minerals and also exhibited low toxicity making them suitable for human
consumption. Chenopodium quinoa is considered a pseudo-cereal with very
well-documented benefits for human health. These benefits include high
protein contents of the grains, being one of the few super food products
from vegetal origin containing all nine essential amino acids (Mota et al.,
2016). Chenopodium quinoa is also rich in fiber and vitamins from the B
group (especially folic acid), vitamins C and E (Pereira et al., 2019). In

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 15



addition, the grains contain calcium, phosphorus, iron, magnesium, potas-
sium, manganese and zinc, together with high concentrations of antioxi-
dants (tocopherols), and unsaturated lipids, mainly represented by linoleic
and linolenic acids (Abugoch et al. 2008; Pereira et al., 2019). Furthermore,
as it is gluten free, thus providing a suitable product for people with celiac
disease (Abugoch, 2009).
Due to the nutritional content and the high digestibility of halophytes,

they can also be used for the feed of animals, however high salt concentra-
tions may reduce the food quality of many halophytes. Panicum turgidum
is a very useful salt tolerant plant which is used for cattle feed. It is being
produced annually in tons/hector biomass as fodder and proved better ani-
mal fodder than maize plants (Atia et al., 2019). Atriplex species fulfill the
requirements of an effective fodder which can be grown at moderate salt
levels. Salicornia bigelovii is a shrub having 14.5% crude protein which
used as an effective diet for camels (Joshi et al., 2018). To improve the
milk quality of buffaloes, Cressa cretica is used as fodder. Similarly,
Sporobolus species are extensively used as forage. Salvadora, Acacia,
Zizyphus and Prosopis are tree species of arid regions, which are used as
fodder due to effective accessibility. The mineral contents in forage varies
according to the grade of land and water salinity (Kumar et al., 2018;
Nafees et al., 2019; €Ozt€urk et al., 2019) (Table 2).

Biofuel potential of halophytes

Biofuel production from halophytes reduces the competition for fresh water
or fertile land demands. Table 3 demonstrated the list of halophytes suit-
able for lignocellulosic biomass and bioethanol production. Euphorbia

Table 2. List of halophytes used as food and fodder commodities grown on saline lands.
Species Plant parts Nutritional values References

Chenopodium quinoa Seeds Essential amino acid, proteins,
lipids, vitamins, fibers
and minerals

Pourshahidi et al., 2020;
Vilcacundo &
Hern�andez-
Ledesma, 2017

Sesuvium portulacastrum Leaf/stem Rich in calcium and iron Slama et al., 2017
Crithmum maritimum Leaf vitamins and minerals rich Pereira et al., 2017
Zostera marina Seeds Starch, proteins and fats Panta et al., 2014
Prosopis glandulosa Seeds/ pods 40% protein content, lipids,

carbohydrates and minerals
Gonz�alez-Montemayor

et al., 2019; Setshogo
et al., 2020

Tetragonia tetragonioides Leaf Amino acids Neubauerov�a et al., 2020
Cochlearia officinalis Leaf/stem Vitamin C Welcome & Van

Wyk, 2019
Batis maritima Root/stem Amino acids and antioxidants Boxman et al., 2018
Pennisetum typhoidea Seeds Rich in vitamin B, gluten free Gadir & Adam, 2007
Portulaca oleracea Leaf/ stem Vitamin A, vitamin C, omega 3

fatty acids and rich in calcium
Uddin et al., 2014

Distichlis palmeri Seeds Fats, carbohydrates, proteins and
fiber, higher than wheat.

Dagar, 2018

Atriplex hortensis Leaf Rich in proteins Vila Roa, 2018
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tirucalii plants have been recommended for biofuel production by growing
them on saline lands (Sharma et al., 2016). The values of lignocellulosic
biomass makes species of Phragmites, Cressa, Salicornia, Salsola, Panicum,
Tamarix extensively more promising candidates for bioethanol production
(Kumar et al., 2018; Mukhtar et al., 2019). Many countries obtain biofuel
from food crops which leads to food versus energy competitions. For the
production of biodiesel, plant seed oil is a suitable resource. The biomass of
these plants contains fatty acid methyl esters which can be used in conven-
tional engines without any modifications (Table 4) (Duarte et al., 2017;
Kumar et al., 2019). A number of Suaeda species have been investigated and
it has been demonstrated that their oil seed is prospective with excellent
engine performance parameters (Li & Song, 2019). Salvadora species rich in
oil, lignin, cellulose and hemi-cellulose, which make it one of the best candi-
dates for biofuel production as well as for cosmetic and soap production
(Panta et al., 2014). Ricinus communis contains up to 40%, S. bigelovii 30%,
Kosteletzkya virginica have 22% and Kosteletzkya pentacarpos accumulate
about 20% seed oils of total dry weight and pose optimal engine value param-
eters for biodiesel production which could be used to replace other oil pro-
ducing crops (Munir et al., 2020; Singh et al., 2019). Many halophytes which
are suitable for the oil industry are presented in Table 4. Akinshina et al.
(2016) reported Karelinia caspia as a most auspicious source of biomass yield
and biogas production. Panicum turgidum is basically used as animal fodder
in Pakistan but its chemical composition and multiple harvest in a season
makes it promising candidate for biofuel production (Abideen et al., 2011).

Secondary metabolites and medicinal use of halophytes

Under salt stress, the biosynthesis and accumulation of secondary metabo-
lites with medicinal properties can be enhanced for plant protection against

Table 3. List of halophytes used for lignocellulosic biomass cellulose, hemicellulose and lignin
(%) for bioethanol production.
Species Cellulose Hemicellulose Lignin References

Calotropis procera 12.33 11.02 5.00 Radhaboy et al., 2019
Suaeda monoica 10.67 11.33 2.33 Patel et al., 2019
Panicum virgatum 45.01 13.02 12.01 Capecchi et al., 2016
Suaeda fruticose 8.67 21.05 4.67 Salem et al., 2019
Phragmites karka 26.15 29.02 10.33 Joshi et al., 2018
Arthrocnemum indicum 11.33 13.02 7.01 Nikalje et al., 2019
Sporobolus ioclados 15.33 30.60 2 .01 Xu et al., 2011
Desmostachya bipinnata 26.67 24.68 6.67 Smichi et al., 2018
Urochondra setulosa 25.33 25.01 6.33 Atia et al., 2019
Aeluropus lagopoides 26.67 29.33 7.67 Naz et al., 2018
Tamarix indica 12.17 24.67 3.33 Sun et al., 2011
Eleusine indica 22.12 29.67 7.01 Abideen et al., 2011
Salsola imbricate 9.02 18.33 2.67 Oueslati et al., 2006
Cenchrus ciliaris 22.67 23.17 7.00 Encinas-Soto et al., 2016
Lasiurus scindicus 24.67 29.67 6.00 Abideen et al., 2011
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oxidative injury (Table 5). Qasim et al. (2016) investigated 100 medicinal
halophytes and non-halophytes plants and concluded that salt resistant
plants have higher antioxidant capacity and total phenolic content than
non-halophytes. Rhizophora mangle is used to cure diarrhea, Chenopodium
album for constipation, Portulaca oleracea for stomach ache and
Zygophyllum simplex for helminthiases (Ferreira-Machado et al., 2014;
Qasim et al., 2011; Qureshi & Bhatti, 2008). Ziziphus nummularia is used
for skin infections. Heliotropium curassavicum is used for healing boils
while a leaf paste of Aerva javanica and roots of Cyperus routundus are
used for skin infections as well as acne (Boestfleisch et al., 2017; Faustino
et al., 2019). For the treatment of asthma, sore throat and cough, leaves of
Salvadora persica and whole plants of Leucas urticifolia are used. Roots of
Zaleya pentandra are used for influenza while Aerva javanica and Capparis
decidua for chest infections (Nazir, 2019). Aerva javanica is used for head-
aches. Suaeda glauca has anti-neuroinflammatory and anti-oxidative effects.
Sonchus brachyotus showed anti-bacterial activity. Triglochin maritimum
has antioxidant and anti-fungal activity (Alnuqaydan & Rah, 2019; Kim
et al., 2019; Nazar et al., 2018; Turcios & Papenbrock, 2019a).

Bio-saline agriculture

Improper irrigation practices result in an increase of soil salinity which can
be harmful for conventional crop growth and yield. To resolve this prob-
lem, salt tolerant plants can be exploited to reduce land competition and
efficient resource utilization by deploying bio-saline agriculture (Blume
et al., 2012; Brown & Funk, 2008). Acacia ampliceps, Eucalyptus occidenta-
lis, Prosopis juliflora and Casuarina equisetifolia have been adapted in vari-
ous saline regions of Pakistan for saline agriculture (Marcar et al., 2003).
Deplachne fusca is an excellent crop to grow in waterlogged saline areas.

Table 4. List of halophytes seed oil contents in (%) for biodiesel production.
Species Oil % References

Suaeda fruticosa 25.02 Zhao et al., 2018
Halopyrum mucronatum 22.70 Parida et al., 2019
Alhaji maurorum 21.90 Mohammadkhani & Servati, 2018
Atriplex heterosperma 15.80 Patel et al., 2019
Arthrocnemum macrostachyum 25.02 Kafi & Salehi, 2019
Salicornia bigelovii 30.02 Folayan et al., 2019
Cressa cretica 23.30 Al-Snafi, 2016
Suaeda salsa 22.02 Zhao et al., 2019
Haloxylon stocksii 23.20 Baber et al., 2018
Kosteletzkya virginica 30.02 Moser et al., 2016
Atriplex rosea 13.20 Toqeer et al., 2018
Ricinus communis 55.01 Roy et al., 2020
Crithmum maritimum 40.01 Alves-Silva et al., 2020
Descurainaia sophia 44.17 Weber et al., 2007
Suaeda torreyana 25.27 Patel et al., 2019
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Shoots of Salicornia can be used as a vegetable and the plants grow rigor-
ously on extreme saline lands. Seeds of Salicornia bigelovii are rich in pro-
teins and oils and have an exceptional phytochemical profile. High yields
can be achieved by multiple harvesting in saline conditions. Sesuvium por-
tulacastrum accumulates salts to high concentrations without toxic effects
in leaves therefore it has been highly recommended for soil desalination
(Lane et al., 2016; Muchate et al., 2016; Rahman et al., 2019). Atzori et al.
(2017) claimed Mesembryanthemum crystallinum as a high value saline
crop due to its medicinal properties. Prosopis juliflora, Acacia nilotica and
Tamarix articulate, (tress) Ziziphus mauritiana, Carissa carandus, Syzygium

Table 5. Tissues specific medicinal properties of halophytes which can be cultivated on
saline lands.
Species Parts use Medicinal uses References

Amaranthus virdis L. Whole plant Constipation Faiz et al., 2019
Chenopodium album L. Whole plant Constipation Jahan et al., 2019
Cleome brachycarpa Vahl. Whole plant Itching, inflammation, joint

pain, skin diseases
Naeem et al., 2019

Corchorus depressus L. Whole plant Dysuria Siringo et al., 2020
Desmostachya bipinnata L. Root Carbuncle Sharma, 2019
Glinus lotoides L. Whole plant Blood purifier Banerjee et al., 2019
Ipomoea pes-caprae L. Whole plant Diarrhea, vomiting, legs

inflammation, pains, piles
Yakkala & Rao, 2019

Cleome viscosa L. Whole plant ear infection, deafness pain Narsimhulu et al., 2019
Rhizophora mangle L. Fruit/ root/whole plant Diarrhea, diabetes Rodr�ıguez-Garc�ıa

et al., 2019
Salvadora persica L. Leaves/ fruit Cough, asthma Hammad et al., 2019
Heliotropium curassavicum Root Boils Singh & Sharma, 2019
Trianthema portulacastrum Leaves Asthma Falade et al., 2019
Citrullus colocynthis L. Fruit/ root Toothache, bleeding, piles,

constipation, diabetes,
leucorrhea, Asthma

Ostovar et al., 2020

Acacia nilotica L. Leaves/ grass/ bark Asthma, demulcent, diarrhea Kagne & Rajbhoj, 2019
Cynodon dactylon L. Whole plant Wounds, cuts Fatima et al., 2019
Gynandropsis gynandra L. Root/leaves Stomach ace, skin

inflammation
Govindappa, 2015

Peganum harmala L. Whole plant/seed Anti-microbial, Rheumatisms,
back pains, colic

Batyrbekov, 2018

Portulaca oleracea L. Leaves/ fruit/seed Gastric trouble, Stomachache Farkhondeh et al., 2019
Cyperus rotundus L. Root Carbuncle, Acne Jouybari et al., 2018
Cressa cretica L. Leave Sores El-Alfy et al., 2019
Withania somnifera L. Fruit/leaves Anthelmintic,

tuberculosis, leucorrhea
Umaarasu et al., 2019

Heliotropium strigossum Whole plant Boils, wounds, Ulcer Singh & Sharma, 2019
Leucas urticifolia Vahl. Whole plant Cold, gastrointestinal

problems, fever
Noronha et al., 2020

Salsola imbricata Forssk. Whole plant Vascular hypertension,
Insecticidal

Ajaib et al., 2019

Fagonia indica Burm Whole plant Malarial fever, Skin eruption Latif et al., 2019
Zaleya pentandra L. Root Influenza, phlegmatic

cough, cancer
Mughal et al., 2020

Digera muricata L. Whole plant Constipation Jain et al., 2019
Tribulus terrestris L. Root Urinary calculi, Kidney

stones, spermatorrhea,
general debility

Hamidi et al., 2019

Zygophyllum simplex L. Leaves Helminthiases, asthma Amaral-Machado
et al., 2020
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cuminii (fruiting tress), Chloris gayana, Leptochloa fusca and Brachiaria
mutica (grasses) are recommended for saline soils revegetation (Dagar
et al., 2006). Vetiveria zizanoides shows 72.6–78.7Mg ha�1 fresh shoot and
1.19–1.73Mg ha�1 root biomass yields when irrigated with saline water on
calcareous saline soils (Akhzari & Aghbash, 2013; Dagar, 2005; Xia et al.,
2000). Suthar et al. (2018) examined Tecomela undulata, Prosopis cineraria,
Salvadora oleoides and Acacia Senegal under salt and drought stress and
concluded that Salvadora oleoides has a dual potential to tolerate both
stresses simultaneously and thus proved to be a potential candidate for bio-
saline agriculture.

Revegetation and rehabilitation using halophytes

Salinity and drought are the major stress factors which can be better toler-
ated by halophytes than most other plants. Establishment of plants on abi-
otic stress impacted areas (salinity and drought) involving native species is
known as revegetation (Yan et al., 2020). These adaptive properties make
halophytes valuable as good practice for revegetation and rehabilitation in
order to maintain biodiversity. Growing halophytes on marginal lands is
applicable and an environmentally friendly approach for rehabilitation,
revegetation and phytoamelioration of the salt-affected soils. The
rehabilitation of these salt-affected soil is necessary as these lands can be
reused for agricultural resources, such as grazing and as turf grass for
sports. Land rehabilitation is also useful as it enhance species biodiver-
sity and limits erosion of soil by using land and water unsuitable for
conventional crops. Soil effected due to secondary salinization can be
reduce by many strategies to rehabilitate saline-sodic landscapes, such as
scraping to remove salt crusts to allow plant establishment, drainage
installation, and irrigation to leach Naþ from the root zone (Siyal et al.,
2002). Use of salt-accumulating plants which mostly belongs to family
Amaranthaceae, can be suitable species for rehabilitation and revegeta-
tion for salt effected areas (Devi et al., 2008). Many halophytes including
Sclerolaena longicuspis, Atriplex halimus, Cenchrus ciliaris and Lotus cre-
ticus Tecticornia pergranulata and Frankenia serpyllifolia are reported as
promising species for arid rangeland rehabilitation, because of their
adaptation and palatability (Shaygan et al., 2018). Biomass of plants for
rehabilitation at saline degraded lands should be composed of a balanced
ratio of total protein, nitrogen, neutral detergent fiber, acid detergent
fiber, ash and lignin (Tlili et al., 2020). Phlomis purpurea, Alternanthera
bettzickiana and Limonium stocksii have great ornamental uses due to
the astonishing color of their leaves and flowers. They have the ability to
survive under environmental stresses (Akhzari & Aghbash, 2013; Ozturk
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et al., 2018). Most of the halophytes in Pakistan are usually herbs and
shrubs which can grow in poor quality soils and brackish water to pro-
mote conventional irrigation system. Saline irrigation holds great poten-
tial for ensuring high pecuniary returns in saline prone areas (Panta
et al., 2018).

Phytoremediation and effluent purification

In recent years, mine tailing, industrial waste, excess use of fertilizers and
atmospheric deposition greatly affected saline areas. Metal storing capacity,
uptake and detoxification of salts are specific mechanisms of halophytes
that can be used for heavy metal and salt remediation (see Tables 6–8)
(Nedjimi & Daoud, 2009). Zygophyllum genus are used for both polluted
soils as well as for effluent purification. Typha domingensis, Arthrocnemum
macrostachyum, Dittrichia viscosa, and Prosopis juliflora remediated heavy
metals from effluents. Phragmites australis, Phragmites karka, Tamarix
smyrnensis, Medicago sativa and Glycine max are suitable candidates to
clean oil and gas polluted soils and water (Nie et al., 2011; Prasad &
Tewari, 2016). Leaves of Tamarix smyrnensis have glands which excrete
excessive salts and metal ions. Plants from the Brassicaceae family are con-
sidered vital phytoremediation agents. Sesuvium portulacastrum accumu-
lates heavy metals and salts from effluents (Nguyen et al., 2017; Reginato
et al., 2019). Zaier et al. (2014) used Sesuvium portulacastrum for remedi-
ation of lead polluted soils with addition of EDTA for enhancement of its
phytoextraction activity. Noccaea rotundifolium and Noccaea caerulescens
can store high concentrations of lead in their shoots. Hong and Chan
(2002) investigated Dianthus chinensis and found high amounts of lead and
cadmium in its shoots. Suaeda salsa is also used to remediate cadmium
from contaminated soils (Paredes-P�aliz et al., 2018). Manousaki et al.
(2014) explored the phytoremediation potential of Limoniastrum monopeta-
lum on lead and cadmium contaminated soils. Devi et al. (2016) examined
many halophytes species and concluded that Atriplex lentiformis and
Suaeda fruticosa were optimal metal accumulators. Li et al. (2019) claimed
Halogeton glomeratus was an excellent candidate for phytoremediation of
heavy metals as well as salt on contaminated soils. Salicornia brachiate can
remediate nickel, cadmium and arsenic (Cabrita et al., 2019). Syranidou
et al. (2017) reported that Juncus acutus had the ability to remediate
Bisphenol-A from polluted water. Farzi et al. (2017) used Salicornia euro-
paea, Bienertia cycloptera and Salsola crassa to reduce water salinity and
they were recommended as a better option for salt remediation from wet-
lands. Aster tripolium stores copper and cadmium when grown in contami-
nated areas. Atriplex marina absorbs heavy metals via its roots and stores
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them in the leaves. For the monitoring of heavy metal pollution, Ceriops
decandra is used as a biomarker because these plants show visible toxicity
symptoms. For instance, in case of mercury, shoot tips become brown,
leaves become yellow for lead and for cadmium toxicity show chlorosis.
Activity assessment reveals the liner relationship between peroxidase activ-
ities and leaf tissue metal concentration which is associated with visible
toxicity symptoms in Ceriops decandra (Gupta & Chakrabarti, 2013).
Tamarix smyrnensis excretes cadmium via salts glands present on their
leaves. In order to reduce metal load, these excreted metals can be collected
before they reenter into the soil (Ali et al., 2019; Turcios &
Papenbrock, 2019b).

Removal of polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons are the major contaminates of the atmos-
phere, marine and soil environments. Hydrocarbons impact very harmful
effects on flora, fauna and humans. Polycyclic aromatic hydrocarbons accu-
mulate in costal soils and plants grown in contaminated soil. Edible plants
grown on such type of soils are enriched of these contaminants which is
unsafe for consumption. Halophytes have the potential to remediate poly-
cyclic aromatic hydrocarbons (Table 8). Xiao et al. (2015) describe the deg-
radation of 90.67% fluoranthene, 93.27% pyrene, 100% benzo(a)
anthracene, 100% chrysene, 100% benzo(b) fluoranthene, 100% benzo(k)
fluoranthene, 99.53% benzo(a) pyrene and 100% by planting Medicago sat-
iva for 150 days. Syranidou et al. (2017) used Juncus acutus for remediating
Bisphenol-A from ground water. Ebadi et al. (2018) increased petroleum

Table 6. List of halophytes that accumulate heavy metals and can be a good source of bio-
remediation of contaminated soils.
Specie Heavy metals Tolerance mechanism References

Halogeton glomeratus Chromium, nickel, zinc,
cadmium,
coper, arsenic

Osmoprotectants Li et al., 2019

Halopyrum mucronatum, Iron, zinc, chromium Excretion Atia et al., 2019
Kosteletzkya pentacarpos Cadmium, zinc Osmoprotectants Zhou et al., 2019
Salsola imbricate Lead Excretion Mujeeb et al., 2020
Atriplex halimus Zinc, cadmium, boron Accumulation Bankaji et al., 2019
Avicennia marina Zinc, cadmium, lead Exclusion Dai et al., 2018
Heliotropium bacciferum Lead, copper,

zinc, manganese
Accumulation Vicente et al., 2016

Sesuvium portulacastrum Cadmium, arsenic, nickel Phytoextraction Fourati et al., 2019
Bruguiera gymnorhiza Lead, cadmium, mercury Exclusion Sruthi & Puthur,2019
Tamarix smyrnensis Lead, cadmium Excretion Sghaier et al., 2019
Atriplex undulate Lead, copper Phytostabilization Kumari et al., 2019
Atriplex lentiformis Cadmium, copper, zinc Phytostabilization Eissa & Abeed, 2019
Mesembryanthemum

crystallinum
Copper Osmoprotectants Tran et al., 2020

Kandelia candel Cadmium Antioxidant system Xing et al., 2019
Avicennia germinans Cadmium, copper Metal binding molecules Torasa et al., 2019
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hydrocarbon degradation but 10-fold in Salicornia persica by adding
Pseudomonas aeruginosa to the oil contaminated soil. Salicornia fragilis
accumulate polycyclic aromatic hydrocarbons in shoot tissues after planting
in contaminated soil (Abdollahzadeh et al., 2019). Halimione portulacoides
accumulate polycyclic aromatic hydrocarbons in shoots from contaminated
soil (Khan et al., 2019).

Table 7. Metal accumulation capacity of halophytes grown under industrial waste water.
Species Heavy metals Metal Accumulation References

Arthrocnemum macrostachyum Lead 620 (mg/kg) Lu et al., 2017
Cruciahia marina Zinc 390 Orescanin et al., 2006
Dittrichia viscosa Lead 270 Abdallah et al., 2020
Typha domingenis Selenium 30 Hadad et al., 2010
Atriplex halimus Zinc 440 Bankaji et al., 2019

Cadmium 606
Cadmium 830

Typha lotifolia Cadmium 210 Hejna et al.,2020
Paspalum conjugatum Lead 150 Zhang et al., 2020
Tamarix smyrnensis Lead 800 Sghaier et al., 2019

Cadmium 800 Sghaier et al., 2019
Avicennia officinalis Copper 14.78 (mg/g) Sarangi et al., 2002

Zinc 107.8
Lead 23.21

Rhizophora apiculata Copper 10.25 Khan et al., 2020
Zinc 16.8
Lead 12.23

Rhizophora mucronata Copper 19.90 Ganeshkumar et al., 2019
Zinc 40.3
Lead 12.61

Excoecaria agallocha Copper 8.12 Yan and Tam 2013
Zinc 76.6
Lead 27.35

Bruguiera cylindrical Copper 17.46 Sarangi et al., 2002
Zinc 116.9
Lead 17.39

Ceriops decandra Copper 95.05 Gupta and Chakrabarti 2013
Zinc 9.3
Lead 11.82

Aegiceras corniculatum Copper 13.39 Huang et al., 2020
Zinc 12.8
Lead 12.91

Acanthus ilicifolius Copper 13.79 Shackria and Puthur, 2017
Zinc 67.5
Lead 15.99

Arthrocnemum indicum Copper 10.89 Sghaier et al., 2020
Zinc 67.2
Lead 10.83

Suaeda maritima Copper 10.81 Malik and Ravindran 2018
Zinc 71.1
Lead 11.08

Suaeda monoica Copper 7.77 Joshi et al., 2020
Zinc 19.0
Lead 10.57

Sesuvium portulacastrum Copper 10.47 Feng et al., 2018
Zinc 62.4
Lead 16.95

Ipomoea pescaprae Copper 32.22 Cordova, 2020
Zinc 44.9
Lead 13.38
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Use of halophytes for landscaping

Biological systems are greatly influenced by directly deposited saline con-
taminations. To minimize the salinity problem, it is essential to assess halo-
phytes for landscaping and for fixation of sand dunes. Species capable of
tolerating 0.5% NaCl or more are potential candidates for landscaping, for
recreational purposes for instance (Sa�glam & €Onder, 2018). Camphorosma
species are highly preferred in landscaping because they have the ability to
convert soils from erosion, grow in highly salty areas and also have high
nutritional values (Zamin et al., 2019). Phragmites karka and Typha domi-
ngensis are both excellent stabilizer of erosions due to their ability to grow
and survive in flooded areas. Maireana sedifolia, Iresine rhizomatosa, Cakile
maritima and Arthrocnemum halocnemoides are very effective desert land-
scape species and extensively used in landscaping. Tolerance to high salin-
ity and other environmental stresses established Callistemon citrinus and
Callistemon laevis as candidates for landscaping in saline and arid areas
(Cassaniti & Romano, 2011; Ortiqova, 2019). Plant responses to the salt
stress depend on the duration and intensity of salt exposure (Ventura et al.,
2015). Species like Halimione, Plantago, Frankenia, Camphorosma,
Halocnemum and Acantholimon are used as ground cover and are highly
preferred in high salt lands and can be used as turf grasses (Ungar, 1987).

Conclusions

Halophytes are getting attention in the world due to their ability to grow
and complete their life cycle under harsh environment. The main adapta-
tion of halophytes includes strict control of the water/ion fluxes which
helps in maintenance of proper osmotic adjustment under saline condi-
tions. Halophytes can prevent themselves from lethal oxidative burst by
producing metabolites such as antioxidants and osmoprotectants which

Table 8. Halophyte used for phytoremediation of polycyclic aromatic hydrocarbons from con-
taminated saline soils.
Halophytes Contaminants Degradation (%) References

Spartina densiflora Phenanthrene 43-78 Mesa-Mar�ın et al., 2019
Cakile maritima Phenanthrene 75 Arbelet-Bonnin et al., 2019
Juncus maritimus Total petroleum hydrocarbons 12 Tang, 2019
Phragmites australis Total petroleum hydrocarbons 16 Fadhil & Al-Baldawi, 2020
Halimione portulacoides Total petroleum hydrocarbons 10–64 Khan et al., 2019
Scirpus maritimus Total petroleum hydrocarbons 13-79 Gorbatiuk & Pasichnaya, 2019
Juncus maritimus Total petroleum hydrocarbons 0-48 Tang, 2019
Aeluropus littoralis Total petroleum hydrocarbons 32 Sima et al., 2019
Iris dichotoma Total petroleum hydrocarbons 19-30 Capuana, 2020
Setaria viridis Total petroleum hydrocarbons 24-52 Ponce-Hern�andez et al., 2020
Salicornia persica Total petroleum hydrocarbons 55-57 Abdollahzadeh et al., 2019
Juncus roemerianus Total petroleum hydrocarbons 48-66 Ogheneruemu et al., 2020
Suaeda salsa Total petroleum hydrocarbons 43 Li & You, 2020
Iris lactea Total petroleum hydrocarbons 19-30 Capuana, 2020
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have a close association with protecting photosynthesis and biomass pro-
duction. Halophytes can compete with other conventional crops for mul-
tiple economic benefits as they are outside the human food chain, and
contain a variety of metabolites which can convert directly into biofuel, can
be used for medicinal application, and are a source of edible oil. Increasing
population and calories demands calls for increased food production by
using halophytes which will reduce our food crises while achieving sustain-
able environmental goals set by UNO. Utilization of halophytes in revegeta-
tion and rehabilitation for landscaping are closely associated with
phytoremediation and effluent purification which can be establish and
implemented in developing countries to improve economic potential and
agro-management systems to feed the creeping populations. Cultivation of
halophytes for industrial purposes can be recommended due to their ability
to grow on saline degraded lands thus leading to an economic and environ-
mental benefit for our society.
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Matos, A. R., Marques, J. C., & Caçador, I. (2018). Halophyte fatty acids as biomarkers
of anthropogenic-driven contamination in Mediterranean marshes: Sentinel species sur-
vey and development of an integrated biomarker response (IBR) index. Ecological
Indicators, 87, 86–96. https://doi.org/10.1016/j.ecolind.2017.12.050

Ebadi, A., Sima, N. A. K., Olamaee, M., Hashemi, M., & Nasrabadi, R. G. (2018).
Remediation of saline soils contaminated with crude oil using the halophyte Salicornia
persica in conjunction with hydrocarbon-degrading bacteria. Journal of Environmental
Management, 219, 260–268. https://doi.org/10.1016/j.jenvman.2018.04.115

Eissa, M. A., & Abeed, A. H. (2019). Growth and biochemical changes in quail bush
(Atriplex lentiformis (Torr.) S. Wats) under Cd stress. Environmental Science and
Pollution Research International, 26(1), 628–635. https://doi.org/10.1007/s11356-018-
3627-1

El-Alfy, T. S., Ammar, N. M., Al-Okbi, S. Y., Salama, M. M., Aly, H. F., & Amer, A. A.
(2019). Cressa cretica L. growing in Egypt: Phytochemical study and potential antioxidant
and hepato-protective activities. Journal of Applied Pharmaceutical Science, 9(S1),
046–057.

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 29

https://doi.org/10.1104/pp.84.3.561
https://doi.org/10.1016/j.marpolbul.2017.10.083
https://doi.org/10.1016/j.marpolbul.2017.10.083
https://doi.org/10.1016/j.apsoil.2020.103571
https://doi.org/10.1016/j.apsoil.2020.103571
https://doi.org/10.1080/15226514.2015.1131229
https://doi.org/10.1080/15226514.2015.1131229
https://doi.org/10.1007/s11515-010-0032-7
https://doi.org/10.1007/s11515-010-0032-7
https://doi.org/10.1111/plb.12517
https://doi.org/10.1016/j.ecolind.2017.12.050
https://doi.org/10.1016/j.jenvman.2018.04.115
https://doi.org/10.1007/s11356-018-3627-1
https://doi.org/10.1007/s11356-018-3627-1


El-Kady, A. F., & Borham, T. I. (2020). Sustainable cultivation under saline irrigation water:
Alleviating salinity stress using different management treatments on Terminalia arjuna
(Roxb.) Wight & Arn. Agricultural Water Management, 229, 105902. https://doi.org/10.
1016/j.agwat.2019.105902

El-Maboud, M. M. A. (2019). Seasonal variations effect on antioxidant compounds and
their role in the adaptation of some halophytes at Wadi Gharandal, Southwest Sinai.
Annals of Agricultural Sciences, 64(2),161–166.

Encinas-Soto, K. K., M�artin-Garc�ıa, A. R., & P�erez-Tello, M. (2016). Kinetic study on the
acid hydrolysis of Cenchrus ciliaris particles for the production of xylose and other
monosaccharides. Industrial & Engineering Chemistry Research, 55(2), 436–445.

Esau, K. (1965). Plant anatomy (pp. 767). John Wiley and Sons, Inc.
Fadhil, N. M., & Al-Baldawi, I. A. W. (2020). Biodegradation of total petroleum hydrocar-

bon from Al-Daura refinery wastewater by Rhizobacteria. Journal of Engineering, 26(1),
14–23.

Faiz, N., Priya, V. V., Ponnulakshmi, R., Gayathri, R., Shyamaladevi, B., Madhan, K.,
Manikannan, M., & Selvaraj, J. (2019). In vitro antioxidant potential of stem of
Amaranthus viridis-A medicine used in the Ayurvedic system of medicine. Drug
Invention Today, 11(5), 1148–1156.

Falade, T., Ishola, I., Akinleye, M., Oladimeji-Salami, J., & Adeyemi, O. (2019).
Antinociceptive and anti-arthritic effects of aqueous whole plant extract of Trianthema
portulacastrum in rodents: Possible mechanisms of action. Journal of Ethnopharmacology,
238, 111831. https://doi.org/10.1016/j.jep.2019.111831

FAO & UNICEF. (2018). WFP and WHO (2017) The State of Food Security and Nutrition
in the World 2017: Building Resilience for Peace & Food Security. Rome.

Farkhondeh, T., Samarghandian, S., Azimi-Nezhad, M., & Hozeifi, S. (2019). The Hepato-
protective Effects of Portulaca oleracea L. extract: Review. Current Drug Discovery
Technologies, 16(2), 122–126. https://doi.org/10.2174/1570163815666180330142724

Farzi, A., Borghei, S. M., & Vossoughi, M. (2017). The use of halophytic plants for salt
phytoremediation in constructed wetlands. International Journal of Phytoremediation,
19(7), 643–650. https://doi.org/10.1080/15226514.2016.1278423

Fatima, N., Narain, S., & Renu, S. K. (2019). Grasses: as boon and some depreciated taxa of
Uttar Pradesh. Environment & Ecology, 37(3A), 863–867.

Faustino, M. V., Faustino, M. A., & Pinto, D. C. (2019). Halophytic grasses, a new source
of nutraceuticals? A review on their secondary metabolites and biological activities.
International Journal of Molecular Sciences, 20(5), 1067. https://doi.org/10.3390/
ijms20051067

Feng, J., Lin, Y., Yang, Y., Shen, Q., Huang, J., Wang, S., Zhu, X., & Li, Z. (2018).
Tolerance and bioaccumulation of combined copper, zinc, and cadmium in Sesuvium
portulacastrum. Marine Pollution Bulletin, 131(Pt A), 416–421. https://doi.org/10.1016/j.
marpolbul.2018.04.049

Feng, L., Xu, W., Sun, N., Mandal, S., Wang, H., & Geng, Z. (2020). Efficient improvement
of soil salinization through phytoremediation induced by chemical remediation in
extreme arid land northwest China. International Journal of Phytoremediation, 22(3),
334–341. https://doi.org/10.1080/15226514.2019.1663483

Feng, Y., Wu, Y., Zhang, J., Meng, Q., Wang, Q., Ma, L., Ma, X., & Yang, X. (2018).
Ectopic expression of SaNRAMP3 from Sedum alfredii enhanced cadmium root-to-shoot
transport in Brassica juncea. Ecotoxicology and Environmental Safety, 156, 279–286.
https://doi.org/10.1016/j.ecoenv.2018.03.031

30 N. MUNIR ET AL.

https://doi.org/10.1016/j.agwat.2019.105902
https://doi.org/10.1016/j.agwat.2019.105902
https://doi.org/10.1016/j.jep.2019.111831
https://doi.org/10.2174/1570163815666180330142724
https://doi.org/10.1080/15226514.2016.1278423
https://doi.org/10.3390/ijms20051067
https://doi.org/10.3390/ijms20051067
https://doi.org/10.1016/j.marpolbul.2018.04.049
https://doi.org/10.1016/j.marpolbul.2018.04.049
https://doi.org/10.1080/15226514.2019.1663483
https://doi.org/10.1016/j.ecoenv.2018.03.031


Ferreira-Machado, S., Gagliardi, R., Nunes, A., Rodrigues, M., Dantas, F., De Mattos, J.,
Peregrin, C., Moura, E., & Caldeira-de-Araujo, A. (2014). Antidiabetic and genotoxic
effects on Wistar rats treated with aqueous extract from Chrysobalanus icaco L. Journal
Medicinal Plants Research, 8(1), 52–57.

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist,
179(4), 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x

Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple ori-
gins of salt tolerance in land plants. Functional Plant Biology, 37(7), 604–612. https://doi.
org/10.1071/FP09269

Flowers, T. J., & Muscolo, A. (2015). Introduction to the special issue: Halophytes in a
changing world. AoB Plants, 7, plv020. https://doi.org/10.1093/aobpla/plv020

Flowers, T., Troke, P., & Yeo, A. (1977). The mechanism of salt tolerance in halophytes.
Annual Review of Plant Physiology, 28(1), 89–121. https://doi.org/10.1146/annurev.pp.28.
060177.000513

Folayan, A. J., Anawe, P. A. L., Ayeni, A. O., & Arellano-Garcia, H. (2019). Synthesis and
characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil
extracted by supercritical CO2 modified with ethanol for biodiesel production via
enzymatic transesterification reaction using immobilized Candida antarctica lipase cata-
lyst in tert-butyl alcohol (TBA) solvent. Cogent Engineering, 6(1), 1625847. https://doi.
org/10.1080/23311916.2019.1625847

Fourati, E., Vogel-Miku�s, K., Bettaieb, T., Kav�ci�c, A., Kelemen, M., Vavpeti�c, P., Pelicon,
P., Abdelly, C., & Ghnaya, T. (2019). Physiological response and mineral elements accu-
mulation pattern in Sesuvium portulacastrum L. subjected in vitro to nickel.
Chemosphere, 219, 463–471. https://doi.org/10.1016/j.chemosphere.2018.12.081

Franco, M. A., & Greenberg, H. B. (1997). Immunity to rotavirus in T cell deficient mice.
Virology, 238(2), 169–179. https://doi.org/10.1006/viro.1997.8843

Gadir, W. S. A., & Adam, S. (2007). Effect of feeding pearl millet (Pennisetum typhoides),
potassium iodate or their mixture to Nubian goats. Journal of Pharmacology &
Toxicology, 2, 183–189.

Ganeshkumar, A., Arun, G., Vinothkumar, S., & Rajaram, R. (2019). Bioaccumulation and
translocation efficacy of heavy metals by Rhizophora mucronata from tropical mangrove
ecosystem, Southeast coast of India. Ecohydrology & Hydrobiology, 19(1), 66–74.

Gangwar, P., Singh, R., Trivedi, M., & Tiwari, R. K. (2020). Sodic soil: Management and
reclamation strategies. In Environmental Concerns and Sustainable Development (pp.
175–190). Singapore: Springer.

Garza-Torres, R., Troyo-Di�eguez, E., Nieto-Garibay, A., Lucero-Vega, G., Magall�on-Barajas,
F. J., Garc�ıa-Galindo, E., Fimbres-Acedo, Y., & Murillo-Amador, B. (2020).
Environmental and management considerations for adopting the halophyte Salicornia
bigelovii Torr. as a sustainable seawater-irrigated crop. Sustainability, 12(2), 707. https://
doi.org/10.3390/su12020707

Gayathri, B., Srinivasamurthy, C., Vasanthi, B., Naveen, D., Prakash, N., & Bhaskar, S.
(2020). Extraction and charactrisation of humic acid from different organic wastes and
its physico-chemical properties. International Journal of Chemical Studies, 8(1), 769–775.
https://doi.org/10.22271/chemi.2020.v8.i1k.8359

Godfrey, D. I., Koay, H.-F., McCluskey, J., & Gherardin, N. A. (2019). The biology and
functional importance of MAIT cells. Nature Immunology, 20(9), 1110–1128. https://doi.
org/10.1038/s41590-019-0444-8

Gonzalez, M. B., & Palomares, M. P. C. (2019). Polyamines in halophytes. Frontiers in
Plant Science, 10, 439.

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 31

https://doi.org/10.1111/j.1469-8137.2008.02531.x
https://doi.org/10.1071/FP09269
https://doi.org/10.1071/FP09269
https://doi.org/10.1093/aobpla/plv020
https://doi.org/10.1146/annurev.pp.28.060177.000513
https://doi.org/10.1146/annurev.pp.28.060177.000513
https://doi.org/10.1080/23311916.2019.1625847
https://doi.org/10.1080/23311916.2019.1625847
https://doi.org/10.1016/j.chemosphere.2018.12.081
https://doi.org/10.1006/viro.1997.8843
https://doi.org/10.3390/su12020707
https://doi.org/10.3390/su12020707
https://doi.org/10.22271/chemi.2020.v8.i1k.8359
https://doi.org/10.1038/s41590-019-0444-8
https://doi.org/10.1038/s41590-019-0444-8


Gonz�alez-Montemayor, �A.-M., Flores-Gallegos, A. C., Contreras-Esquivel, J. C., Solanilla-
Duque, J.-F., & Rodr�ıguez-Herrera, R. (2019). Prosopis spp. functional activities and its
applications in bakery products. Trends in Food Science & Technology., 94, 12–19.
https://doi.org/10.1016/j.tifs.2019.09.023

Gorbatiuk, L., & Pasichnaya, Y. A. (2019). Hydrophytes in the oil-polluted water bodies:
Some aspects of functioning and practical use (a review). Hydrobiological Journal, 55(1),
75–86. https://doi.org/10.1615/HydrobJ.v55.i1.80

Govindappa, M. (2015). A review on role of plant (s) extracts and its phytochemicals for
the management of diabetes. Journal of Diabetes & Metabolisim, 6(7), 1–38.

Grigore, M. N., & Toma, C. (2017). Bulliform cells. Anatomical Adaptations of Halophytes,
325–338.

Guo, J., Khan, S., Cho, S. H., & Kim, J. (2019). ZnS nanoparticles as new additive for poly-
ethersulfone membrane in humic acid filtration. Journal of Industrial & Engineering
Chemistry, 79, 71–78.

Gupta, S., & Chakrabarti, S. (2013). Mangroves-a potential phyto-remediator and useful
bio-indicator against heavy metal toxicity. International Journal of Bio-Resource & Stress
Management, 4(2s), 322–327.

Hadad, H. R., Mufarrege, M. M., Pinciroli, M., Di Luca, G. A., & Maine, M. A. (2010).
Morphological response of Typha domingensis to an industrial effluent containing heavy
metals in a constructed wetland. Archives of Environmental Contamination and
Toxicology, 58(3), 666–675. https://doi.org/10.1007/s00244-009-9454-0

Hameed, A., Gulzar, S., Aziz, I., Hussain, T., Gul, B., & Khan, M. A. (2015). Effects of sal-
inity and ascorbic acid on growth, water status and antioxidant system in a perennial
halophyte. AoB Plants, 7 https://doi.org/10.1093/aobpla/plv004

Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT
innovation adoption in organizations. Journal of Engineering & Technology Management,
29(3), 358–390.

Hamidi, A., Yazdi, M. E. T., Amiri, M. S., Hosseini, H. A., & Darroudi, M. (2019).
Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation
of their photocatalyst, antibacterial, and cytotoxicity effects. Research on Chemical
Intermediates, 45(5), 2915–2925. https://doi.org/10.1007/s11164-019-03770-y

Hammad, H. M., Al-Qaoud, K. M., Hammad, M. M., & Mansi, M. A. (2019). Effect of
Salvadora persica Linn root aqueous extract on oral epithelial dysplasia and oral cancer
cell lines. Tropical Journal of Pharmaceutical Research, 18(12), 2591–2596.

Handa, A. K., & Mattoo, A. K. (2010). Differential and functional interactions emphasize
the multiple roles of polyamines in plants. Plant Physiology and Biochemistry, 48(7),
540–546. https://doi.org/10.1016/j.plaphy.2010.02.009

Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A., & Rossi, L. (2020).
Bioaccumulation of heavy metals from wastewater through a Typha latifolia and
Thelypteris palustris phytoremediation system. Chemosphere, 241, 125018.https://doi.org/
10.1016/j.chemosphere.2019.125018

Hong Chan, X. (2002). Comparative studies on the root structure and aerenchyma of mari-
time halophyte in Shandong. Chinese Bulletin of Botany, 19(1), 98–102.

Houta, O., Akrout, A., Neffati, M., & Amri, H. (2011). Phenolic contents, antioxidant and
antimicrobial potentials of Crithmum maritimum cultivated in Tunisia arid zones.
Journal of Biologically Active Products from Nature, 1(2), 138–143. https://doi.org/10.
1080/22311866.2011.10719081

Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a
NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt

32 N. MUNIR ET AL.

https://doi.org/10.1016/j.tifs.2019.09.023
https://doi.org/10.1615/HydrobJ.v55.i1.80
https://doi.org/10.1007/s00244-009-9454-0
https://doi.org/10.1093/aobpla/plv004
https://doi.org/10.1007/s11164-019-03770-y
https://doi.org/10.1016/j.plaphy.2010.02.009
https://doi.org/10.1016/j.chemosphere.2019.125018
https://doi.org/10.1016/j.chemosphere.2019.125018
https://doi.org/10.1080/22311866.2011.10719081
https://doi.org/10.1080/22311866.2011.10719081


tolerance in rice. Proceedings of the National Academy of Sciences United States of
America, 103(35), 12987–12992. https://doi.org/10.1073/pnas.0604882103

Huang, X., Wang, X., Li, X., Yan, Z., & Sun, Y. (2020). Occurrence and transfer of heavy
metals in sediments and plants of Aegiceras corniculatum community in the Qinzhou
Bay, southwestern China. Acta Oceanologica Sinica, 39(2), 79–88. https://doi.org/10.1007/
s13131-020-1555-7

Hussain Wani, S., Brajendra Singh, N., Haribhushan, A., & Iqbal Mir, J. (2013).
Compatible solute engineering in plants for abiotic stress tolerance-role of glycine beta-
ine. Current Genomics, 14(3), 157–165. https://doi.org/10.2174/1389202911314030001

Ijaz, M., Ahmad, H. R., Bibi, S., Ayub, M. A., & Khalid, S. (2020). Soil salinity detection
and monitoring using Landsat data: A case study from Kot Addu, Pakistan. Arabian
Journal of Geosciences, 13(13), 1–9. https://doi.org/10.1007/s12517-020-05572-8

Jahan, S., Azad, T., Ayub, A., Ullah, A., Afsar, T., Almajwal, A., & Razak, S. (2019).
Ameliorating potency of Chenopodium album Linn. and vitamin C against mercuric
chloride-induced oxidative stress in testes of Sprague Dawley rats. Environmental Health
and Preventive Medicine, 24(1), 62. https://doi.org/10.1186/s12199-019-0820-x

Jain, C., Khatana, S., & Vijayvergia, R. (2019). Bioactivity of secondary metabolites of vari-
ous plants: A review. International Journal of Pharmacology and Science, 10, 494–504.

Jayatissa, L. P., Wickramasinghe, W., Dahdouh-Guebas, F., & Huxham, M. (2008).
Interspecific variations in responses of mangrove seedlings to two contrasting salinities.
International Review of Hydrobiology, 93(6), 700–710. https://doi.org/10.1002/iroh.
200711017

Joshi, A., Kanthaliya, B., & Arora, J. (2018). Halophytes of Thar desert: Potential source of
nutrition and feedstuff. International Journal of Bioassays, 8, 5674–5683.

Joshi, J., Bhattarai, T., & Sreerama, L. (2018). Efficient methods of pretreatment for the
release of reducing sugars from lignocellulosic biomass native to nepal and characteriza-
tion of pretreated lignocellulosic biomass. International Journal of Advanced
Biotechnology & Research, 9(3), 9–23.

Joshi, A., Kanthaliya, B., Rajput, V., Minkina, T., & Arora, J. (2020). Assessment of phytor-
emediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa
critica. Biologia Futura, 71(3), 301–312. https://doi.org/10.1007/s42977-020-00038-0

Joshi, R., Mangu, V. R., Bedre, R., Sanchez, L., Pilcher, W., Zandkarimi, H., & Baisakh, N.
(2015). Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop
plants. In Elucidation of Abiotic Stress Signaling in Plants (pp. 243–279). New York, NY:
Springer.

Ju, W., Liu, L., Jin, X., Duan, C., Cui, Y., Wang, J., Ma, D., Zhao, W., Wang, Y., & Fang,
L. (2020). Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium
on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, 254,
126724. https://doi.org/10.1016/j.chemosphere.2020.126724

Kafi, M., & Salehi, M. (2019). Potentially domesticable Chenopodiaceae halophytes of Iran.
In Sabkha Ecosystems (pp. 269–288). Cham: Springer.

Kagne, R., & Rajbhoj, B. (2019). In vitro evaluation of various extracts of Acacia nilotica
(L.) del. against human pathogenic fungi. Journal of Pharmacognosy & Phytochemistry,
8(4), 2366–2368.

Karthik, L., Kumar, G., Keswani, T., Bhattacharyya, A., Chandar, S. S., & Rao, K. B. (2014).
Protease inhibitors from marine actinobacteria as a potential source for antimalarial
compound. PLoS One, 9(3), e90972. https://doi.org/10.1371/journal.pone.0090972

Karthivashan, G., Park, S.-Y., Kweon, M.-H., Kim, J., Haque, M. E., Cho, D.-Y., Kim, I.-S.,
Cho, E.-A., Ganesan, P., & Choi, D.-K. (2018). Ameliorative potential of desalted

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 33

https://doi.org/10.1073/pnas.0604882103
https://doi.org/10.1007/s13131-020-1555-7
https://doi.org/10.1007/s13131-020-1555-7
https://doi.org/10.2174/1389202911314030001
https://doi.org/10.1007/s12517-020-05572-8
https://doi.org/10.1186/s12199-019-0820-x
https://doi.org/10.1002/iroh.200711017
https://doi.org/10.1002/iroh.200711017
https://doi.org/10.1007/s42977-020-00038-0
https://doi.org/10.1016/j.chemosphere.2020.126724
https://doi.org/10.1371/journal.pone.0090972


Salicornia europaea L. extract in multifaceted Alzheimer’s-like scopolamine-induced
amnesic mice model. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-
25381-0

Khan, A., Bilal, S., Khan, A. L., Imran, M., Al-Harrasi, A., Al-Rawahi, A., & Lee, I. J.
(2020). Silicon-mediated alleviation of combined salinity and cadmium stress in date
palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicology
and Environmental Safety, 188, 109885. https://doi.org/10.1016/j.ecoenv.2019.109885

Khan, A. R., Reichmann, L., Ibal, J., Shin, J., Liu, Y., Collins, H., LePage, B., & Terry, N.
(2019). Variation in pickleweed root-associated microbial communities at different loca-
tions of a saline solid waste management unit contaminated with petroleum hydrocar-
bons. PLoS One, 14(10), e0222901. https://doi.org/10.1371/journal.pone.0222901

Khan, M. A., Ahmed, M. Z., & Hameed, A. (2006). Effect of sea salt and L-ascorbic acid
on the seed germination of halophytes. Journal of Arid Environments, 67(3), 535–540.

Khan, M. A., & Qaiser, M. (2006). Halophytes of Pakistan: Characteristics, distribution and
potential economic usages. In Sabkha Ecosystems (pp. 129–153). Dordrecht: Springer.

Khan, W. R., Rasheed, F., Zulkifli, S. Z., Kasim, M. R. b M., Zimmer, M., Pazi, A. M.,
Kamrudin, N. A., Zafar, Z., Faridah-Hanum, I., & Nazre, M. (2020). Phytoextraction
potential of Rhizophora apiculata: A case study in Matang Mangrove Forest Reserve,
Malaysia. Tropical Conservation Science. https://doi.org/10.1177/1940082920947344

Kim, D. H., Kweon, M. H., Cho, E. A., Yoon, H. J., & Park, S. Y. (2019). Functionally rein-
forced desalted nutritional compositions from halophytes and preparation method
thereof. Google Patents.

Kim, J., Karthivashan, G., Kweon, M.-H., Kim, D.-H., & Choi, D.-K. (2019). The ameliora-
tive effects of the ethyl acetate extract of Salicornia europaea L. and its bioactive candi-
date, Irilin B, on LPS-induced microglial inflammation and MPTP-intoxicated PD-like
mouse model. Oxidative Medicine & Cellular Longevity, 2019, 6764756. https://doi.org/
10.1155/2019/6764756

Kirby, J. N. (2016). The role of mindfulness and compassion in enhancing nurturing family
environments. Clinical Psychology: Science & Practice, 23(2), 142–157.

Kobayashi, H., Yoshikuni, M., Yoshitaka, T., Yasuyuki, I., & Setsuro, S. (2007). Ability of
salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Naþ and Kþ. Soil Science
& Plant Nutrition, 53, 764–771.

Kogan, F., Guo, W., & Yang, W. (2019). Drought and food security prediction from
NOAA new generation of operational satellites. Geomatics, Natural Hazards & Risk,
10(1), 651–666.

Kosov�a, K., V�ıt�amv�as, P., Urban, M. O., & Pr�a�sil, I. T. (2013). Plant proteome responses to
salinity stress–comparison of glycophytes and halophytes. Functional Plant Biology,
40(9), 775–786. https://doi.org/10.1071/FP12375

Krauss, K. W., & Ball, M. C. (2013). On the halophytic nature of mangroves. Trees, 27(1),
7–11. https://doi.org/10.1007/s00468-012-0767-7

Kumar, A., Abraham, E., & Gupta, A. (2018a). Alternative biomass from saline and semi-
arid and arid conditions as a source of biofuels: Salicornia. Biofuels: Greenhouse Gas
Mitigation & Global Warming, 229–240.

Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Sch€uth, C., & Graber, E. R.
(2018b). Biochar aging in contaminated soil promotes Zn immobilization due to changes
in biochar surface structural and chemical properties. Sci Total Environ, 626, 953–961.
https://doi.org/10.1016/j.scitotenv.2018.01.157

34 N. MUNIR ET AL.

https://doi.org/10.1038/s41598-018-25381-0
https://doi.org/10.1038/s41598-018-25381-0
https://doi.org/10.1016/j.ecoenv.2019.109885
https://doi.org/10.1371/journal.pone.0222901
https://doi.org/10.1177/1940082920947344
https://doi.org/10.1155/2019/6764756
https://doi.org/10.1155/2019/6764756
https://doi.org/10.1071/FP12375
https://doi.org/10.1007/s00468-012-0767-7
https://doi.org/10.1016/j.scitotenv.2018.01.157


Kumar, D., Priyanka, P., Yadav, P., Yadav, A., & Yadav, K. (2019). Arbuscular Mycorrhizal
fungi-mediated mycoremediation of saline soil: Current knowledge and future prospects.
Recent Advancement in White Biotechnology through Fungi, 319–348.

Kumari, A., Sheokand, S., Kumar, A., Mann, A., Kumar, N., Devi, S., Rani, B., Kumar, A.,
& Meena, B. (2019). Halophyte growth and physiology under metal toxicity. In
Ecophysiology, Abiotic Stress Responses & Utilization of Halophytes (pp. 83–113).
Singapore: Springer.

Kwak, S. S. (2019). Biotechnology of the sweet potato: Ensuring global food and nutrition
security in the face of climate change. Springer.

Latif, A., Abbas, N., Waheed, I., & Qaisar, M. N. (2019). Alpha-glucosidase inhibitory and
antioxidant activities of various extracts of aerial parts of Fagonia indica Burm. F.
Tropical Journal of Pharmaceutical Research, 18(4), 791–797.

Leng, B., Geng, F., Dong, X., Yuan, F., & Wang, B. (2019). Sodium is the critical factor
leading to the positive halotropism of the halophyte Limonium bicolor. Plant Biosystems
- An International Journal Dealing with All Aspects of Plant Biology, 153(4), 544–551.
https://doi.org/10.1080/11263504.2018.1508085

Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X., & Wang, H.
(2019). Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of
heavy metal-contaminated saline soils. Plant & Soil, 442(1–2), 323–331.

Li, D., & You, X.-Y. (2020). On optimal condition of plant-microbial remediation of petrol-
eum hydrocarbon polluted soil. Soil and Sediment Contamination: An International
Journal, 30(1), 35–57.

Li, L., Liu, X., Peijnenburg, W. J., Zhao, J., Chen, X., Yu, J., & Wu, H. (2012). Pathways of
cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and
Environmental Safety, 75(1), 1–7. https://doi.org/10.1016/j.ecoenv.2011.09.007

Li, Q., & Song, J. (2019). Analysis of widely targeted metabolites of the euhalophyte Suaeda
salsa under saline conditions provides new insights into salt tolerance and nutritional
value in halophytic species. BMC Plant Biology, 19(1), 388. https://doi.org/10.1186/
s12870-019-2006-5

Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy
metal contaminated saline soils using halophytes: Current progress and future perspec-
tives. Environmental Reviews, 25(3), 269–281. https://doi.org/10.1139/er-2016-0063

Liu, X., Cai, S., Wang, G., Wang, F., Dong, F., Mak, M., Holford, P., Ji, J., Salih, A., Zhou,
M., Shabala, S., & Chen, Z.-H. (2017). Halophytic NHXs confer salt tolerance by altering
cytosolic and vacuolar Kþ and Naþ in Arabidopsis root cell. Plant Growth Regulation,
82(2), 333–351. https://doi.org/10.1007/s10725-017-0262-7

Lu, Y., Li, X., He, M., Zeng, F., & Li, X. (2017). Accumulation of heavy metals in native
plants growing on mining-influenced sites in Jinchang: A typical industrial city (China).
Environmental Earth Sciences, 76(13), 446. https://doi.org/10.1007/s12665-017-6779-2

Llanes, A., Pinamonti, P., Iparraguirre, J., Bertazza, G., & Luna, V. (2019). Abscisic acid
alters carbohydrate accumulation induced by differential response to sodium salts in the
halophyte Prosopis strombulifera. Plant Biosystems-An International Journal Dealing with
All Aspects of Plant Biology, 154(3), 337–347.

Liphschitz, N., & Waisel, Y. (1974). Existence of salt glands in various genera of the
Gramineae. New Phytologist, 73(3), 507–513. https://doi.org/10.1111/j.1469-8137.1974.
tb02129.x

Lopes, A., Rodrigues, M. J., Pereira, C., Oliveira, M., Barreira, L., Varela, J., Trampetti, F.,
& Cust�odio, L. (2016). Natural products from extreme marine environments: Searching

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 35

https://doi.org/10.1080/11263504.2018.1508085
https://doi.org/10.1016/j.ecoenv.2011.09.007
https://doi.org/10.1186/s12870-019-2006-5
https://doi.org/10.1186/s12870-019-2006-5
https://doi.org/10.1139/er-2016-0063
https://doi.org/10.1007/s10725-017-0262-7
https://doi.org/10.1007/s12665-017-6779-2
https://doi.org/10.1111/j.1469-8137.1974.tb02129.x
https://doi.org/10.1111/j.1469-8137.1974.tb02129.x


for potential industrial uses within extremophile plants. Industrial Crops & Products, 94,
299–307.

Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2017). Use of biochar-
compost to improve properties and productivity of the degraded coastal soil in the
Yellow River Delta, China. Journal of Soils & Sediments, 17(3), 780–789.

Ma, H., Ettagbor, H. E., & Kim, C. (2018). Effects of Trichoderma harzianum YC459 and
soil types on seed germination and seedling growth in rock slope restoration. Journal of
Mountain Science, 15(4), 730–737. https://doi.org/10.1007/s11629-017-4533-6

Maathuis, F., Flowers, T., & Yeo, A. (1992). Sodium chloride compartmentation in leaf
vacuoles of the halophyte Suaeda maritima (L.) Dum. and its relation to tonoplast per-
meability. Journal of Experimental Botany, 43(9), 1219–1223. https://doi.org/10.1093/jxb/
43.9.1219

Maciel, E., Domingues, P., Domingues, M. R. M., Calado, R., & Lillebø, A. (2020).
Halophyte planxts from sustainable marine aquaponics are a valuable source of omega-3
polar lipids. Food Chemistry, 320, 126560. https://doi.org/10.1016/j.foodchem.2020.
126560

Malik, Z. H., & Ravindran, K. C. (2018). Biochemical tolerance of Suaeda maritima
L.(Dumort) as a potential species for phytoextracting heavy metal and salt in paper mill
effluent contaminated soil. Journal of Drug Delivery and Therapeutics, 8(6-s), 241–245.
https://doi.org/10.22270/jddt.v8i6-s.2121

Manousaki, E., Galanaki, K., Papadimitriou, L., & Kalogerakis, N. (2014). Metal phytoreme-
diation by the halophyte Limoniastrum monopetalum (L.) Boiss: Two contrasting eco-
types. International Journal of Phytoremediation, 16(7–12), 755–769. https://doi.org/10.
1080/15226514.2013.856847

Marcar, N., Ansari, R., Khanzada, A., Khan, M., & Crawford, D. (2003). Performance of
several tree species on a saline site in southern Pakistan. Journal of Tropical Forest
Science, 15(3), 457–468.

Marcum, K. B., & Murdoch, C. L. (1990). Growth responses, ion relations, and osmotic
adaptations of eleven C4 turf grasses to salinity. Agronomy Journal, 82(5), 892–896.
https://doi.org/10.2134/agronj1990.00021962008200050009x

Markovi�c, S., Petrovi�c, M., & -Duki�c, N. (2020). Variability of malondialdehyde content and
yield elements in Triticum aestivum L. under heat stress conditions. Kragujevac Journal
of Science, (42), 45–54. https://doi.org/10.5937/KgJSci2042045M

Matuszak-Slamani, R., Bejger, R., Cie�sla, J., Bieganowski, A., Kocza�nska, M., Gawlik, A.,
Kulpa, D., Sienkiewicz, M., Włodarczyk, M., & GołeRbiowska, D. (2017). Influence of
humic acid molecular fractions on growth and development of soybean seedlings under
salt stress. Plant Growth Regulation, 83(3), 465–477.

McKay, D. S., Carter, J. L., Boles, W. W., Allen, C. C., & Allton, J. H. (1994). JSC-1: A new
lunar soil simulant. Engineering, Construction, and Operations in Space IV, 2, 857–866.

Meot-Duros, L., & Magn�e, C. (2008). Effect of salinity and chemical factors on seed ger-
mination in the halophyte Crithmum maritimum L. Plant & Soil, 313(1-2), 83.

Mesa-Mar�ın, J., Barcia-Piedras, J. M., Mateos-Naranjo, E., Cox, L., Real, M., P�erez-Romero,
J. A., Navarro-Torre, S., Rodr�ıguez-Llorente, I. D., Pajuelo, E., Parra, R., & Redondo-
G�omez, S. (2019). Soil phenanthrene phytoremediation capacity in bacteria-assisted
Spartina densiflora. Ecotoxicology and Environmental Safety, 182, 109382. https://doi.org/
10.1016/j.ecoenv.2019.109382

Mikosch, N., Becker, R., Schelter, L., Berger, M., Usman, M., & Finkbeiner, M. (2020).
High resolution water scarcity analysis for cotton cultivation areas in Punjab, Pakistan.
Ecological Indicators, 109, 105852. https://doi.org/10.1016/j.ecolind.2019.105852

36 N. MUNIR ET AL.

https://doi.org/10.1007/s11629-017-4533-6
https://doi.org/10.1093/jxb/43.9.1219
https://doi.org/10.1093/jxb/43.9.1219
https://doi.org/10.1016/j.foodchem.2020.126560
https://doi.org/10.1016/j.foodchem.2020.126560
https://doi.org/10.22270/jddt.v8i6-s.2121
https://doi.org/10.1080/15226514.2013.856847
https://doi.org/10.1080/15226514.2013.856847
https://doi.org/10.2134/agronj1990.00021962008200050009x
https://doi.org/10.5937/KgJSci2042045M
https://doi.org/10.1016/j.ecoenv.2019.109382
https://doi.org/10.1016/j.ecoenv.2019.109382
https://doi.org/10.1016/j.ecolind.2019.105852


Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance
genes and promoters. Frontiers in Plant Science, 8, 829. https://doi.org/10.3389/fpls.2017.
00829

Mohammadkhani, N., & Servati, M. (2018). Nutrient concentration in wheat and soil under
allelopathy treatments. Journal of Plant Research, 131(1), 143–155. https://doi.org/10.
1007/s10265-017-0981-x

Mora, O., Le Mou€el, C., de Lattre-Gasquet, M., Donnars, C., Dumas, P., R�echauch�ere, O.,
Brunelle, T., Manceron, S., Marajo-Petitzon, E., Moreau, C., Barzman, M., Forslund, A.,
& Marty, P. (2020). Exploring the future of land use and food security: A new set of glo-
bal scenarios. PLoS One, 15(7), e0235597 https://doi.org/10.1371/journal.pone.0235597

Moser, B. R., Seliskar, D. M., & Gallagher, J. L. (2016). Fatty acid composition of fourteen
seashore mallow (Kosteletzkya pentacarpos) seed oil accessions collected from the
Atlantic and Gulf coasts of the United States. Industrial Crops and Products, 87, 20–26.
https://doi.org/10.1016/j.indcrop.2016.04.018

Mota, C., Nascimento, A. C., Santos, M., Delgado, I., Coelho, I., Rego, A., Matos, A. S.,
Torres, D., & Castanheira, I. (2016). The effect of cooking methods on the mineral con-
tent of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat
(Fagopyrum esculentum). Journal of Food Composition & Analysis, 49, 57–64.

Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D. (2016).
Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their
relevance for saline soil bio-reclamation. Flora, 224, 96–105. https://doi.org/10.1016/j.
flora.2016.07.009

Mughal, T. A., Aslam, F., Yousaf, Z., Nisar, N., & Leung, P. C. (2020). In vitro cytotoxic
activity of Zaleya Pentandra L. Extracts against the breast cancer adenocarcinoma cell
line MCF-7. Journal of Pakistan Medical Assiocation, 70(1), 35–41.

Mujeeb, A., Aziz, I., Ahmed, M. Z., Alvi, S. K., & Shafiq, S. (2020). Comparative assessment
of heavy metal accumulation and bio-indication in coastal dune halophytes.
Ecotoxicology and Environmental Safety, 195, 110486. https://doi.org/10.1016/j.ecoenv.
2020.110486

Mukhtar, S., Mehnaz, S., Mirza, M. S., & Malik, K. A. (2019). Isolation and characterization
of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex
amnicola) for production of hydrolytic enzymes. Brazilian Journal of Microbiology, 50(1),
85–97. https://doi.org/10.1007/s42770-019-00044-y

Munir, N., Abideen, Z., & Sharif, N. (2020). Development of halophytes as energy feedstock
by applying genetic manipulations. All Life, 13(1), 1–10. https://doi.org/10.1080/
21553769.2019.1595745

Munns, R. (2005). Genes and salt tolerance: Bringing them together. The New Phytologist,
167(3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

Mzoughi, Z., Chahdoura, H., Chakroun, Y., C�amara, M., Fern�andez-Ruiz, V., Morales, P.,
Mosbah, H., Flamini, G., Snoussi, M., & Majdoub, H. (2019). Wild edible Swiss chard
leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological
activities. Food Research International (Ottawa, Ont.), 119, 612–621. https://doi.org/10.
1016/j.foodres.2018.10.039

Naeem, H., Perveen, R., Zaidi, S. S. M., Zia, Z., Fatima, K., Akram, Z., Hussain, M., &
Ishaque, F. (2019). Cleome brachycarpa: A review on ethnobotany, phytochemistry, and
pharmacology. RADS Journal of Pharmacy & Pharmaceutical Sciences, 7(2), 107–111.

Nair, V. D., Nair, P., Dari, B., Freitas, A. M., Chatterjee, N., & Pinheiro, F. M. (2017).
Biochar in the agroecosystem-climate-change-sustainability nexus. Frontiers in Plant
Science, 8, 2051. https://doi.org/10.3389/fpls.2017.02051

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 37

https://doi.org/10.3389/fpls.2017.00829
https://doi.org/10.3389/fpls.2017.00829
https://doi.org/10.1007/s10265-017-0981-x
https://doi.org/10.1007/s10265-017-0981-x
https://doi.org/10.1371/journal.pone.0235597
https://doi.org/10.1016/j.indcrop.2016.04.018
https://doi.org/10.1016/j.flora.2016.07.009
https://doi.org/10.1016/j.flora.2016.07.009
https://doi.org/10.1016/j.ecoenv.2020.110486
https://doi.org/10.1016/j.ecoenv.2020.110486
https://doi.org/10.1007/s42770-019-00044-y
https://doi.org/10.1080/21553769.2019.1595745
https://doi.org/10.1080/21553769.2019.1595745
https://doi.org/10.1111/j.1469-8137.2005.01487.x
https://doi.org/10.1016/j.foodres.2018.10.039
https://doi.org/10.1016/j.foodres.2018.10.039
https://doi.org/10.3389/fpls.2017.02051


Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012).
NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica
Acta, 1819(2), 97–103. https://doi.org/10.1016/j.bbagrm.2011.10.005

Narsimhulu, B. L., Suresh, Y., Rajasekar, G., Lavanya, T., Philip, G. H., Mohiyuddin, S. S.,
& Reddy, S. R. (2019). Evaluation of hepatoprotective and nephroprotective activity of
methanolic extract of Cleome viscosa and Cleome gynandra in STZ-induced diabetic rats.
The Pharma Innovation Journal, 8(2), 574–581.

Naz, N., Fatima, S., Hameed, M., Ashraf, M., Naseer, M., Ahmad, F., & Zahoor, A. (2018).
Structural and functional aspects of salt tolerance in differently adapted ecotypes of
Aeluropus lagopoides from saline desert habitats. International Journal of Agriculture &
Biology, 20, 41–51.

Nazar, S., Hussain, M. A., Khan, A., Muhammad, G., & Tahir, M. N. (2020). Capparis
decidua Edgew (Forssk.): A comprehensive review of its traditional uses, phytochemistry,
pharmacology and nutrapharmaceutical potential. Arabian Journal of Chemistry, 13(1),
1901–1916. https://doi.org/10.1016/j.arabjc.2018.02.007

Nazir, S. (2019). Effect of salinity on phenolic composition and antioxidant activity of halo-
phytes., University of Karachi.

Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp.
schweinfurthii and its influence on growth, proline, root hydraulic conductivity and
nutrient uptake. Flora-Morphology, Distribution, Functional Ecology of Plants, 204(4),
316–324. https://doi.org/10.1016/j.flora.2008.03.004

Nelson, D. E., Shen, B., & Bohnert, H. J. (1998). Salinity tolerance—Mechanisms, models
and the metabolic engineering of complex traits. Genetic Engineering, 153–176.

Neubauerov�a, T., Dole�z�ılkov�a, I., Kr�alov�a, M., Schevchenko, I., Macůrkov�a, A., �Sanda, M.,
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