Stress Biology and Genomics (MMBB0517) Short Questions

- 1. Which of the following is a strategy to manipulate drought tolerance in plants?
 - a) Increasing light intensity
 - b) Reducing nutrient availability
 - c) Enhancing osmotic adjustment
 - d) Increasing water logging
- 2. What are osmoprotectants in relation to drought tolerance?
 - a) Proteins that protect against osmotic stress
 - b) Molecules that regulate hormone synthesis
 - c) Enzymes that degrade reactive oxygen species
 - d) Substances that help maintain cellular water balance
- 3. Which of the following is a hormone involved in ABA signaling during drought stress?
 - a) Gibberellin (GA)
 - b) Cytokinin (CK)
 - c) Abscisic acid (ABA)
 - d) Ethylene (ET)
- 4. How do plants adapt to water logging stress?
 - a) By increasing light intensity
 - b) By reducing oxygen availability
 - c) By synthesizing osmoprotectants
 - d) By enhancing nutrient uptake
- 5. What is the primary mechanism of tolerance to flooding in plants?
 - a) Increased synthesis of abscisic acid
 - b) Enhanced production of osmoprotectants
 - c) Activation of hormone signaling pathways
 - d) Increased water uptake through the roots
- 6. How do plants improve submergence tolerance?
 - a) By reducing light intensity
 - b) By increasing oxygen availability
 - c) By synthesizing antioxidants
 - d) By regulating hormonal metabolism
- 7. Which pathway is involved in ion homeostasis during salinity stress?
 - a) SOS pathway
 - b) ABA signaling pathway
 - c) Ethylene signaling pathway
 - d) Gibberellin signaling pathway
- 8. What are the strategies to improve salinity tolerance in plants?
 - a) Reducing water availability
 - b) Enhancing nutrient uptake
 - c) Activating SOS pathways

- d) Increasing temperature
- 9. How does water logging stress affect plant growth and metabolism?
 - a) It enhances nutrient availability
 - b) It reduces oxygen availability
 - c) It promotes root development
 - d) It increases photosynthetic activity
- 10. What are the physiological and biochemical changes associated with high temperature tolerance in plants?
 - a) Reduced water uptake
 - b) Enhanced osmotic adjustment
 - c) Decreased production of antioxidants
 - d) Increased synthesis of proline
- 11. Which of the following is a role of cell membranes in signal perception in plants?
 - a) Energy production
 - b) Nutrient absorption
 - c) Environmental sensing
 - d) DNA replication
- 12. What are the ways of signal transduction in cells?
 - a) Hormone synthesis
 - b) Protein degradation
 - c) Signal perception and response
 - d) Cell division and growth
- 13. Which of the following is an abiotic stress affecting plant productivity?
 - a) Biotic pathogens
 - b) Insect infestation
 - c) Drought stress
 - d) Fungal infections
- 14. How does drought stress affect plant growth and development?
 - a) Increases water uptake
 - b) Promotes root growth
 - c) Reduces photosynthesis
 - d) Enhances nutrient absorption
- 15. What are the components of drought resistance in plants?
 - a) Increased leaf size
 - b) Enhanced root development
 - c) Elevated chlorophyll content
 - d) Improved seed germination
- 16. Which of the following is a physiological basis of tolerance mechanisms to drought stress?
 - a) Increased antioxidant activity
 - b) Reduced hormone synthesis
 - c) Enhanced membrane permeability

- d) Decreased water uptake
- 17. What is the biochemical basis of tolerance mechanisms to drought stress?
 - a) Enhanced osmotic adjustment
 - b) Decreased protein synthesis
 - c) Elevated ROS production
 - d) Reduced carbohydrate metabolism
- 18. Which of the following is a molecular basis of tolerance mechanisms to drought stress?
 - a) Upregulation of stress-related genes
 - b) Suppression of photosynthetic genes
 - c) Inhibition of cell division
 - d) Activation of pathogenesis-related genes
- 19. What is biotic stress in plants?
 - a) Environmental pollution
 - b) Soil erosion
 - c) Insect infestation
 - d) Water scarcity
- 20. What is the resistance mechanism against insect pests?
 - a) Increased water availability
 - b) Enhanced nutrient uptake
 - c) Production of toxic compounds
 - d) Stimulation of cell division
- 21. Which of the following is a pathogen resistance mechanism in plants?
 - a) Reduced hormone production
 - b) Increased pathogen growth
 - c) Activation of defense genes
 - d) Suppression of immune response
- 22. Which abiotic stress affects plant productivity by increasing soil salinity?
 - a) Drought stress
 - b) Temperature stress
 - c) Water logging
 - d) Light stress
- 23. How does light stress affect plants?
 - a) Enhances photosynthesis
 - b) Promotes growth and development
 - c) Triggers oxidative stress
 - d) Increases nutrient availability
- 24. What is nutrient stress in plants?
 - a) Excessive fertilizer application
 - b) Lack of water availability
 - c) Insufficient nutrient supply
 - d) Soil contamination

- 25. Which of the following is an adaptation strategy for plants to cope with nutrient stress?
 - a) Enhanced root development
 - b) Suppression of photosynthesis
 - c) Increased water logging
 - d) Inhibition of hormone synthesis
- 26. What is the primary focus of genomics in plant biology?
 - a) Protein-protein interactions
 - b) Epigenetic modifications
 - c) Gene expression patterns
 - d) DNA sequences and genetic variation
- 27. Which of the following is an example of a functional genomics approach?
 - a) Sequencing the entire genome of a plant species
 - b) Studying the expression patterns of all genes in a tissue
 - c) Transferring a specific gene into a model plant
 - d) Examining epigenetic modifications in a gene promoter region
- 28. How can the transfer of tolerance/resistant genes to model plants be validated?
 - a) Analyzing gene expression patterns
 - b) Conducting field trials and observations
 - c) Performing genetic crosses
 - d) Using bioinformatics tools to predict gene function
- 29. What are transcriptomes in the context of plant biology?
 - a) DNA sequences of all genes in a plant
 - b) Small RNA molecules involved in gene regulation
 - c) RNA molecules produced by a cell or organism
 - d) Epigenetic modifications of DNA sequences
- 30. What is the role of small RNAs in gene regulation?
 - a) DNA replication
 - b) Protein synthesis
 - c) Transcriptional silencing or activation
 - d) Protein-protein interactions
- 31. Which of the following is an example of a defense-related gene in plants?
 - a) Coat protein genes
 - b) Detoxification genes
 - c) R proteins
 - d) Transcription factors
- 32. What is the RNAi approach used for in plant biology?
 - a) Gene expression analysis
 - b) Inhibition of pathogen genes
 - c) Gene transfer to model plants
 - d) Protein-protein interaction studies

- 33. What are Bt proteins used for in transgenic crops?
 - a) Enhancing photosynthesis
 - b) Improving nutrient uptake
 - c) Detoxifying pollutants
 - d) Insect pest control
- 34. What is resistance management in transgenic crops?
 - a) Selecting for resistance to transgene insertion
 - b) Developing strategies to prevent resistance evolution in pests
 - c) Enhancing resistance to abiotic stresses
 - d) Studying the ecological impact of transgenic crops
- 35. What is the ecological impact of field release of transgenic crops?
 - a) Increased biodiversity
 - b) Reduced pesticide use
 - c) Enhanced soil fertility
 - d) Altered interactions with non-target organisms
- 36. How can bioinformatics approaches determine gene function in model plants under stress?
 - a) By analyzing protein-protein interactions
 - b) Through gene expression analysis
 - c) By studying epigenetic modifications
 - d) Using computational tools to predict gene function
- 37. What is an epigenome in plant biology?
 - a) DNA sequences of all genes in a plant
 - b) Small RNA molecules involved in gene regulation
 - c) Chemical modifications of DNA that affect gene expression
 - d) RNA molecules produced by a cell or organism
- 38. Which technique is commonly used for the functional validation of genes?
 - a) Next-generation sequencing
 - b) Polymerase chain reaction (PCR)
 - c) Chromatin immunoprecipitation (ChIP)
 - d) Site-directed mutagenesis
- 39. What are R proteins in plants?
 - a) Proteins involved in photosynthesis
 - b) Proteins involved in RNA processing
 - c) Proteins involved in defense against pathogens
 - d) Proteins involved in DNA replication
- 40. How can the validation of gene function be achieved in plants?
 - a) Through in silico analysis
 - b) Using transgenic approaches
 - c) By observing phenotypic changes
 - d) Performing mutational analysis